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Summary

This paper is concerned with the mapping T* which is a generali-
zation of the relative conditional expectation. It has been introduced
by E.J.G. Pitman (1979, Some Basic Theory for Statistical Inference,
Chapman and Hall).

First we extend the definition of the mapping T* and describe its
fundamental properties. Moreover, we establish inequalities for convex
functions with respect to T*.

The mapping T* is very useful in analysing quantities associated
with the distribution of a statistic 7. The application of the mapping
T* to statistics is another interest of this paper.

1. Introduction

Let g be a o-finite measure on a g-algebra F of sets in a space
X. T is a mapping from X into a space <. y, is the measure in-
duced in g on the s-algebra _1; i.e. J is the o-algebra of sets A in
T such that T-'A e &, and vy (A)=p(T'A). We shall assume that the
single point sets of I are ./ measurable.

Notice that v, is not necessarily o-finite. But there always exists
a o-finite measure v on 4 which dominates v,. Indeed p is dominated
by some finite measure g, and the measure induced in I from p, is
finite and dominates v,.

Let f be a real-valued measurable function on X which is inte-
grable. Put

Q(A):ST_IAfdp . Aed.

W(A)=0=> p(T-'4)=0—>Q(A)=0 .
181
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Hence »>Q, and so by the Radon-Nikodym theorem there exists a
function g on I, determined up to » equivalence, such that

[, fan=Q)=| odv, Acd.

We shall write g=T*f.

The above notation T*, which is a mapping of integrable functions
on ¥ into integrable functions on <, was introduced by Pitman [5].
This is a generalization of the concept of the relative conditional expec-
tation, for which we refer to Loéve [4]. Of course, if x is a probability
measure and y is the induced probability measure in &, then

T*f=E {f|T} .

Pitman gave some fundamental properties of T* in [5], pp. 100-102.

The definition of T* can be slightly extended as follows. Let g
be an arbitrary measure on ¥. We assume that the induced measure
v, is dominated by some o-finite measure v. Let &(X, p) (resp. £(T, v))
be a family of all extended real-valued measurable functions on X
(resp. ) whose integrals exist, that is,

Sf+d,a<oo or Sf‘d;z<oo, if fe&(X, )

(resp. Sg*dv<oo or S g dyv<oo, if ge &4, v)) .

DEFINITION 1.1. The mapping T* of &(X, ) into &, v) is de-
fined by the following formula: for each f e &(X, p),

SA (T*f)dv:S fdp for every Ac J,
T

-1,
where T*f is determined up to » equivalence.

The definition is justified by the extended Radon-Nikodym theorem
(e.g. Loéve [3)]).

This paper is concerned with various properties of the mapping T*
and their applications to statistics. We can easily see that T* has
many properties similar to those of the conditional expectation. But
in general, T*1+#1. For this reason the following Jensen’s inequality
is not necessarily justified :

() 2¥(T*f) ,

where ¥ is a convex function on (—oo, o0) and f is an integrable func-
tion. In the following section we shall establish other inequalities for
convex functions. In Section 3, we demonstrate some applications of
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the mapping T*. In particular, let f be a probability density function
and let T be a statistic. Then the induced probability measure @ is
the distribution of T and the image of f, g=T*f is a density of Q@ rel-
ative to a o-finite measure v. In this case, the mapping T* is useful
in analysing various quantities associated with the distribution of 7.

2. Properties of the mapping T*

First we describe some fundamental properties of T*. To avoid
constant repitations, it will be assumed that the functions which figure
under the T* sign belong to £(X, p).

(i) If ¢ S Sidp+e, S Sfdp exists for constants ¢;, ¢, then

T*(efit+ef)=cT*fi+e, T*f,, a.e. y.

(ii) f=0, a.e. py=>T*f=0, a.e. v;

20, a.e. p and T*f=0, a.e. y=>f=0, a.e. p.
(iii) fi=fe a.e. p=T*fi=T*f,, a.e. v.
(iv) If h is a measurable function on &, then

T*R(T)-f1=h-T*f, a.e. v.
(v) T*1=j, a.e. v, where j=dy/dv; hence from (iv)
T*[MT)]=h-7, a.e. v.

These properties follows at once from the definition of T* and proper-
ties of integrals.

Let @(u) and Z(u) denote arbitrary convex functions defined on
(0, +o0) and (—oo, +0), respectively. For @, we assume the follow-
ing notational conventions which are due to Csiszar [1]:

0(0)=lim Ou) (= say);
2.1) 0-9(0/0)=0;
0-9(a/0)=lim e-D(a/e)
—alim O)ju  (=a-0., say), 0<a<-+oo.
Then we establish the following inequalities for convex functions.

THEOREM 2.1. Let f and g be nonnegative and integrable functions
on X. Then

2.2) T {g-¢<§)} > T*g-¢(—z’,::£—> . ae .
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If @ ts strictly convex, then the equality holds if and only if
FoT*(T)=g-T*F(T),  a.. p.

THEOREM 2.2. Let f be an integrable function on X, and let g be
a positive integrable function on . Then

2.3) T*{g-qr(%_)}gz"*g-w( g:ﬁ ) . e v.

If T s strictly convex, then the equality holds if and only if
f-T*g(T)=g-T*f(T), ae p.

Remark 2.1. Notice that T*{g-@(f/g)} is always well-defined. In-
deed, using conventions (2.1) and the convexity of @,

g-0(flg)zef+eg

for some constants ¢, and ¢,, and which implies that
[ 9-0019)d> — oo,

since f and g are integrable. Similarly, T*{g-@(f/g9)} is also well-de-
fined. Moreover notice that inequalities (2.2) and (2.3) are not reduced
to Jensen’s inequalities even if we put g=1. Because, in general, g=
1 is not integrable and T*1=j+1.

Now we prove Theorem 2.1 only, since we can similarly prove
Theorem 2.2.

PROOF OF THEOREM 2.1. We hereafter denote by y,=y,(-) and A
the indicator function and the complement of a set A, respectively. Put

F={t; T*f()=0}, G={t; T*¢(t)=0}
and
N={t; T*f(t)=o0} U {t; T*g(t)=co} .

Notice that »(N)=0 since f and g are integrable. From (ii),

=0, a.e. g on T°'F
and

g=0, a.e. g on T°'G.
Thus
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g-di(-ﬁ-):%-g , a.e. g on T7'F

and
g-¢<£—) =0.-g, a.e. pon T7'G.
From (iv)
T*Ig-¢<§)}=¢0-T*g=T*g-¢<—§—;§) , a.e. v on F
and

T*{g@(%)}:@,-T*f:T*g@( g:ﬁ) , ae vonG.

Thus combining these two relations, we have

@9 o To( L) =pnue Tro-0(TL), e

Now denote the right-hand derivative of @ at w by @.(w), which is
nondecreasing in % and thus is measurable. Then for 0<u,< + oo,

O(w) = D(uo) + D (wo) (u—uy) =0
and
D20, (uy) .

From these relations and conventions (2.1), we have

00 volf)zpol ZAD o TID) 7y AT,

on T"(FUGUN),
by putting u=f/g and w,=T*f(T)/T*g(T). Define

T*() —=1.92....
A,= {t g T*(h) _n} n=1,2,

Notice that
(2.6) FUGUN= Q A,.

Since each term of the right-hand side of (2.5) is integrable on T'4,,
from (i), (iii) and (iv) we have
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«{rolL >T* <Tf> , T*f)(* T* T*f)
r+lo-o( L)z 14g-0( 5 ) vou (5l ) (Tr-Tr

=T*g-¢< gj) , a.e. von A,,
g

that is, for each n=1,2,.--,

XA,,‘T*{Q'm(—‘;->} =xa4," T*g- ( g*f) a.e. v.

From (2.6) we have

*
xFUGUN'T* {g¢<1g“>} _Z_ZFUGUN' T*g¢( £*£> ’ a.e. y.

Hence combining this with (2.4) and noting that »(N)=0, we obtain
T*{g-d)(-f;>} gT*g@(—Ti) , a.e. v.
9 T*g
From (2.5) and (ii), the equality holds if and only if for each n=1, 2,---,

00(L)=0-0( L) 01 (LD (7 D

ae ponA,.

Since @ is strictly convex, this implies that for each n=1,2,.--,

T*f(T)
1Df =0 T) =0, ae p.

Thus

S _g T(T) ) _
XFUGUN(T)<f g T*g(T)> 0, ae p.

Hence the equality holds if and only if
f-T*g(T)=g-T*f(T), ae. p.
Thus we complete the proof.

As stated in Remark 2.1, inequalities (2.2) and (2.3) are not gen-
erally reduced to Jensen’s inequalities. But we have the following
result.

COROLLARY 2.1 (Jensen’s inequality). Under the same mnotations as
wn Theorem 2.1 and Theorem 2.2, suppose that either 1° or 2° is satis-
fied :
1° pu s a finite measure, and then take v=y,.
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2° vy 18 a o-finite measure, and then take v=v,. Moreover, O(f) ¢
E(X, p) and T(f) € E(X, p), respectively.

Then

T*0(f)=20(T*f), a.e. v
and

¥ (H2¥(T*), ae v,
respectively.

ProOF. Notice that since v=y,, T*1=1, a.e. v. Thus for every
he&(T,v), T*W(T)=h, a.e. v. Then the above inequalities are proved
by the same argument as in the proof of Theorem 2.1.

Using the above results, we obtain some useful consequences.

Example 2.1. Let f e LXX) and g € L¥(X)), where k>1 and 1/k+
1/k'=1. Applying Theorem 2.1 to a function O(u)=—u"*, u>0, we
have

, & \ 1/k [ TR] £k \VE
refor(E)" s (Z)", ae s,

According to conventions (2.1), this yields to the Hélder inequality with
respect to T'*, that is,

T f-g|=(T*|fFST*|gF)™, ae. v,
with equality if and only if
|fIe-T*|g"=|gl"- T*|fI*, a.e. p.

Using this result, we can easily prove the Minkowski inequality with
respect to T*: for f, g € LX), k=1,

(T*|f+gP)*<(T*|f ) *+(T*[gl)*, a.e. v.
Example 2.2. Let f, fi, fo,--- € LN(¥). From (ii) and (iii),
T* f,—f1ZIT*fo—T*f], ae. v.
Thus
fo—f in mean=T*f,—>T*f in mean.

When f, fi, fo -+ € LX), k=2, the corresponding result is not gener-
ally justified. But if v, is o-finite and we take v=y,, then

fo—f in the kth mean=T*f,—T*f in the kth mean.
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In fact, from Corollary 2.1
T*|fo— fEZ|T*f,— T*f[F, a.e v.

3. Applications of the mapping T* to statistics

Consider a set {P,; 6 € 8} of probability measures on X with den-
sities fi,(x) relative to a o-finite measure p. Let T be a mapping from
¥ into I, and let {Q,; @ € 8} be the set of distributions of T, that is,
induced probability measures in 4. Then each @, has the density gi(?)
=T*f,(t) relative to a o-finite measure .

3.1. Properties of the divergence measure of two distributions

Let @(u) be a convex function defined on (0, +o0). Consider the
following quantities:

I(P, Pu)IE=SEfa-a)<-§L)dy . EeT

[

and

Io(Q,,Qa)lA=SAg,-¢(%>dv, Ae,

under conventions (2.1). I(P, P,)|X is called the @-divergence of the
distributions P. and P, (Csiszar [1]). We now prove some important
properties of the divergence measure by our method.

THEOREM 3.1 (Csiszar [1]). 1° For every Ec Y,

L(P,, P,>|EzP,(E>-¢(%%) -

If P(E)>0 and ®(u) is strictly convex at wy=P,(E)|/P,E), then the strict
inmequality holds except for the case

fL@)=u fo(x) , ae pon K.
2° I(P,, P)| X =1(Q., @) | .

If O(u) is strictly convex and I(Q., Q)| s finite, then the equality holds
iof and only if T is sufficient.

ProOF. Consider a mapping T(x)=yx(x), for E€F. Let v be a
measure on 9 ={0, 1} such that 0<»(0)< oo and 0<y(1)<oo. Itis easily
seen that

1 _ 1 -1
THA0 =g |y =55 PAT D)
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for each t=0,1. Thus from Theorem 2.1, we have

L(P, )| E=»()- T+ {£,-0( L= )| )y 2»()- Trp,1)-0( L))

0 T*f(1)
=P,(E)-@<%) :

This proves the first part of 1°. The last part of 1° is obvious. 2°is
the direct consequence of Theorem 2.1.

Remark 3.1. Let g be an arbitrary measure on X, and let a and
B be two nonnegative measurable function on X and integrable on E.
Then by the same argument as in the above proof, we have

ol e 222

oo

3.2 Smoothness of a family of probability distributions

For simplicity, we here assume that @ is an open subset of R'.
Moreover to simplify notation we shall write f for f,, and f, for f,
where convenient. The following definition of smoothness of the family
{f,; 0 €8} is due to Pitman [5]. In what follows, we refer to pp. 11-
28 of [5] by Pitman [5].

DEFINITION 3.1. The family {f,; 0 € 8} is called smooth at 6, if it
satisfies the following conditions :
(1) f is differentiable in mean at 6, i.e. there exists an integrable
f¢{ such that

1013}:8 ‘%':_g]o,——f‘ dp=0;
) I”I-'IZ:S ‘(E(y_;gfjl)z“%ldpzo ,
where
Si@ s
@) =] (@ on {; fi(x)>0}
0, on {z; fi(x)=0},
and

S¢odﬂ<°° .
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As pointed out in [5], smoothness of the family at 6, is exactly
equivalent to the differentiability in mean square of vf at 6, i.e.

i (=5 = a0

When the family {f,; 0 ¢} is smooth at 6, so is the family of
distributions of 7. More precisely,

THEOREM 3.2 (Pitman [5]). If the family {f,; 0 € ) is smooth at
0y, so is the family {g,; 6 € 8}, i.e. it satisfies the following conditions :

dyv=0,

1 li S‘g—go_a
(1) m | 9

08,
where

9=T*f!, ae. v;

(2) tim | |(Y8=Ya Yy,

dv=0,
0—0,

04,

where

® :1%((%’ on {t; g,(t)>0}
¢0 = 0

0, on {t; g,(t)=0},
and

S ¢odv§g ¢od# .

For the proof of this theorem, we essentially use the Schwarz in-
equality and the convergence in mean with respect to T* (see Examples
2.1 and 2.2).

Here we shall establish a further result about smoothness. Define

i) { fo(@)[9(Tx), on {x;g,(Tx)>0}
AL ) =
ho(x) , on {z; g,(Tx)=0},

where hy(x) is a properly chosen nonnegative measurable function. Us-
ing (ii), we can easily check that f,(x) is factorable in the form

Ji(®)=9,Tx) kyx) , a.e. u.

kAx) is regarded as the density of the conditional distribution given
t=Tx. Notice that k, e &(X, ) and thus T*k, is well-defined. Accord-
ing to (iv),
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T*ky(t)=1, a.e. v on {t; g,(t)>0}.

In the following discussion, we assume that it is possible to choose
ho(x) so that

3.1) T*k,(t)=1, a.e. v on {t; g,(t)>0},
for every 6 in some neighbourhood of 4, .

Of course, if the following condition is satisfied, then (3.1) holds:

3.2) 9,(£)>0 , a.e. v on ({t; g,(t)>0},
for every 6 in some neighbourhood of 4, .

In particular when both v, and v are o-finite, we can always determine
k, so that it may satisfy (3.1). Since v, is o-finite, there is a function
T¥f, determined up to v, equivalence, such that

Sr—ufad#=s,4 i ad”o=SA .’I To*fod” ’ Ae.

Thus
9=3-T*fs, a.e. v.
Notice that 0<j< o, a.e. v, since both vy, and v are o-finite. Hence
3.3) 0<it)< o, a.e. v on {t; g, (t)>0} .
Define
) = f@)[g(Tx),  on {z;gTx)>0}

1/5(Tx) , on {z; g(Tx)=0} .

It follows from (iv), (v) and (3.3) that
T*k,(t)=1, a.e. v on {t;g,(t)>0}, for every 6¢@.

THEOREM 3.3. Suppose that the family {f,; 6 € B} is smooth at 6,.
If the family {k,; 0 € ®} satisfies condition (3.1), them it is also smooth
at 6, in the following sense:

(1) limggo(T) k— ’“0 k’]dy 0,
00,

where

fi@) _ fuw)gi(Tx) (TP
kz)={ 9(Tz)  g(Tw)* ’ on {z; g(Tx)>0}

0, say on {x; g(Tx)=0};
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(2) llmS%(T)l( - (;/E>_K
where
(=) _ .
r@)=] @)’ on {z; fi(x)>0}
0, on {x; fi(x)=0} .
Moreover
(3.4) S ¢odll=S ‘/Jodv-i-S ko go(T)dpe
that 1s,

B (5) =B () +Bal3) -

Remark 3.2. Let E be an event of positive probability at 4, i.e.
P(B)=|_fidp>0.

Consider a mapping T'(x)=xz(x), and let v be a measure on I ={0, 1}
such that »(0)=y(1)=1. As stated in the proof of Theorem 3.1,

9(O)=T*f()=P(T'{t}), ¢=0,1.

If the family {f,; 6 € 8} is smooth at 6, then P(E)— P(FE) as 60— 6,
since f—f, in mean as #—6@,. Thus {g,; 6 € @} satisfies condition (3.2).
Consider

fi@)|P(E), «x€cE and P(E)>0
ho(x) , x € E and P(E)=0,

k()=

which is the density of the conditional distribution given E at §. From
Theorem 3.3, we can easily verify that the family {k,; @ € @} is smooth
at 6, if the family {f,; 0 € ®} is smooth at #,. This fact has been es-
tablished by Pitman [5].

Now we shall prove Theorem 3.3. For this, we need the concept
of loose convergence and the extended form of the dominated conver-
gence theorem, for which we refer to Pitman [5], pp. 98-100.

DEFINITION 3.2. We shall say that g, comverges loosely to g, and

write g,,—l>g, if every subsequence of {g,} containes a subsequence which
converges almost everywhere to g.
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Notice that g,—¢ in mean, or in measure, implies g,,—l>g.

LEMMA 3.1. The following extension of the dominated convergence
theorem holds :
1° g.5g, |9.|<H, a.e., H, integrable and ->H integrable, SH,,—»SH=>

g.—g tm mean.

As comsequences of 1°,

2° g,,—L>g, 19.|=1G,| a.e., G, integrable and —G in mean —>g,—g in
mean ;

38° H,>0 and integrable, H,->H integrable, SH,,—»SH=>H,.—»H m
mean.

PrROOF OF THEOREM 3.3. Put
Fi={z; fx)>0} and  Gy={t; gi(t)>0} .

Using (ii), we can easily verify that F,cT-'G,UN, where N is a u
null set. Since the family {f,; 0 € 8} is smooth at 4,,

Sf—fy in mean and %_—'gﬂ-—»fo’ in mean,
— Vo
(3.5)
g—¢g, in mean and %—»gs in mean .
— Vo

These imply that
f N fo and t_fﬂ_l, 7,

(3.6)

o(T)5g(T)  and Lﬁ’;}g"ﬂﬁgsw) ,

because yy&v. Thus

k—ko=<f—fo> 1 _(g(T)—go(T)\ So
6—6, \6—0,/ g(T) 0—06, / g(T)gy(T)

5 g{g‘) - ij((r‘;,);? , on T7'G, as 6—4,.
0 0

Hence

3.7) g(T) L=ko

—’go(T)M ’ on T_lGo as 0—’00 .
0—0,

On the other hand,

k—k,
gu(T) m

<un D]+ 4
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zkl 9(T)—gu(T) |+‘ f—=fo on T-'G
0_00 0_00 0

and from (iv), (3.1) and (3.5),

1| 2 —9(T) ’d —{ |9=9

Sr—lao 0—0, # Sao 0—0, d»
—>SGO|g3|dv:ST_lGoko|gg(T)|dy . as 60,
f—f
Sr-lao 0—86, d#—»gr—mol'ﬁldﬂ ’ as 0—b,.

Thus it follows from (3.6), (8.7) and Lemma 3.1, 1° that

9(T) ’;—;‘0 —g(T)k, in mean on T'G,, as 0—0,.
— Vo
Therefore
, =k |0
tim | gu(T)| S =~k de=0 .
Next from (3.6) and (3.7) we have
Vi -V \*_ k—Fk, \* 1
(38) g°(T)<'—0—00 ) =oum( 5—0, ) TN
'_l)gO(T) f;:):’ ’ on Fo as 0—900.
Moreover
_ 2
69  am(LE=Vh)
— Vo
SZgo(T)< Vi —v Sflg(T) )2+2g0(T)< \/f/go(T)—\/fo/go(T) )2
- 9—46, 6—40,
=2k< v9(T)—~glT) )2+2( */T—*/}T)z , on T-'G,.
0‘—00 0—00
Since
(3.10) <—~/—_‘%ﬁ—>z—>¢o in mean and <£%_——g§——gi’—)z—>¢o in mean ,

we can easily see that

@.11) (%Yi% and k(@:@)ﬁko-%m,

on TG,.
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Recalling definitions of ¢, and k,, and F,c T 'G,UN, it follows from
(3.8), (3.9) and (3.11) that

M g on TG, .

(3.12) (D= S ol T

Combining this with (3.9)-(8.11), and applying Lemma 3.1, 1°, we have

VE vk

(D) (=

2
) —gy(T)k, in mean on T7'G,, as 0—46,,

because using (iv) and (3.1)

| AT (0B

0_'00 0__00
—>SG0 Sbodv:ST_lGo ky-po(T)Ap as 0—0,,
VT-dF Y
Sr-lao <T00) dy—)gr-lao $dp as 0—0,.

Therefore

o] (E= 5

dp=0.

The above argument proves the first part of the theorem.
From differentiability in mean at 6, of f, we can easily check that

fi=0, ae.ponF,.

Consequently, noting that F,c T"'G,UN, we have
4 T)dp=\ 5 g(T)d
[ ko=, 20T
_{ £y ZS fi-94T) 4 S Sfo-gy(T)
=\ Logp—2| Logt) g,y | Joddo) g
Sro £ BT e gy(T) o gyT)

a(sdu ol FLgHT) fugi(T
=toduz|  SEURaur| | SoliEds

=4 gadu—2, ﬂg%du+s 9 gy

% Jo

¢

0
=4 S ¢od#—4 S gbodl) ’
since T*f,=g, a.e. v and T*f/=g, a.e. v. Thus the proof is completed.

Assumption (3.1) is essential to prove the first part of Theorem 3.3.
But notice that for the proof of (3.4), we does not use assumption
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(38.1). Thus we have the following result.

COROLLARY 3.1. The following decomposition always holds:
@18  |WT—vFydp
= T V@i + | AT E — vy .
Consequently, if the family {f,; 0 € @} is smooth at 6,, then

tim | Vo)L =V E g a0

6—4,

Proor. To prove the first part, we have only to check that
T*V [ =V ) =W g —vVa)+ T*{Va(T)e(T)(VE —vVE&)?} ,
a.e. v.

Since

1g§ «/‘—f-fodp=§ VI TV Tendpe ,

the following sum of integrals exists:

| VDo Tykdpu+ | Vool T kods—2 | VoTIOATI VE Fudy

Hence applying (i) and (iv), we have
T*{(Vo(T)g(T) (V' k — Vo))
=g g T*k+ g9, T*ky—2vg -9, T* VE- i,
=2v/g-9,—2vg-9, T*Vk -k, , a.e. v,

because

T*k=1, a.e. v and T*k,=1, a.e. v,
on {¢; g(t)>0} N {t; gu(t)>0} .
This proves the above relation. Next from (3.6) and (3.12),

Vo) (L= )", gy

Since both {f,; # €8} and {g,; 6 € 8} are smooth at 6, it follows from
(3.4) and (3.13) that

S W(FIZ—:%@ydyHS 9o T)redpe -
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Therefore using Lemma 3.1, 3° we see that
‘/ ‘/ 2
Vg(T)go(T)<—]f9—_To—k—°> —go(T)k, in mean , as 0—6,.
— Vo

Thus the corollary is established.

Recently, Inagaki [2] has proved the results which are almost equiv-
alent to Theorem 3.2 and Theorem 3.8. His argument is based on ran-
dom variables v f /v fy—1, ¥ g /v g, —1 and vk /VEk,—1. He analysed
his results in terms of the conditional expectation and the relative
conditional expectation, under the implicit assumptions that v, (=pT*)
is o-finite and =v, and that k is integrable. As referred to earlier,
they are not always so. But using the mapping T*, we can deal with
our problem under the most general situation, as demonstrated in this
section.
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