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TWO INEQUALITIES WITH AN APPLICATION
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Summary

An inequality used in Brown and Cohen (1974, Ann. Statist., 2(5),
963-976) and Bhattacharya (1978, Ann. Inst. Statist. Math., A, 30, 407-
414) is generalized and another useful inequality derived from it. An
application of the latter which provides a more elegant approach to
and an improvement over a result in Shinozaki (1978, Commun. Statist.
Theor. Meth., A, 7, 1421-1432), is also presented.

1. Introduction

Brown and Cohen [4] and Bhattacharya [2] used and integral in-
equality which can be stated as follows: Let u,v,t be functions of a
random variable (say x) such that v is positive with a finite expecta-
tion and ¢, u/v are monotonic (not necessarily strictly) in opposite di-
rections with respect to #; Then E (tu)/E (tv)<Eu/Ev, provided E (tv)
>0. This inequality is generalized here and another useful inequality
derived from it. This is done in Section 2. Section 3 is then devoted
to an application of Theorem 2.2. Here, Theorem 3.1 uses Theorem 2.2
to obtain a result which is an improvement of a similar result in
Shinozaki [8] and Bhattacharya [3]. It may be observed that besides
the improvement mentioned the approach here is more elegant than
that in the two papers just cited, where the proof was dependent upon
the favourable outcome of certain computations.

2. The inequalities

Suppose f and g are functions of » random variables x;, @,,: - -, &,.
We shall use the symbol E, f, where r<n to denote the conditional
expectation of f given x, &;,---,2,. We shall also use the abbrevia-
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tions: f1(x,) for the statement f is increasing in w;; f | (x;) for the
statement that f is decreasing in z;, The abbreviations: f SD g|x;
would mean that f and g are monotonic in the same direction with
respect to x, in the sense that either f 1 (x) and g1 (x) or, f| (%)
and g | (z;). Similarly f OD g|x; would mean that f and g are mono-
tonic in opposite directions with respect to x, in the sense that either
f1(x) and g | () or, f| (x) and g1 (x;). We now prove,

THEOREM 2.1. Let u,v,t be functions of random variables x;, ,,
«ee, , such that v is positive with a finite expectation and E (tv)>0.
Let f,=E, (tv)/E,(v) and g,=E, (W)/E,(v). Then

@1) (i) f.SDg,|z, vr=n=>(ii) E (tu)/E (tv)=E )/E (v)
@2.2) (i) f,0Dg,|2, vr<n—>(iv) E (tw)/E{tv)<E @)/E®).

ProOOF. The proof is based on Cohen [5] concerning the particular
case stated in the introduction. We have,

(2.3) (ii) <=E(w)/E (v)Z[E (w)/E (v)][E (tv)/E 7]
& E* (tw) = E* (w) E* (¢)

where, w=u/v; E* stands for expectation with respect to the prob-
ability measure P* given by P*(A)=E (vI,)/Ev, where I, is the indi-
cator function of the set A and P is the probability measure corre-
sponding to the distribution of (z,, s ---,x,). Note that E¥()=f,;
E¥ (w)=g,. Hence

(2.4) (i) <>E*(t)SDE} (w)|z, vr<n.

It is well known that (see e.g. Hardy, Littlewood and Polya [6], p: 43),
if f and g are functions of a single random variable x, then

(2.5) fSDglz—=E(f9)2E(f)E(g)

(2.6) fODglz=E(f9)=E(/)E(9) .

In view of (2.4) and (2.5),

2.7 (i) =EL[EX@)E(w]zEX (@) EL (w)vr

since EX(t) and EX* (w) are functions of (x, 2;,- -, #,) and the operation
E*, on such functions is equivalent to taking (conditional) expectation
of them considered as a function of z, only while the others are tem-
porarily held fixed. (For a rigorous justification of the last statement
see Bahadur and Bickel [1]).

Obviously E*E¥=E*vr<s. Hence, it follows from (2.7) that
(i) = E*(tw)=E* (t) E* (w). This proves (2.1) because of (2.3).
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The proof of (2.2) is similar. In this case, we use (2.6) instead of
(2.5).

Remark 2.1. (2.5) and (2.6) follow from the fact that cov[f(x),
g(x)] can be written in the form (1/2) E [{f(z)—f(¥)Hg(x)—g(¥)}], where
y is a random variable distributed indentically as but independently of
2. This simple argument has sometimes been overlooked giving rise
to more complicated arguments with unnecessary assumptions (see e.g.
Kimball [7]).

THEOREM 2.2. Let x,, @, +--, %, be mutually independent positive
random variables such that E x;* 1s finite. Let
=13 px;; 0<p<l; Xp=1.
Then
E f/E fizMin [E 2, }/E z:*: 1=1,2,---, k] .

ProOOF. The theorem is trivial for k=1. We shall prove it for
k=2 from which the proof for k>2 will be obvious. To avoid sub-
scripts let p, ¢, y stand for p, x;, 2, and let m=Min(Exz'/Ex™, Ey7/
Ey%. Then
(2.8) m<pEz'/Ex*+(1—-p)Ey~'/Ey~*

=[pE2'Ey?*+(1—-p)Ey " Ex”’)/(EzEy™)
=E[pz7y*+(1—p)2 "y 'I/E(@@ "),
since ¢ and y are independent. Define g=p/y+(1—p)/x and note that
fa=x"'y'. Then (2.8) can be written as

(2.9) m<E (tw)/E (tv)

where t=g*; u=f, v=f% Obviously, ¢ | (y) and u/v 1 (y). Also, E(tv|
x)[E (v|2)=E (f*¢*|)/E (f*|x)=E ("*y*|2)/E(z "yt |z)=E(y~*|2)/E(y*
-t"!|x), which is decreasing in z since ¢ | (x); and E (u|x)/E (v|2)=E(f]
z)/E (f*|«), which is increasing in « since its derivative with respect
to « is [20pE (f|2)E (f*|x)—p EX(f?|2)]/E* (f*|#)=0 by an well-known
inequality concerning absolute moments. Hence, Theorem 2.1 applies
and we have

(2.10) m<E (tw)/E (tv) <Eu/Ev=E f/E f*.
This completes the proof for k=2. When £>2, t‘é p; can be written
in the form: ¢,x+(1—q.)y, where wzg‘: q:%:, Y=, 0<q,; <1 for every

k—
7 and Zlqtzl. Hence, it is easy to see that the result follows by
i=1
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induction.

Remark 2.2. It is plausible that Theorem 2.2 holds without the
assumption of independence but a proof appears to be hard at the mo-
ment. We note, however, that the result would follow readily if one
could show that the functional E«~!/E 2% is concave.

3. Application

Let z;, 9, 1=1,2,---, k be mutually independent random variables
such that x,~N(g, 0,), ¥:/0.~ s Where p, 6,(>0), 1=1,2,---, k are un-
known. The problem is to estimate . The setting is essentially same
as that for the problem of estimating the common mean of several
normal populations after reduction to minimal sufficient statistics. Let

(3.1) P=IWE = Dk Wi

where w,=cy;'/2 cyi'; w=cyi'[Zxcyi'; and 3, 3 stand for sum-
mation over 7€ {1,2,---,k} and 7€ {1, 2,---, k—1} respectively.

Both # and i, are unbiased for g and comparison of V(x) and V(z)
is interesting. This was considered by Shinozaki [8] and Bhattacharya
[8]. They showed that V(2)<V(py) if

3-2) (m+2)[[2(m,— D] = cife, = 2(m,—4)/(m,+2) ,
i=1,2,--+,k—1.

(Note that notations of the two papers just cited are somewhat differ-
ent e.g. Shinozaki [8] writes f, and ¢, f; for our m, and c¢; respectively.)
Here, we derive the necessary and sufficient condition. It turns out
that the left part of (8.2) is unnecessary but the Shinozaki-Bhattacharya
proof of sufficiency fails if this is omitted. We now prove

THEOREM 3.1. Let pr and py be as defined in (3.1). Assume that
m,=5. Then v(@)< V(i) for all 0=(0,, 0, -+, 6,) if and only if

(3.3) c/e;=2(mp—4)/(m,+2), i=1,2,---,k—1
Proor. We have
V@=ES; V(i)=ES,
where S=3)0,w}; Sy=2x0w}x. Hence, V(2)<V(g) for all 8 iff
(8.4) E(S—S,)<0  for all 8=(6,, 05, --, ;) .
It can be seen that

(3.5) S—S*—'——’wi(ﬂk-{-s*)—zwks* .
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Let 0,=1/>x 0;' and note that 6,<S, for all §. Note also that w,<1
and hence the right-hand side of (8.5) is nonincreasing in S,. Hence

(3.6) S—SxSwi(0x+04x) — 2w, 04 .
Hence (3.4) holds if

3.7 (0:+04) Ewi<20, E w, for all @
Let f=(14+06./04)w.. Then (3.7) is equivalent to

(3.8) 2EfIE f*z1  for all @ .

It is easy to see that f can be written in the form

f=1[p Zx (@dzi/2)+1—p]
where

2;=0y,: P=0,/(0:+04) : q.:=04/0,: di=cfc; .

Note that z;'~y%., and by the Theorem 2.2

Ef/E f*zMin(1, cEg/E g*)
where ¢c=Ez/Ezi=m,—4; g=1/34qd2,. Hence (3.8) holds if
(3.9) 2¢Eg/Eg*=1 for all g=(qy, g5+ *+, Qi) -
Again by Theorem 2.2

Eg/E g*=Min {ad;: 1=i<k—1}
where a,=Ez'/Ez*=1/(m;+2). Hence (3.9) holds if
2ca,d; =1 for all 1=1,2,...,k—1

which is equivalent to (3.3). Thus, we have proved the sufficiency of
the condition (3.3).

To prove the necessity observe that for every fixed r<k, as 6,—
oo for all 1#r, we have S,—60,—0 almost sure and hence equality in
(3.6) almost sure. This implies that (3.4) holds only if (3.8) holds in
the limit as §,— oo for all i##7r. But §,— o0 for all i#r=p—1, ¢,—
1, ¢;—0 for i#+r=E f/E f*—>ca,d,. This proves the necessity of (3.3)
and hence the proof is complete.
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