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Summary

Definitions of .-HNBUE and K-HNWUE are introduced and the
relationship with other class of life distributions is studied. Various
closure properties of k-HNBUE (k-HNWUE) are proved. Finally bounds
on the moments and survival function of k.-HNBUE (k-HNWUE) are
given.

1. Introduction

In reliability theory various concepts of (univariate) aging or wear
out have been proposed to study lifetimes of systems and components.
The five most commonly studied classes of life distributions are the
following: 1) The increasing failure rate class (IFR); 2) the increas-
ing failure rate in average class (IFRA); 3) the new better than used
class (NBU); 4) decreasing mean residual class (DMRL); and 5) the new
better than used in expectation class (NBUE). For a description of
these classes see Barlow and Proschan [2], Bryson and Siddiqui [3] and
Haines [4]. Recently Rolski [7] proposed a new class of life distribu-
tions called the harmonic new better than used in expectation (HNBUE)
class which will be defined later. Each of the above six classes have
their dual with standard nomenclature. The dual of HNBUE eclass is
said to be harmonic new worse than used in expectation (HNWUE).
Klefsj6 [6] has studied the properties of HNBUE (HNWUE) classes of
distributions. He has proven several closure theorems for this class
and the following chain of implication exists among the six classes of
distributions.

* This research was supported by the ONR Grant N00014-78-C-0655.
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Multivariate versions of HNBUE have been studied by Basu, Ebra-
himi and Klefsjo [1].

The purpose of this note is to propose new classes of life distributions
called k-order harmonic new better than used in expectation (k-HNBUE)
class which will be defined later. It is shown that k:-HNBUE is the
largest available class of distributions with aging property. Since ex-
ponential distribution plays a major role in reliability theory, it is im-
portant to know if the underlying distribution is exponential. One
motivation for proposing k-HNBUE class is that in testing for exponen-
tiality, we deal with a larger class of available alternatives. A second
reason is to see if we can develop analytical properties for as large a
class as possible comprising of all known standard classes of distributions
with aging properties. The dual of k-HNBUE class is called k-order
harmonic new worse than used in expectation (k--HNWUE).

In Section 2 of this paper we have introduced the definitions of
k-HNBUE and k-HNWUE and various closure properties of k-HNBUE
and k-HNWUE distributions are studied in Section 3. Finally in Sec-
tion 4, we give some bounds on the moments and on the survival func-
tion of a k-HNBUE (k-HNWUE) life distributions.

2. The definitions: classes k-order HNBUE and %-order HNWUE
We shall start with the definition of k-order HNBUE.

DEFINITION 2.1. Let X denote the survival (failure) time of a de-
vice having life distribution F and survival distribution F(x)=P (X>z).
The non-negative random variable X is said to have a k-order harmo-
nic new better than used in expectation (k-HNBUE) distribution if
1
L1, sty
t Jo

2.1) Spk for all t=0

where pF(x)=<S°° F’(y)dy) /F(x) is the mean residual life of a unit of

age z. The inequality (2.1) says that the k-order integral harmonic
mean value of pr(x) is less than or equal to the k-order integral har-
monic mean value of p;(0), that is, of a new unit. We assume that
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p=g°° F@)dz<oo and k=1.
0

If the reversed inequality is true X is said to have k-order har-
monic new worse than wused in expectation (k-HNWUE) distribution.
We should mention that for k=1, (2.1) is equivalent to the definition
of HNBUE given by Rolski [7].

_ Remark 1. 1t is clear that, X with exponential distribution, i.e.,
F(x)=exp {—x/p} is both k--HNBUE and k--HNWUE.

The following theorem gives the relationship between k-HNBUE
(.-HNWUE) and HNBUE (HNWUE).

THEOREM 1. (a) A life distribution F which is k-HNBUE 1is also
(k+1)-HNBUE for any k=1. (b) A life distribution F which is (k+
1)-HNWUE s also k-HNWUE for any k=1.

Proor. If F is k-HNBUE

1

1—L——§p" for all ¢=0.
T ons

Therefore, according to Hoélder’s inequality

1| mrr@de=— | @)oozt () it x)/(-})’

t t
1 t k+1)/k 1 (k+l)/k
[ ] ()=
for all t£=0.
That is,
T 1 sptt for all £20.
—(k+1)
L, s eo@s
(b) If Fis (k+1)-HNWUE we get that
- 1 Zp*tt for all t20.
_1__ So #;(k'ﬂ)(x)dx

Therefore, according to Holder’s inequality

t t k/(k+1) k+17 k/Ce+1)
e T [T Rt

for all t=0.
That is,
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1

o

The next theorem gives the relation between k-HNWUE and NWUE.

=p* for all t=0.

THEOREM 2. A life distribution F which NWUE is also k-HNWUE.

Proor. If F is NWUE we get that

ne()=p for all ».

That is,
g @) S .
i
Therefore,
¢ 1
S (ﬂ;k(w)——,,)dwém
0 Iz
That is,
¢ t
[, ritarda< L
0 Iz
or

1
S — 7L
1 St prt(x)dx =F
t Jo

Now, using Klefsjo’s results [6] and Theorems 1 and 2 the follow-
ing chains of implication exists among the 14 classes of distributions.

7' IFRA | NBU

IFR
\[DMRL |=={ NBUE |===>{ unBUE |=={ «-nnBUE |

and

/I DFRA [={ nwu |

DFR

\LIMRL. [={ NWUE |=={ x-snwuE |:>| HNWUE|

The next theorem shows that the binary random variable has 2-
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HNBUE and hence k-HNBUE for k=2.

THEOREM 3. Let X be a binary random variable with survival dis-
tribution function F, then F is 2-HNBUE.

ProoF. We assume that X can take two values a and b with
probabilities » and 1—p respectively. Therefore,

1 r<a
F'(x)= 1—p asx<b

0 x=b.
We have to show that S:(F_'(x) / S“’ F(y)dy>2dxgt/(b+p(a—b))2 for all 0.
First assume that t<a, then

(2:2) So (Tﬂz&l“>zd”=g: ((a—x)+(b1—a)(1—p))2dx

_ Fy)dy

_ 1 _ 1
T at-a)l-p—t atOb—a)d—p)

It is clear that for t<a, (2.2) is greater than ¢/(b+p(a—b))’. Next as-
sume that a<t<b, then

¢ (F()) _(° F(z) ' F(x) \*
S" <S: 1-’7'(11)0'!1/)2 dx S < Sw 13'(1/)0ly> ot ( S: F’(Z)flly> dx

t

=z for a<t<d.
(b+p(a—b))*

Finally, assume that ¢>b, then S:(F_'(w)/ S: F'(y)dy)zdxgt/(b+p(a—b))2.
The following example shows that 2-HNBUE =% HNBUE.
Ezxample 1. Let X be a random variable with survival distribution

1 0=x<1
Fx)={ 14 1=z<5b
0 x=bh.

Then, by Theorem 3, since any binary random variable is 2-HNBUE,
F(x) is 2-HNBUE and hence by Theorem 1, k-HNBUE, k=2. But
F(x) is not HNBUE.
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The next example shows that HNWUE =% 2-HNWUE.

Example 2. Let X be a random variable with survival distribution

_ .55 for 0=52<1
F(x)=
e for z=1.

Then, it is easily seen that F(z) is HNWUE but it is not 2-HNWUE.

Remark 2. It is clear that as k increases the class of k--HNBUE
is getting larger. Therefore HNBUE is the smallest class among k-
HNBUE class of life distributions. Conversely by increasing k the class
of k-HNWUE is getting smaller, i.e., HNWUE class is the largest class
among k-HNWUE class of life distributions.

3. k-HNBUE and k-HNWUE closure properties

It is known in most cases whether the distribution classes IFR,
IFRA, NBU, NBUE, DMRL and HNBUE (and their duals) are closed
or not under the reliability operations: (1) formation of coherent struc-
ture, (2) convolution and (3) mixtures. For references, see Haines [4],
Barlow and Proschan [2], and Klefsjo [6].

In this section, we prove certain closure properties of k-HNBUE
and k-HNWUE.

If {F.} is a family of life distributions, where a is a random vari-
able with distribution function G(a), the mixture F' of F, according to
G is defined by

3.1) F(t)=§ F.(t)dG(a) .

The following example shows that the mixture of k-HNBUE dis-
tributions F', is not necessarily k-HNBUE.

Example 3. Suppose that every F, is one parameter exponential
with different means and therefore DFR. A mixture of distributions,
all of which are DFR, is itself DFR (see Theorem 4.7 in Barlow and
Proschan [2]). Therefore F' given by (3.1) is DFR and also k-HNWUE.

Remark 2. It is clear that, if every F, has the same mean then
the mixture F is k-HNBUE (as well as k-HNWUE).

On the other hand, the mixture F' is k-HNWUE if every F, is k-
HNWUE. To prove this first we have to prove the following lemma.

LEMMA 1. For a given k
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3.2) ¢ / So <S P.(2)dG(a) / S (S‘” F’a(y)dy>dG(a)>kdx
S
PROOF. We use induction to prove the lemma. Let k=1, then
¢ / So (S 7.(2)dG(e) / S ( S” F’,,(y)dy>da(a))dm
t / S:— <d/dx log S ( S‘” F’,,(y)dy)dG(a))dx
t/og | n.d6@—1og | (|7 F.w)dv)dc@
zg (t / <log pt.—log Sj F'a(y)dy>>dG(a)

=S <t / ) ,u;‘(x)dx)dG(a) .

Il

We should mention that the inequality comes from the fact that logy
is concave function. Now, assume that the inequality (3.2) holds for
k then we have to show that it is also true for k+1.

t / SO (S F.(2)dG(e) / S ( S” F,,(y)dy>dG(a))’°“dx

[ (o - B
e(§{ soue)“s
2§ e s

To get the last inequality we use the Jensen inequality and the fact
that ylog y is a convex function.

THEOREM 4. If every F, is k-HNWUE, then the mixture F is also
k-HNWUE.

PrOOF. To prove this we have to show that
t/S:(p;"(x))dxgy" for all t=0
if
| uri@dazpt  for all t20

where
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,la=S°° F(x)de and g:Sw F’(x)dng pdG(@) .
0 0
From Lemma 1 we have

t), wr@na=t/( (| F.mac || (| Py )ic@)

2(] (/| srt@ie) “a6(@) 2 (| md6@) =pr.

The following examples show that the k-HNWUE and k-HNBUE are
not closed under formation of coherent structures.

Example 4. Consider a parallel system with two independent com-
ponents whose life distributions are exponential with different means.
Then the survival function of the system is IFRA and therefore k-
HNBUE and not x--HNWUE.

Example 5. Consider a system with two independent components.
Let X, and X, be the lifetimes of the components with the same sur-
vival distribution function

Fe)=1 .6, 1<z<vF
exp(—x/4), =45

and let X=[Min (X2, X?)] be the lifetime of the system. Then F is
2-HNBUE, but the distribution function of X is not 2-HNBUE. Here
X represents the lifetime of a coherent system.

The following example shows that k--HNWUE is not closed under
convolution.

Example 6. If X, and X, are both exponentially distributed with
expectation 1 then X;+ X, has a gamma distribution with the density
f@t)=te™t, t=0. This distribution is IFR and hence k-HNBUE and not
k-HNWUE.

We have not been able to prove whether k-HNBUE is closed un-
der convolution or not. But we know that if k=1, then the class of
life distributions is closed under convolution.

4. Bounds on the survival function and moments of k-HNBUE

(k-HNWUE) life distribution

In this section we give some bounds on the moments and survival
function of a k-HNBUE (k.-HNWUE) life distribution.
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We start with the following theorem.

THEOREM 6. Let F be a life distribution and let p,= S: 2 dF(x). If

F is k-HNBUE then
pSpitt M (r+1), 2l
(4.1) {
pr= p i M (r4-1) 0<r<l.

PROOF. The case r=1. Since h(x)=«" is increasing and convex
for r=1

p,:Sw ’dF(x)SS X" pi "% exp (—%)dw
1

=S°° t'r#’;k—k+le—tdt=#;'k—k-i-ll"(,r_l_l) .
0
The first inequality comes from (2.1) and the fact that

S: <—S:%;> dxzz=> Sj F(x)da < pexp <—-/1t—’1‘> .

The case 0<r<1. Since
Ur=T Sw a'F(x)de and 7 Sm 27! exp ( )dx =rui*I'(r)
0 0 ok

=I(r+1)pi*, it is sufficient to prove that

S x"‘F(x)dx;,u} S x"! exp <——>dw
0 /11

But if F is k-HNBUE then

W‘(t)=§: {F’(w)—,u}”‘ exp (— xk >}dx_2_0 for évery t=0.

1

Thus Sm I(x)d¥(x)=0, where I(x) is the characteristic function of the
0

set [0,¢t). Since g(x)=2""!, 0<r<1, is decreasing and therefore can be
approximated from below by functions of the form

k
> ¢;L () where ¢,=0.
j=1
The result follows from the Lebesque monotone convergence theorem.

THEOREM 7. Suppose F is a life distribution which is k-HNBUE
with mean p. Then
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1 Jor t<p*
4.2 Fi)<
( ) ()— 1 exp < ‘uk_k_t> ’
J7

[‘tk-l
ProorF. Let t>0. By using the definition of k--HNBUE we get
that

t>p*.

St F_(x)dxgr F(x)dz< ¢ exp (——‘Z—) for every 0<s<t.
8 x y
But

g' F)dez(t—s)F () .

Hence we obtain that

for t=<p*

F)ysIn LR (sle) ) .
0<s<t t—s ——exp ( yii :t ) for t>yk .
I #

Remark 3. In the HNBUE case Klefsjo [6] gave the upper bound

1 for t=p

F@)=
) exp (-’d> for t>p.

7

THEOREM 8. Suppose F is a life distribution which is k-HNBUE
with mean px. Then

) XD (/i) (ot pt—p)  for t<pt
(4.3) Fyz{ ot
0 t=p

where a=a(t) is the largest non-negative number for which

(4.4) L (a—t+u¥)exp (—%)—Ht:o .
# 2
Proor. Let t=0. Then
S: Fr)dz<t+F(t)(s—t) for s>t.

Furthermore,

S: F‘(w)dwg;:(l—exp <-——§k—>> .
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Accordingly

F(t)= {p(l—exp (——ST>>—t}/(s—t) for every s>t

©

ie.,

F(t)=sup {p(l—exp (——_‘Qik->> —t} /(s—t) .

>t [.l

Standard calculus then gives that for t<u* the supremum is attained
for s=a given by (4.4).

Now suppose that in addition to ¢ we also know F(@*) for some
t*>0. Then we can improve the bounds in Theorems 7 and 8.

THEOREM 9. Suppose that F is a life distribution which 1is k-
HNBUE with mean p. Let

("= p* log p " F(E9)— 9 F(t%) if F(tv= exp{ i}
c t—t* u*
and
h(t)=(C—t"F(E*)/(t—t*) .
If t*>u* then
1 for 0t £ (p—t*F(EY)
T 1)
_ ¢ exp (—rt/p*)—(t*—t)F(¥) g (g —t*F(t*))
F)< " for £ = B <t<t*
F@t® for t*<t<C
h(t) for t=C
where y=1(t) satisfies the following condition
(4.5) L —tt1t) exp< Tt) —(t*—t)F (%) =0 .
# Iz

If t*<p* then
1 for 0St<t*
Fiys{ Ft*)  for tr<t<C
h(t) for t=C.



98 A. P. BASU AND NADER EBRAHIMI

PrOOF. Follow the same argument as in Klefsjo [6] Theorem 6.6
and the fact that F' is .-HNBUE implies Sw F(x)de<p exp {—t/p*}.

The next theorem gives a lower bound on F'(t) based on the know-
ledge of F(t*) for some t*>0.

THEOREM 10. Suppose that F 1is a life distribution which is k-
HNBUE with mean pu. Let a=a(t) be given by (4.4) and let

D=min (E, t¥)

where
E=the t for which F’(t*):M{a—t—i— p—p} .
a_.
If t*< u* then

exXp(=/p) (4 tiut ) for 0<t<D

a—t
_ F@®) for DSt<t*
Ft)=

exp(_:/#—k) [r—ttpt—p}  for t*<t<t*+(p—t¥)/F(t)
_—

0 £tk (u—t%) | F(t%)

where y=y(t) is the positive solution to

—F—;‘,l_T(exp(—r/#"))(r—t)—#+t*+(t—t*)F'(t*) :

If t*>p*
eXD("‘:/P") {a—t+p*—p}  for 0St<E
a—
F@)z (%) Jor ESt<t*
0 Jor t>t*.

Proor. Following the same way as in Klefsjo [6], we will get the
result.

The following theorems give bounds on the moments and survival
function of k--HNWUE.

THEOREM 11. Let F be a life distribution and let y,=S°° o dF (i)
0
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and 2,=p,/T(r+1) for ¥>0. If F is k-HNWUE then
lr+1/lc+1_2_2121' .

PrOOF. Since F is k-HNWUE, therefore

v " FapdyzmF @)

S: F—:r}:%,g(gw F’(y)dy) = S: F—F(‘;%)—F’(t)dh A, .

But the left-hand side is equal to 2,.i.1, therefore A,.ixy1=214,.

THEOREM 12. Suppose that F is a life distribution which is k-
HNWUE with mean p. Then

- t!/k
Fo= t“—<l/5+l+,, .

ProOF. Since F is k-HNWUE, therefore
t""(# - S: F‘(y)dy> 2pF(t)
— v || Fa)dyspen—Fe)

= EFO)= pt*—F(¢)

— 1/k
—Ft)s— £ for t20.
t( /k)+l+#

Now suppose that besides p we also know F@*) for some t*>0.
The following theorem gives an upper bound in terms of F@t®).

THEOREM 13. Suppose that F is a life distribution which 1is k-
HNWUE with mean p. Then

[ltl/k/ﬂ—*-t(l/k)ﬂ 0_§t<t*
F@t* t*<t<C

£ (u—tHF (%)
(e E— 987

where C=sup {t: pt’E—tVOHF(E*) > uF(t¥)}.

Ft)=

t>C

PrROOF. Let t*<t, then
(4.6) tE e F(E%) +(E— ) F(t) StV S: F(z)de< p(tV— F(t))

—s F)< D =tF @)
= (et E—tem




100

A. P. BASU AND NADER EBRAHIMI

Since for t<C, t*(z—t*F(t*)/(p+(E—t¥)t"*)>F(t*), therefore the

result follows. We should mention that the first inequality in (4.6)
follows from the fact that, for any life distribution F' with

L =T Sm a1 F(z)dez<co  for some r=1,
[}

I () + G —t) Ft)<r S o Py de St -+ (G-t F ()
for 0<t,<t,.
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CORRECTIONS TO
“ON K-ORDER HARMONIC NEW BETTER THAN USED
IN EXPECTATION DISTRIBUTIONS ”

A. P. BASU AND NADER EBRAHIMI

(Annals of the Institute of Statistical Mathematics, A, (1984), Vol. 36, pp. 87-100)

1. Theorem 3 is not true in general. A counter example by Klefsjo
[1] is as follows :

Let
1, r=a
F(xr)=1 1-p, a<zsb
0, x=b.

Then with a=1 and b=6, straight forward calculation shows that
Fis 2-HNBUE if 1—p<(3—+5)/10 or
if 1—p>(8++5)/10.

Proceeding along the same line one obtains conditions on 1—p
such that F is 2-HNBUE for arbitrary a and b.

2. Page 94, line 5. K-HNBUE should be 2-HNBUE. Using the ex-
ample in paragraph 1 above one can also show that K-HNBUE
distributions are not closed under formation of coherent structure
for k=8. The result for general k is not known.

3. In theorems 6-10 we have made the tacit assumption that
[,(F/\” Fapdy) dos | (Feo) || Fapay)dz .
An example where this is true is exponential distribution with
mean >1.
4. Theorems 11, 12 and 13 are not correct.

We like to thank Dr. Bengt Klefsjo of the University of Lulea
for pointing out the errors and making some constructive comments.
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