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Summary

In this paper we obtain an asymptotic expansion of the distribution
of the maximum likelihood estimate (MLE) &y based on T observations
from the first order Gaussian process up to the term of order T-'.
The expansion is used to compare ay; with a generalized estimate a..,
including the least square estimate (LSE) a;5, based on the asymptotic
probabilities around the true value of the estimates up to the terms
of order T!. It is shown that ay, (or the modified MLE &) is better
than @, ., (or the modified estimate &..). Further, we note that af.
does not attain the bound for third order asymptotic median unbiased
estimates.

1. Introduction

We consider the first order autoregressive Gaussian process which
satisfies the stochastic equation

(1‘1) yt=ayt-l+ut (t:‘"'; _1’()) 1;"')

where a is an unknown parameter, |¢|<1 and u, are independent iden-
tically distributed as N(0, ¢%). Phillips [9], [10] obtained an asymptot-
ic expansion of the distribution of the least square estimate (LSE)
ais of @ based on T observations from the process (1.1) up to the term
of order T-'. Ochi [7] extended the expansion to the case of a gen-
eralized estimate @, ., including ay.

In this paper we obtain an asymptotic expansion of the distribu-
tion of the maximum likelihood estimate (MLE) ay, up to the term of
order T-'. Using the expansion, we compare ay, with a. . in terms
of their probabilities of concentration around of the true value. It is
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shown that ay, is better than the estimate &, . with ¢,+¢,=1. Such
comparisons for a class of asymptotically median unbiased (AMU) esti-
mates was studied by Akahira [1], [2]. He showed that the second
AMU estimates a&f, and af are second order asymptotically efficient.
The study is based on the asymptotic distributions of &, and &% up
to the term of order T2, We note that the difference between af,
and afs (or &f.) appears in the T'-'-terms of their asymptotic distribu-
tions. It is shown that af;, is better than aX ., but &f, does not attain
the bound for third order AMU estimates.

2. Preliminaries

Let y=(yy,--+,yr) be a vector of random variables forming the
first order Gaussian process (1.1). Then the density of y is written as

2.1) f; @, 0')=(2ro")""H(1—a’)"
- exp [—(20°) {1 +a)) TX,— 22T X, + X,} ]

where X,= (l/T)Ey;yc 1 X=Q/T) Z y: and Xj=9i+y7. Consider a
class of the est1mates of a defined by

(2.2) ., =X/ {eyi+ewyr + Xi}

where ¢, and ¢, are constants. Some well known estimates are the
special cases @& ., with suitable constants ¢, and ¢,, When ¢,;=1 and
¢,=0, a,, is the LS estimate a;s. It is known (Ochi [7]) that

2.3) PrivT (&,l,cz—a)/(l—az)‘/ZSx}

=“’(x)‘¢(”)[ ra Ty @t
1 s an N s
+m{(1—a 8a (01 1) (cz 1) 26(2 3ca ))x

+(4afo—1 —az)xs+2a2x"}] +o(TY)

where @(x) is the distribution function of N(0,1), ¢(x) is its density
function and ¢=¢,+c;—1. Let ay=a,,=X;/X,. Then, putting ¢,=¢,=0
in (2.3) we have

(2.4) Pr (VT (@—)/(L—a?)"*< ) = Fiz) +o(T~)
where
@5 F0)=06)+@)| et
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1 5 9 3_ O 25
+ 7 (B2 -+ e+ 2aw}].

3. Asymptotic expansion of the maximum likelihood estimate

From (2.1) we can see that the MLE of « is given as a solution of

3.1) &;L<1—%)Xg—&§L<1—%>X1—&ML{(1+%>X2+%X3} +X,=0.

Anderson ([4], p. 369) gave an approximation
(3.2) ay,=(1—T)(X)/X;)

for ay,. Since ay, is an asymptotic solution of &, with an error of
the term of O(T"?), it is conjectured that

(3.3) Pr (VT (& —a)/(1—o’)* <)
=Pr (VT (@w—a)/(1—a’)"<2)+o(T™) .

The distribution of ¥/7T (@, —«) is much simpler than that of ¥T (G, —a).
It is easily seen that

VT @u—a)= |(1—a)(1- 1) U,

—a(1—a2)Uz—717T_a} {1+%(1—a2)vz} -

where U=+vT (X;—a(l—e)™) and U,=+vT (X,—(1—a?)"). Therefore,
if the existence of a valid expansion for the distribution of U, and U,
is assured, then the existence of a valid expansion for the distribution
of ¥/T (@y,—a) is also assured. It may be noted that the existence of
a valid expansion for the distribution of U, and U, has been proved by
Durbin [6] in the circular case. In the following we shall prove the
formula (3.3) under the assumption that the existence of a valid ex-
pansion for the distribution of U, and U, is assured. So, the proof of
the existence is left for the non-circular case.

When we treat the distribution of &y, we may assume ¢*=1 with-
out loss of generality. The MLE @y, can be expressed in terms of U,
U; and U;=X;/{4(1—a®)}. We use the following Lemmas 1 and 2.

LEMMA 1. Let J; be the set of U,, U, and U, such that |U,|<2log
T (1=1,2,3). Then

(3.4) Pr (J5)=O(T"% .
Proor. It is sufficient to show that Pr ((U,|>2log T)=0(T"?), i=
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1,2,3. We use the moment generating function of (U, U;), which is
equal to

M(ﬁl, 02)=E [exp (01 U1+02[J2)]
—exp [% (1—a?) 3 {(1+da*— o)+ 80,6,

+2(1+a2)0§}](1+0(T-1/2)) (cf. Ochi [T]).

Using a Tchebycheff-type inequality we obtain

Pr(U,>2log T)<exp (—2log T) E [exp (U))]
=(1/T):M(@1, 0)=0(T"?) .

Similarly Pr (U;>21log T')=0(T"%. Further we have

Pr (U;>21log T)<Pr (jy,/(1—a")'”|z2(log T')")
+Pr (|y./(1— )|z 2(log T)"?)
=0(T® (see Anderson [5]).

This completes the proof.

LEMMA 2. Let
VT (bu—0)=VT (@, —a)+ T~ .
Then for any fixed 3 such that 0<3<1/2,
Pr(T-|>T")=0(T .

PrOOF. Considering a Taylor expansion of &y, about X,=e/(1—a?),
X;=1/(1—d}) and X;=0 we can write

(3.5) VT (b —a)= zaji T-G=D/gD 4 T-3/2,
i=

where each of o’ is a polynomial of degree 7 in U,, U, and U, and
T-%4, is the usual remainder term in the Taylor expansion plus 7T'*
times a polynomial of T-#*U, (3=0,1,---,4, ¢t=1,2,3). Then using
Lemma 1 it is seen that for any fixed 8 such that 0<8<1/2,

(3.6) Pr (| T~ |> T =O(T") .

By substituting (8.5), X;=a(1—e?)'+1/¥VT U, X,=(1—a®) ' +Q//T)U,,
and X;=4(1—a")U; to (3.1) we can find that

3.7 a®=(1—a®)(U,—aly) , a®=—g—(1—a)a®T, ,

a®=—a®+(1—a) Ula®
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Applying the same method to @, it can be also seen that
(3.8) VT (@ —a)=31 T4+ T4,
where o are the same ones as in (8.7) and I, is a remainder term
satisfying the same properties as the [, in (8.5). This implies Lemma 2.

In order to obtain the formula (8.3) we use a well known inequality
for any random variables Y; and Y,

(3.9) Pr(Yi=a—h)—Pr (Y:|>h)
sPr(Y,4+Y,2a)<Pr(Y,<a+h)+Pr(Y:|>h)

where a is any number and 4 is any positive number. Let Y,=+T -
(@y—ea), Y,=T"%1 and h=T"""*in (3.9). Then, assuming that Y, has a
valid expansion as in (2.3), we have Pr(Y,<a=+h)=Pr (Y <a)+o(T™).
Therefore we have (3.3).

From (3.3) we have

310)  Pr(vVT (aw—a)/(l—a) <)
= F(1= T {z+ (VT (L—a)1)})+o( T .

Simplifying the last expression of (3.10) we have the following theorem.

THEOREM 1. Let ay. be the MLE given by a solution of (3.1). Then
it holds that

(3.11) Pr (VT (du—a)/(1—¢") S2)= Fyr (%) +0o(T ™)

where

(8.12) FML(x)=¢(w)+¢(w)[TTzLW(xZ+ 1)+Zm1‘_72)

- {(5a=—1)x+(a2+1)x3—2a2x5}] .

When ¢,+¢,=1, we can write the formula (2.3) as
(3.13) Pr(WT (@, c,—@)/(1—a")"* = )

=Fuh<x)——m—1:¢—12—)a2{2cl<cl—1)+1}x¢<x>+o<T-l) :

This implies the following theorem.

THEOREM 2. Let .., be the estimate of a defined by (2.2). Assume
that ¢,+c,=1. Then, for any positive numbers a and b

(314) lim (VT )Pr (—a<vT (du—a)/(1—a?)"*<b)
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—Pr (—a<vT (&,.,—)/(1—a?)”<b)]
0, 1=5<3,

wl-a) 2(e— 1) +2 ap@)+i0)} ,  s=3.

From Theorem 2 we can say that if we use the asymptotic prob-
abilities around the true value of the estimates up to order 7! as a
criterion for comparing estimates, @y, is better than as.

4. The modified maximum likelihood estimate

In general, if an estimate & satisfies
(41)  lim (/T )y~ Pr(&ga)——;— =lim (VT )" Pr(&ga)—% =0.
—00 T —oo

Then a is called an sth order AMU estimate. Akahira [1], [2] con-
sidered the second order AMU estimates &, and af defined by

(4.2) &;L - (1 + T_l)&ML and &fs = (1 + T_l)&Ls

respectively. He showed that for any positive numbers a¢ and b

(4.3) lim T [Pr(—a<vT (@—e)<b)—Pr (—a<vT (@—a)<b)]=0.

In order to clear the difference between &, and &% we have to study
the T-'-terms of their asymptotic distributions. First we note that
ay, is a third order AMU estimate. This result follows from that

(4.4) Pr (/T (a¥—a)/(1—a?) <)
=Fu(1+ T o—e/(VT 1—a*)'"H})+o(T™)
=Fy(x)+o(T) .

and Fy(0)=1/2+0o(T""). The function F,((1—a?)"*x) is called the third

order asymptotic distribution of a¥,. Similarly we may define the third
order AMU estimate of a. ., by

(4.5) @, = {1+(ci+e)/ T e, -
Using (2.3) we have
(4.6) Pr (VT (6.,—a)/(1—a)" <)

=Pr (VT (d;,c,—)/(1— )< {1+ (e, +¢)/ T}
+ {w—(ert+)a/(VT (1—a’))})

— Fy(w)— ﬁ(ci—i—c?)azqu(x)—l—o(T") .
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From (4.4) and (4.6) we have the following theorem.

THEOREM 3. Let af, and aX., be the third order AMU estimates
defined by (4.2) and (4.5), respectively. Then it holds that for any posi-
tive numbers a and b

4.7) lim (WT )y [Pr (—a<vT (&—e)<b)]
—[Pr (—a<#/T (aF.—a)<b)]
0, 1=s<3

d(1—a) (el + ) {dp(@)+bp(0)} 20,  s=3.
where d=a|(1—a*)* and @=>b/(1—a*)".

As a special case of (4.7) we have
(4.8) lm T[Pr(—a<+T (af.—a)<b)—Pr(—a<vT (af—ae)<b)]
T —co
=a'(1—a’){ag(@)+bg(b)} >0 .
From (4.7) it is easy to see that the best one among the estimates
ak., is not af, but &=X,/X; and &, has the same asymptotic concen-
tration probability as a¥, up to order 7.

An estimate is sometimes so modified as to satisfy a higher order
asymptotic unbiasedness. Let

(4.9) af=014+2T Yy and ax% =(1+(c,+o+ ]_)11—1)‘/3201’02 )
Then
(410)  E[fl=ato(T) and  E[aF]=ato(T).

By the same argument as in the case of AMU estimates we have the
following theorem.

THEOREM 4. Let &k and aX¥, be the estimates of o defined by (4.9).
Then 1t holds that for any positive numbers a, b and s (1=8=3)

(4.11) lTim (WT )y [Pr(—a<T (& —a)<b)
—Pr (—a<V/T (%, —a)<b)]
18 equal to the right-hand side of (4.7).

5. The bound for third order AMU estimates

An estimate is called to be third order asymptotically efficient if
the third order asymptotic distribution of it attains uniformly the bound
F(x:a) for third order AMU estimates. Following a general theory
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for higher order asymptotic efficiency (for a summary, see Akahira and
Takeuchi [3], Pfanzagl [8]), the bound may be defined as follows. Let
a, be arbitrary but fixed in (—1,1). Consider the problem of testing
H:a=a,+2/VT (=a;, £>0) against alternative K:a=q, with signifi-
cance level 1/2+0(T"). Then the best test procedure is to reject H
when A=f(y:a, a?)/f(@y: ay,, 6*)>4. The test procedure is equivalent
to reject H when

(6.1) R=vT {Xi—(a0+2/2VT ))X;} =d

where d is so determined as to satisfy
(5.2) limT[Pr (R§d|H)—%]=0 .
T —o0

The bound Fi(x:a) for >0 is defined by
(5.3) Pr(R<d|K)=Fyz: a)+o(T™) .

The bound Fi(x:a) for <0 may be also defined by the left-hand side
of (5.3). Then the bound satisfies

lim T[F(x: ¢)—Pr (WT (@a—a)<x)]=0  for >0,
(5.4)
1T1£n T[F(x:a)—Pr (VT (a—e)<x)]<0  for 2<0

where @ is any third order AMU estimate having a third order asymp-
totic distribution.

When we obtain Fi(x:a), we may assume o¢’=1 without loss of
generality. The bound F(x:a) is obtained by considering asymptotic
expansions of the distribution of R up to the term of order 7! when
a=a, and a,. If the existence of a valid expansion for the distribution
of R is assured, the expansion may be obtained by formally inverting
the characteristic function of R=+T [X,— {a;+(—x/2)/¥/T }X,]. Here
we shall find the asymptotic expansion by formally inverting the char-
acteristic function of R obtained from

(5.5) logE [exp (itR) le=ay]

By e ( 1) {@tx +("'t)2} t—m——w 1/——(1 2)2

1 2\ ot 2 2
+—f(1__—ag)s[—(l—al)mt+{§(3al 1(1—a)

{(A—ad)it+x(it)*+ (it)%}

+1a el (it)2+(1+zaz>m(it)3+—i—(7az+s)(u)*]
+O(T-)
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which is implicitly given in Ochi [7]. From the asymptotic expansion
of the distribution of R under K we obtain

(5.6) d= (%i-}- 4) /(1—a§)‘/2

where Z=x/(1—a)"”* and 4d=a@/{VT (1—ad)"?}+ {(2—2)Z+(1/2)(3ci+
1)#}/{T(1—a?)}. In order to evaluate the left-hand side of (5.3) we
consider the distribution of R under a=a,. Noting that the log-char-
acteristic function of R under a=a, is obtained from (5.5) by substitut-
ing —x and o, to  and «@;, respectively, it is shown that

5.7) <(1 0:2)1/2R+1 F<z|a= a°> Fy(@)+o(T™)

where

68 FiR)=00)+4(a)| 7ot (Gt g
'{(a§—2)§—<i 141>z+<i %>z3+(1—3a3)5z2
+(2at- 1o LaiE—2mtahe] |

From (5.7) we have

(5.9) Pr(R<d|a=a)=F,G+4)+o(T")
— (> ~ o ~9 1
=0(E)+9(3)| e

: {(3a3—5):'é+(4a§+2)£3—2a3§5}} +o(T™Y) .

This implies the following theorem.

THEOREM 5. The bound Fy(x:a) for third order AMU estimates of
a 18 given by

(5.10) Fx: a)=Fy(%)+¢(&)z*/(4T)
where T=x|(1—a?)"? and Fi(x) is defined by (2.5).

It is known (Akahira [1], [2]) that &}, and &f is second order
asymptotically efficient. Theorem 3 shows that a¥, is better than afk.
However, Theorem 5 shows that af, does not attain the bound for third
order AMU estimates, since the third order asymptotic distribution of
axit is Fy(&).
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