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Summary

Distribution-free tests for no treatment effect against the simple
order alternative in a two-way layout with equal number of observa-
tions per cell are considered. The nonparametric test statistics are
constructed by the rank analogues of the likelihood ratio test statistic
assuming normality (i) based on within-block rankings and (ii) based
on combined rankings of all the observations after alignment within
each block. The exact distributions are given and large sample pro-
perties are investigated. The asymptotic power of the test (i) as the
number of observations per cell tends to infinity can be satisfied enough,
and in the case that the number of blocks tends to infinity, the asymp-
totic power of the test (ii) is almost higher than that of the test (i).
Also these rank tests are compared with linear rank tests and it is
shown that these proposed tests are robust by a table.

1. Introduction

Consider a randomized block design with » blocks, p treatments
and N observations per cell, in which each observation is expressed as

(1.1) Xip=p+Bitr;+e,
(?':17 27"';”” jzly 2)"': D, k=1, 21"'v N) ’

where the block effect g, and the treatment effect r, satisfy Enlﬂ‘:

y4
jZ}_lr,=0 and error random variables {e,.: i=1,---,m, j=1,.--,p, k=

1,--+, N} are independent and identically distributed to a continuous
distribution function F'(x) with density f(x).

The problem is to test the null hypothesis H:z,=0 (j=1,---, p)
for unknown F. By the way, in testing the alternative hypothesis that
the treatment effects are not equal, there are two distribution-free test
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statistics given by the rank analogues of the likelihood ratio test sta-
tistic assuming normality. Friedman [7] and Mack and Skillings [9]
discussed the case of the within-block rank test and showed that, as-
suming the normal distribution and the Wilcoxon scores, the asymp-
totic relative efficiency with respect to the likelihood ratio test is be-
tween 2/r and 3/, depending on the block size as the number of blocks
n tends to infinity and is 3/zr as the number of observations N per cell
tends to infinity. In the case of the aligned rank test, Mehra and
Sarangi [10] showed that the asymptotic relative efficiency is larger
than 3/r when the distribution is normal and the scores function is of
Wileoxon type, and Sen [11] discussed the general scores.

So in this paper, the alternative hypothesis of interest is K: r;<r,
<..-<r1, with at least one strict inequality. The proposed test sta-
tistics are constructed by the rank analogues of the likelihood ratio
test statistic as the similar way to the above papers. In Section 3, we
state that the exact distributions of these distribution-free tests are
mixtures of distributions of the Friedman rank test and Sen’s [11]
aligned rank test respectively. In Section 4, using the results of Sec-
tion 3, we show that the asymptotic distribution under the null hy-
pothesis is a mixture of y-square distributions. In Section 5, we com-
pute the asymptotic Pitman efficiency with respect to the likelihood
ratio test after we study the asymptotic distribution under a contigu-
ous sequence of location alternatives. Also as Araki and Shirahata [1]
and Sen [11] proposed linear rank tests for the ordered alternative, in
Section 6, we compare these tests with linear rank tests by the asymp-
totic power, using the numerical computation.

2. The test statistics

If F' is the normal distribution function with mean zero and known
variance ¢!, the likelihood ratio test for H versus K is to reject H
when the following statistic is too large,

(2.1) Tl X)=nN 33 (¢~ X..)o*
where

X.=

=315 5 XulonN),  X.=35 5 Xl

i=1 j=1

and z; (¢1=1,2,---,p) are 7, (t=1,2,- -, p) which minimize j‘i (X.,.—7,)
=1
under order restriction, that is, r;,<7,<.--<r,. Then from Chacko [6],

z; is equal to max min é )_(.,./(t—s+ 1) and there is the Pool-Adjacent-

1585i iStsp j=s
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Violators algorithm in Barlow et al. [2] as the way of giving %,. It is
found that ¥3,(X) has a mixture of y-square distributions stated in
Theorem 4.1 under H from Theorem 1 of Shorack [14].

For deriving the rank statistic corresponding to (2.1), we define
within-block rank R;;, by the rank of X, among {X;,: 7=1,2,---,p,
k=1,2,-.., N} within 4th block and let the scores function a,y(:) be

N
a mapping from {1,2,-.., pN} to real numbers such that ;‘] a,v(k)=0.
=1

The hypothesis H is rejected when the following statistic construct-
ed by substituting a,v(R;;) for X, in the statistic given by (2.1) is
too large,

(2.2) Lv(@(R))=nN(pN—1) ﬁ‘, 72 / % {a,w()}*,
where

Bn(B.1)=3) 3 apn(Be) ()
and

7;=max min Sl_} an(R.;)/(t—s+1) .

15851 isStsp j=3

Next, we introduce the aligned rank and propose the test based
on one. So setting

p N P N
Yijk=Xijk'“jE=1 E Xuk/(pN)=3tjk—J§l kgl e/ (DN)+7; ,

Mehra and Sarangi [10] defined the aligned rank @, by the rank of
Y., among all observations {Y;;: ¢=1,2,---,m, j=1,2,...,p, k=1, 2,
-++, N}. Here let the scores function b,(:-) be a mapping from {1,

2,--+,pnN} to real numbers such that pﬁvme(k)=O. The following
k=1

aligned rank statistic is constructed by substituting b,.,(Q;;;) for X
in the likelihood ratio test statistic (2.1) except for the constant factor.

(2.3) 7Ab@Q)=n*N(pN—1) }": ¥ / 3Py (B (Qi6) —bpun( @)} 5

i=1 j=1 k=1

where

br(@,)=3] 31 byu(@u)l(nN) , < =max min 3 KH@..)/(t—s+1)

15851 iStsSp j=3

and

Bun(Qe.)= 33 3 by @ (PN)
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Hence we reject H if 72(b(Q)) is too large, and the denominator of (2.3)
is regarded as a constant since we think of the conditional distribution
afterward.

3. Notations and expressions of exact distributions

For the later discussions, we introduce some notations used by
Boswell and Brunk [5].
For ¢=1,2,.--, p, define

U,=lu= Uy, -+, U,): Uy, Uy, -+, U, are nonnegative integers,
q D r4

i‘,iui=p and }Eu,:q} and
i=1 i=1

p .,
3.1) L@ p= 5 1 / (H ui!w) .
For ueU, define Ve={v=(v;, vy++,v,): ¥y, ¥y--+, v, are positive

integers and exactly u; of the components are equal to ¢ for i=1, 2,
-«o,m} and V,= U Vu,

ue U,

For ve V¥, set w,=0 and wi=Jﬁ v, (i=1,2,-++, q).
For 1<s<t<p and a p-dimensional vector £=(&,,:.-, &,), set @,
t — t
=]Z=s apv(R.;)[(E—s+1), b[s,t3=j§ bpmn(Q.;.)/(t—s+1) and

— t
(3.2) E[,,ﬂzg g (t—s+1).
For ve V* and a p-dimensional vector §=(&,, .-, &,), define

(33)  Su®)=nNEN-1) 0, 0[3 @),

n N

(34)  T)=wNEN-1) 3 0, 0002 2 2 @) —Ema(@c )}

i=1 j=1k=1

and
(3.5) So(8)= é‘, DY

Setting Qij:(Qijly QijZ! Ty QijN) and Qi;=Qij1s Qijos -+ > Qijn), Write 2,
= {(Qilv Qin ] Qip) "’:1! 2! cee, M (Qil: Qi21 "ty Qip) takes (pN)! permu-
tations of (gi, g, -+, qip) for ¢=1,2,..-, n}.

The following two theorems are essentially a direct application of
Theorem 1.2 of Boswell and Brunk [5].
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THEOREM 3.1. If H 1is true, for t>0,
— . P .
Pr{fn@®)zti=3 5 PriSw@zt/([]udix),
g=1ueU, =1

where v s selected arbitrarily from V* for each u € U,.

Proor. Since Pr{R, =7 t=1,---,n, j=1,---,p, k=1,---, N}
=1/{(pN)'}" under H, (@,n(R..),---,a,x(R.;.)) is an exchangeable ran-
dom vector. The remainder of the proof is similar to that of Theorem
1 of Shiraishi [13].

Since Y;=Yu1, Yizs*+» Yo Yios+++» Yipy)' i an exchangeable ran-
dom vector with pN elements under H and Y,’s are independent random
vectors, we have the conditional probability

(3'6) Pr {QiijQijkf 'l:=1,' M, j=1,' D k=17' ) ngn}
=1/{(pN)!}"
under H.

THEOREM 3.2. If H is true, for t>0,
PrfG@)zt|2) =3 5 PriTw)zt|2} /(1] i),
g=2uecl, i=1

where v s selected arbitrarily from Vv for each u € U,.

PROOF.  (0,nn(@.1.), bpun(@.2.), -, b,n(Q.5.)) is an exchangeable random
vector under the conditional probability Pr{-|2,} from (3.6) and i i

i=1 j=1

kﬁ_]]l {bp,,,v(Q,j,,)—5,,,,,\,(Qi..)}2 is a constant for given £2,. The remainder of

the proof is exactly parallel to Theorem 3.1.

The latter test based on the aligned rank is more troublesome than
the former in computing the test statistic and we can not make a table
of the upper tail probabilities of the latter test as we think of the
conditional probability.

4. Asymptotic distribution under the hypothesis

In order to test H versus K approximately for the given level of
significance when either the number of blocks or the number of obser-
vations per cell is too large, we give the asymptotic distribution of the
statistics (2.2) and (2.3).

THEOREM 4.1. If H s true and t 18 positive, we have
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lim Pr (Zir(a(R) 2t} = 33 L(g, P) Pr {121}
where L(q, p) is given by (3.1).
PROOF. Set d'pN(Ri,.)=§‘, a,x(Ri;)/N, and write I,=unit matrix of
k=1
order p and a p-dimensional vector 1,=(1,---,1). Then the variance-
covariance matrix of (@,y(Riv.),- ««, Gon(Rip.)) is \/ Z_V‘Z {a,x(D)}/{N(pN—1)}

-(I,—1,1;/p) from Theorem II13.1c of Hajek and Sidak [8] and (@ (Rir),
cooy Bpy(Rip)) (6=1,2,-.-,n) are independent and identically distributed
random vectors, the multivariate central limit theorem implies that

V nNEN=1)[ 3 (D @n(Bo)s- -+, Gl B > NO, L—1,14/p)

as n—oo,

where —— denotes convergence in law. Hence,

N ANON 1) 8 {0V Vw10 VTt Ve 1)
TN(O’ Ip_(JE’ ‘\/—6;7' * ‘\/5);)'(1/71‘7 JW:' M) ‘J’l_)q-)/p)

as m—oo .

Since I,—(v/V;, ¥V, +, ¥/0,) (¥ 1, ¥ V2, -+ 4/0,)[p is idempotent and its
rank is ¢g—1, using a standard result from the multivariate analysis,

Suw(v)—7i-1  for g=2 as n—oo,

where S,,(v) is given by (3.3). This, combined with Theorem 3.1, com-
pletes the proof of Theorem 4.1.

In order to derive the asymptotic distribution of ¥2y(a(R)) defined
by (2.2) for a large number of replications N, we impose Assumption (I).

AsSsuMPTION (I). The underlying distribution F has the finite
Fisher information number and a,(-) is a scores function satisfying

lim S: {@u(1-+[ul]) — $(w)} {du=0
for some square integrable function ¢(u) such that
S: {$(w)}*du>0  and S: $(u)du=0 ,

where [ul] is the largest integer not exceeding wul.
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THEOREM 4.2. If Assumption (I) is satisfied and t is positive, un-
der H, we have

lim Pr {Zn(a(R) 20} = 3} L(@, P) Pr {3121} -

PROOF. From Theorem V 2.2 of Hajek and Sidék [8], setting

PN

&=V NEN-1)/5 @,V @pr(Ba), -, Ton(Ros)

we have §—~N(0, I,—1,1}/p) and that {§,: ©=1,2,-.-, n} are independ-
ent random vectors. Hence, using Theorem 3.2 of Billingsley [4], we
get

‘/nN(pN'_ 1)/:;”1 {a’pN(k)}z(de(R-l-), ] a"pN(R-p-))’TN(O’ Ip_lplup)
as N—oo.

The remainder of the proof is similar to that of Theorem 4.1. Also
we impose Assumption (II) in order to derive the asymptotic theory

of %(b(@Q))-

AssuMpPTION (II). There exists a square integrable function ¢(-)
such that

lim | b1+ ) —p@pdu=0, | pudu=0
and S: {$(w)) du>0 .

THEOREM 4.3. Suppose that the scores function b,,(-) satisfies As-
sumption (II) and the assumptions (2.3) and (3.4) of Tardif [15]. If
H s true and t is positive, we have

lim Pr {7(6(@) 2%} = 3} L(a, P) Pr {1311} -
ProOF. From Theorem 3.1 of Tardif [15], we have
lim PI' {T,,,(U)gt} =Pr {x:—lgt} ’

where T,(v) is given by (3.4). Hence, using Theorem 3.2, we get the
result.

The critical values of the asymptotic distribution given by Theo-
rems 4.1, 4.2 and 4.3 are shown in tables A.1, A.2 and A.3 of Barlow
et al. [2].
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5. Asymptotic relative efficiency

Since the tests based on (2.1), (2.2) and (2.3) are all similar to the
grand mean g and the block effects 8; (1=1,2,--.,n) for fixed F in
the equation (1.1), we may assume that g and B, (i=1,--.,m) equal
zero in the rest of this paper. In order to compute the asymptotic
Pitman efficiency, we consider the contiguous sequence of location alter-
natives specified by ’

g(n)

Qenem(X)=T1[ ﬁ' ’:ﬁ) f(%;k"%)

i=1 j=1

where g(-) and h(-) are mappings from positive integers to themselves,
31 4,=0 and 3} 42>0.
Jj=1 Jj=1

THEOREM 5.1. If F has the finite Fisher information number and
a finite variance o°, the asymptotic relative efficiency of the within-block

rank test based on yiy(a(R)) with respect to the likelihood ratio test based
on Yax(X) for testing H versus K as n tends to infinity is

ARE (7r(@(B)), (0= {3 a,n() B (X [[oN-1) £ lami}’]

where H(XP)=—f(XP)/f(X?P) and XV is the ith order statistic in a
sample of size pN from F(x).

Proor. If we let lim g(n)/n=>b for 0<b<1, from Corollary 3.4 of
Schach [12],

«/g(’n)(pN— 1)/:2: {apN(k)}z(a—pN(R-n), c—ipN(R-lz)s Ct Yy 6pN(R-lN):

a’pN(R‘Zl)r tt de(R-pN)),TN(F‘h IpN—lelg»N/pN)
with

m=v b/ [NeN-1) 5 g,k ]
: {% ty(3) E (Xw)} sy ey dy dyyee-, 4,

under {Q,.,y}. Therefore if we set

DN

&=V SNEN—1)[3] (@) T(R.1)

(5.1) =% &+ &) —Y  where Y~N(u, ,—1,1}/p)
with
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1=/ b[[N=1 5 (a,(0)*] 5} a0 B 9X)-4

under {Q,»y}, Where 4=(4,, 4,,---, 4,)'.
On the other hand, the central limit theorem implies that

(5.2) n=vnN/|o(X.,.—X., X, —X.,+, X,,—X.)—Z

under {Q,.y}, where Z~N(4/s, I,—1,1,/p).
Now Shorack [14] showed that, for p-dimensional vector &,
(5.3) {8: max min &, ,=5u,_ 4103
1s8si istsp J-17 5%
for i=v,,+1,---,v, and j=1,2,.-+,q}
= {E: E[wj_l—e-l,wj]—E[wj+1,w]'+1]<0
for 7=1,2,---,q—1 and
E[wj_l+l,wl_l+i]—E[’wj__1+1,wj]>0
for +=1,2,--+,v,—1 and j=1,2,---,q},

where &, ,; is defined by (3.2). Therefore if we let the set A,(t) be
defined by the following relation, & € A,(t) implies Sy(5)=t,

0]

[wj_1+l,wj]—E[wj+l,wj+1]<0 for 'izly 2y A} q—l

and

(]

[wj__1+l,wj_1+i]—E[wj_1+1,wj]>0
for ¢=1,2,--+,v,—1 and j=1,2,---,¢q,

where &, ,; and Sy(8) are respectively defined by (3.2) and (3.5). Using
(5.1), (5.2) and (5.3), we get

lim Pr (Zhn(a(R) 1)

=lim Z Z Pr {7 € Au(t)} = Z‘, Z‘, Pr {Y € Ay(t)}

n—o g=2veV, qg=2veV,

=Pr {x.(Y)=t} ,

where 7}, is ¥»v given by setting n=N=1. Also, from the similar way,

lim Pr {7:5(X) 2t} =lim 3 > Pr{y € Au(t)} =Pr {7(Z2) 2t} .

n— g=2veV,

Here since Pr{y},(Y)=t} is strictly increasing in b from Lemma 2 of
Shiraishi [13], we have

lim Pr {};wn(a(R)) 2t} =lim Pr {7:x(X) 21} ,

if and only if



232 TAKA-AKI SHIRAISHI

lim njg(m)=1/6=0"{3] a() E p(X )] [[oN-D 5 (enn@}?] -

Thus the conclusion follows.
The above asymptotic relative efficiencies for certain distributions
and Wilcoxon scores and normal scores are given in Table 1.

THEOREM 5.2. If Assumption (1) is satisfied, them the asymptotic
relative efficiency of the test based on y:y(a(R)) with respect to the test
based on yiv(X) for testing H versus K as N tends to infinity is

ARE (Z2(@(B)), Ta(X) =*{| st fau][[[ syau] ,

where ¢(u, f)=—F'(F~(w)[f(F(w)).
Proor. If we let Jlgn MN)/N=c for 0<c<1 and set

'ph(N

&=V N EHN)~ D) ] {amam()
* (@pnn(Bir)s Gnan(Bia), - -+ Gnewns(Rip))
using Theorem VI3.1 of Hijek and Sidak 8],
§— N(p, I,—1,1;/p)

with

w={, s, Hau-ayle/|n| syl

under {Q.w}, and {&;: i=1,2,---, n} are independent random vectors.
Here, from Theorem 3.2 of Billingsley [4],

V(N HN)— D[S (@)
* (E'ph(N)(R-l-); tt ﬁphw)(R-p-))'TN(F" Ip— 1,,11’;/2))
with

p=| s, audye|| (pwydu

under {Q..»}. On the other hand, 7—Z under {Q,y}, where % and

Z are defined by (5.2). Thus the above two asymptotic properties and
the similar argument to the proof of Theorem 5.1 yield the conclusion.

This asymptotic relative efficiency is the same as the asymptotic
relative efficiency of the Kruskall-Wallis type test based on general
scores with respect to the F-test for the alternative hypothesis of un-
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equal treatment effects in the one-way layout and is stated in Table 2
of Shiraishi [13]. For instance, if F'is normal and a,(-) is of Wilcoxon-
type, its efficiency is 3/x.

THEOREM 5.3. Suppose that conditions (3.4) and (4.1)-(4.3) of Tardif
[156] and Assumption (II) are satisfied. Define G(x) and G*(x, y) by the
marginal distribution of (ey,—é,..) and the joint distribution of (ey,—é;..,
e;—e.). Then the asymptotic relative efficiency of the test based on -
B(Q)) with respect to the test based on yiy(X) for testing H versus K as
n tends to infinity is

ARE (Z0@), Zn(X)=c'], sy G w)io(c-"w)au} |
([ wrau—{" " sc@wcwmce,v)]
where ¢(u) is defined in Assumption (II).

PrROOF. From Theorem 5.1 of Tardif [15], we have

VENGN-D31 31 5 (@) —Bes(@.)
* (EpnN(Q.x-), 5pnN(Q-z-)» ] b_sz(Q-p-))’_L"N(Flv Ip—lplélp)
Withv
=, 9w (w)lg(Gw))dud

VT wwvan={" |7 sGenucaniea v)]

under {Q.y}. Hence we get

64 r=AwNEN-1D3 51 33 (bpur@u)—Bpun(@. )
+ (@), (@), D@ - N (et =L, 13/)
with

p=— S: $(w)g' (G (w))/g(G~(w))dud /

V[, swra—{" " sG@mwGanicHa v

under {Q.y}.
Thus by the similar argument to the proof of Theorem 5.1, the
conclusion follows.
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This asymptotic relative efficiency is the same as the asymptotic
relative efficiency of the aligned rank test with respect to the F-test
for the null hypothesis H versus the alternative hypothesis that treat-
ment effects are not equal, and is discussed in Mehra and Sarangi [10]
and Sen [11]. If F is normal and b,(¢)=2i/(l+1)—1, the efficiency at-
tains the maximum value 0.9662 at pN=3 and decreases monotonically
to 3/r as pN—oo. Also if F' is normal and b,(-) is normal scores, it
takes one.

Thus, in these cases, it is found that the asymptotic local power
of 7:(b(Q)) as m— oo is higher than that of ¥:,(a(R)) as compared with
Table 1.

Table 1. Table of the Asymptotic Relative Efficiency (ARE) of the test
based on ¥%y(a(R)) with respect to the one based on ¥ix(X) as n
tends to infinity.

(1) Wilcoxon scores a,y(:)=2i/(pN+1)—1

F is normal

PN 3 4 5 10 20 30 50
ARE .716 .764 .796 .868 .910 .924 .936

F is logistic

PN 3 4 5 10 20 30 50
ARE .822 877 914 997 1.044  1.061 1.075

(2) Normal scores a,y(1)=EZ®

F is normal

PN 3 4 5 10 20 30 50
ARE .716 .765 .799 .879 .930 .950 .968

F is logistic

PN 3 4 5 10 20 30 50
ARE .822  .876  .910  .984 1.021 1.032  1.040

EZ® is the expected value of the ith order statistic in a sample of
size pN from the standard normal population.

6. Comparison with linear rank tests

For ordered alternatives, Araki and Shirahata [1] compared many
other distribution-free tests, using the Pitman asymptotic relative ef-
ficiency, and showed that the within-block rank test based on the fol-
lowing statistic

N

(6.1) S@R)=3 31 3 j-apm(Riy) -

i=1 j=1 k=1
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Also Sen [11] proposed the test based on the statistic

(6.2) SO@)=% 2 3 -b(@us) -

So if & or y by (5.1) or (5.4) has asymptotically a normal distribution
with mean vector g under the contiguous sequence of location alter-
natives as n or N tends to infinity, the power function with level & of
significance of the test based on S(a(R)) or S(b(Q)) is

8(w)=1-0(t.— 3 i VPP F D DIE) |

where t, is the upper 100e-percentage point of the standard normal
distribution. Here we give the asymptotic power of ¥2y(a(R)) or 7:(b(Q))
as n or N tends to infinity in Table 2 when the levels of significance
and pA(g) are fixed. Then we use the expression of the power function
of 7:x(X) stated in Bartholomew [3] for p=3, and also use the Monte-

Table 2. The asymptotic powers of the ¥%y(a(R)) and %i(b(Q)) when those of
linear rank tests are fixed for any distribution function F(f) and any scores
functions ai(k) and bu(k).

Number of Level of Asymptotic power Asymptotic power
treatments  Configuration of u:'s signifi- of the linear of the proposed
P cance a rank tests tests
3 =— =0, us= .05 .50 .4697
METH =0 TR 80 7698

.01 .50 .4617
.80 .7655
p=pe=—, ps=24 .05 .50 .5309
# .80 .8458
.01 .50 .5676
.80 .8696
12—2#, 2= — U, .05 .50 .4927
# _ # # .80 .8010
ps=3p
.01 .50 .5025
.80 .8104
5 p=—2p, pa=—p .05 .50 .4507
14=0, g #5:’2# .80 .7517
) ’

.01 .50 .4394
.80 .7464
p=—p, po=ps=u=0, .05 .50 .4996
oy ' .80 .8086
.01 .50 .5083
.80 .8194
m=—4p, .05 .50 .6217
.80 .9277

Poe= 3= =5 =4
.01 .50 .7154
.80 .9575
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Table 2. (Continued)

Number of Level of Asymptotic power Asymptotic power
treatments  Configuration of u;’s signifi- of the linear of the proposed
P cance a rank tests tests
10 pi=-9y, .05 .50 .4481
pe=—Tp, ooe, s=—p, .80 .7454
He=H, .01 .50 .4355
pr=3p, v oo, p10=9 .80 .7400
p=-9u, .05 .50 .8131

.80 .9930

[‘2=[‘8=,‘“= cee =ﬂ10=fl
.01 .50 .9291
.80 .9992
1= flo=cce == —p, .05 .50 .8461
Fa=/l7="'=yw=‘u -80 .9945
.01 .50 .9432
.80 .9995

Carlo simulation for p=>5, 10 and the estimates of the power of the
test are obtained from 10,000 repetitions of sampling.

Hence from Table 2, we get that the powers of linear rank tests
are higher than those of the proposed tests about 5 percent in the case
of the linear trend alternative, that is, p,=ipx (1=1,2,---, ) but the
formers are almost lower than or equal to the latters in the other
cases. Especially for p=10 and configurations: p=-- =g, <py=---
=p, for some ¢, the latters are greatly high. Also we feel that the
proposed tests are robust with respect to the ordered alternative as
the powers of those are not low for any configurations of p,’s.
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