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Summary

In the linear regression model X;=a+ B¢+ Z,, we consider the prob-
lem of testing the subhypothesis that some (but not all) components of 8
are equal to 0. A class of asymptotically distribution-free tests based
on a quadratic form in aligned rank statistic is studied and the asymp-
totic relative efficiencies of the proposed tests with respect to the gen-
eral likelihood ratio test and the test based on least-squares estimates
of regression parameters are derived. Asymptotic optimality (& la
Wald) is also discussed.

1. Introduction

Consider a linear regression model

(1.1) X,=a+Bc,+7Z,, (t=1,---, m)

where the intercept o and the regression parameters B=(8,,---, 8,),
(¢>1) are unknown, each ¢;=(cy,--*,¢,)s (¢=1,---,m) is a vector of
known regression constants, and Z,,---, Z, are independent and identi-

cally distributed random variables with (unkown) symmetric distribu-
tion function F(x). Let B=(B:, B:), where Bi=(Bi,- -+, 8,) and B:=(B,.1,
<+, B), 1=r<q are fixed. A problem of interest is that of testing
the subhypothesis

(1.2) H,: 8,=0 vs. H: 8,#0  ((e, B;) nuisance).

Different versions of this problem (under the non-intercept linear model)
have been treated in detail in the context of the classical normal the-
ory of linear regression (see, e.g. Williams [14] and Graybill [4], p. 194).
Recent years have seen much interest in rank methods for regression.
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Thus McKean and Hettmansperger [9] have proposed a class of tests
for (1.2) based on the drop (or reduction) in Jaeckel’s [6] dispersion
measure, which, however, is not a pure rank statistic, but rather a
mixed linear combination of the X,’s and rank scores. More recently
Adichie [1] has studied two classes of tests for a different version of
(1.2) based on the difference of two quadratic forms in aligned rank
statistics.

In the present paper we study a distribution-free class of rank
procedures for testing (1.2). Basic assumptions and notations are given
in Section 2. In Section 3 we study a class of tests based on a quad-
ratic form in aligned rank statistics. The approach is similar to that
of Sen and Puri [12]. We derive the asymptotic distribution of the test
statistics, which is central chi-square under H, and non-central chi-
square under a sequence of local alternatives. In Section 4 we compare
the proposed rank procedures with two classical procedures for the
same problem : the general likelihood ratio test and the test based on
least-squares estimates of B;. Asymptotic relative efficiencies are de-
rived. Finally, asymptotic optimality in the sense of Wald [13] is dis-
cussed in Section 5.

2. Notations and basic assumptions

Let Xn:(XI! Tty Xn)y Zn=(Z1, Tty Zn)! o:(ay ﬁ)! 1n=(17 Tty 1) € Rn,
C,=(cy, -+, ¢, and C¥=(1,,C;)’. Then (1.1) can be expressed as

2.1) X,=al,+ BCp+Z,=0C*+Z, .

We consider only n>¢+1 and make the usual assumptions of full rank,
namely that the (¢+1) X% matrix C* has rank ¢+1. Let

2.2) c,=n" g_: @1 Ban) » Cma=m" g‘, mis  (m=1,---,0)

23) D=3ec.

Then the (g+1)X(g+1) symmetric matrix

2.4) A,=CC¥ = ["_ ”54]
ne, D,

has rank ¢-+1 and is positive definite. Consider the g xq matrix

(2.5) M,=3} (¢:—5,) (i —&,) =D, —n&,c,

=(cl—ém MR cn—'En)(cl_ém t Y cn_én), .
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/
Then it is easy to check that A, is equivalent to [g’ nMc,,} which

therefore has rank q+1. It follows that M, has rank ¢ and hence is
positive definite. We also assume that the limits
(2.6) A=limn™A, and M=limn'M,

n—oo n—oo

exist and are positive definite.

Remark. We have incorporated the assumption of full rank usu-
ally made in the least-squares and maximal likelihood procedures. In
this respect we have a unified treatment of rank procedures and the
classical procedures. The present approach does not have a shortcom-
ing of Adichie’s treatment (see Adichie [1], p. 1016, Remarks 1 and 2).
Indeed, Assumption B, (ii) of Adichie [1] does not hold in the present
model (2.1).

We also simplify some of Juretkova’s [8] conditions on the regres-
sion constants by assuming that each ¢, can be expressed as a differ-
ence

(2.7 Ci=Ciy—Cu® » ci(j)=(cli(j)! Ty th(p)' ’
(i=1,---,m; 7=1,2)
where, for each m=1,---,q and each j=1, 2, ¢,.; is nondecreasing in

1, and the c,,’s satisfy

n
(2.8) limn™ ma;x [Cricr—Crncpp )2 =0, cmn(j)=n_1 El Citd
sn i=

N—0 157

and

(2.9) limn'lgl[cm-(j)—-ém,,q,]ze((),oo), (m=1,---,q; j=1,2).

n—oo

Thus the c,.;’s satisfy the Noether condition

lim {max [cmi(j)_amn(j)]z/z [cmi(j)'—amn(j)]z} =0 ’
n—oo (15isn i=1

(m=1,---,9; 7=1,2).
Now let each ¢; be partitioned as

(2.10) ci=(cicly) s Cpi=(Cs 1 €)' s Cia=(Crinirc s Ce) s
@t=1,--+,m).

Then H, can be expressed as
(2.11) Ho:P(a,pl’0)(Xi§x)=F(x_a—ﬂlct’l) 9 (izl,‘ ",n)
where P, p,,0) denotes the probability distribution of X, under H;: S,



38 CHING-YUAN CHIANG AND MADAN L. PURI

=0. More generally P, will denote the probability distribution of X,
when @ is the true value of (e, 8)=(a, 81, 5:)-
For b=(b,,- -+, b,) € RY, let

(2.12) R,(b)=the rank of X,—bc, among X ,—bc,- -, X,—bc,
in the ascending order, (+=1,---,n),

(2'13) S"M(b)——_ié (Cmi—amn)a’n[Rnt(b)] ’ (m=1’ ] q)
and
(2.14)  Sy(B)=(Su(b), " -+, Su(d)) ,

where the scores a,(1),---, a,(n) are generated by a non-constant and
square-integrable function ¢ defined on (0, 1), in one of the following
two ways:

(2.15) @ ()=¢(i/(n+1)) or a,()=E[gU], (=1, n)

where U,<.--<U,, are the order statistics of a random sample of size
n from the uniform distribution over (0,1). We assume that ¢ is the
difference ¢=¢,—¢, of two non-decreasing and absolutely continuous
functions ¢, and ¢, on (0,1). Let

(2.16) wp={ e -grau} ", 5= s

Then 0<A(¢)<oo. A class of score-generating functions of particular
interest are of the form

(2.17) p(w)=g,(u)=—g'[G"W]/glG"'(w)],  wu€(0,1)

where G is a distribution function whose density g=G’' is absolutely
continuous and has finite and positive Fisher’s information

(2.18) 0<Ite)=|"_[¢'@)o(@)dG()<oo .

For such a score-generating function ¢ =¢, we have

@19 =0, @)={[ wra =@

(For details and examples, see Hajek and Sidék [5], Chapter I, Section 2.)
As for the underlying distribution function F, we assume that it
has an absolutely continuous density f=F" with 0<I(f)<oo. We make
no assumptions about the specific form of F.
To compare the rank procedures with the classical procedures, we
will consider a sequence of alternatives
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(2.20) H,: ;=B =n"""b,

where 0+£b, € R*" is arbitrarily fixed.

3. Aligned rank order tests

Since the rank statistics (2.14) do not depend on «, and since X,—
By, -+, X,— pic, are independently and identically distributed under
H, we need to estimate B, under H,. To this end, we use Jureckova’s
[8] method. Let

3.1) Biy= {bl cR: z |S,m(by, 0)|=minimum} ,

and choose an element ﬁl,,eBK,,, as an estimate of B, under H, (If

By, is a convex set, then a natural choice for ﬁl,, is the centre of grav-
ity of Byw)-

Remark. As will be seen later (in the proof of Lemma 3.1), the
only essential property required of Em is that

(3.2) 1 B,,—B,) is bounded in P(s,g,,0-probability .

While the classical least-squares and maximal likelihood estimates of S,
also satisfy (8.2) under suitable conditions, here rank-order estimates
of B, are most appropriate for aligned rank-order tests.

For b€ R? we partition S,(b) (defined by (2.14)) as

(8.3) S(6)=(S,x(b), Sax(b)) ,
where

Saw(®)=(Su(d),- -+, Si(®)) ,  Sar(B)=(Ss,r41(b), - -+, Spy(D)) -
Define the (¢—7)-dimensional vector of aligned rank statistics
(3:4) Suw=Suw(Biwr 0= (Srs15+» Sao)
where

Snm-:snm(ﬂ_lm 0)’:'1% (cmt—amn)an(jeni) ’ (m='r+ 1’ M) (1)

R,.i being the rank of X,—El,,cm among Xt—ﬁlncl,l,- . Xn—ﬁl,,c,,,l, (i=
1, ce, n).
Let the matrix M, (given by (2.5)) be partitioned as

— Mnll Mnlz]
(3.5) Mn_ [anl Mn22
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where M,,, is rXr, and define the (g—7r)X(¢—r) matrix
(3.6) Mn =M, — Moy M7} M,s5

which is symmetric and positive definite (because M, is). Let
n 1/2 n

(3.7) L=t SleO-al] ,  gG=n D).
i=1 i=1

Then aligned rank-order tests for (1.2) can be based on the quadratic
form

(3.8) Q=28 (M,) Sy

whose asymptotic distribution under H, is given by the following the-
orem.

THEOREM 3.1. Under H, Q, has asymptotically the (central) chi-
square distribution y:_, with q—r degrees of freedom.

For 0<e<1 let yi_,,. be the upper 100¢% point of the y2_, distri-
bution. Then for large » we have the following asymptotically distri-
bution-free test of approximately size «:

(3.9) Reject H, (in favor of H) if and only if Q,=y}_,..
To prove Theorem 3.1, we need the following lemmas.
LEMMA 3.1. Under H,,

(3.10) n_l/Z[S’nm— (B 0)+1(¢,f) (Eln—ﬁl)MnIZ] converges to 0 in
Pq, g,,0-probability, where

B1) (.= s wdu, and gw=—FIF@YSF @),

ue(0,1).
ProoF. Let
(3.12) E,,,j=n‘1§_‘.l c;,  (G=1,2).
Then, by (2.2), (2.5), (2.10) and (3.5), we have
(3.13) Mop=3 0= )Cs—Ens) (G k=1,2).
Let the matrix M (defined in (2.6)) be partitioned as
(3.14) M=[M: AMI:]

where M,, is rxr. Then M, is symmetric and positive definite (since
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M is). By (3.5), we have
(3.15) lim n—anjk=Mjk 3 (j, k=1, 2) .

Under H,, since (2.11) holds, by Theorem 4.1 of Jureikova [8], n'*(Bi,
—py) is asymptotically normal and so (3.2) is satisfied. It follows from
a multi-dimensional extension of Theorem 3.1 of Jurec¢kova [7] (cf. The-
orem 3.1 of Juretkova [8]), that under H,, 7 S,5(B1 0)—1 S, (B
0)+7(¢, S)n*(B1.— Bi)n"'M,,, converges to 0 in P, g,,0-probability, which
is the same as (3.10).

LEMMA 3.2. Under H,
(3.16) n~28,4,— V, converges to 0 in P, g,,0-probability, where -
(3.17) Vn=n_1/2[Sn(2)(ﬂlr 0)"Sn(1)(.31; 0OM,i M,] .

Proor. Under H,, by (2.11), (3.15) (with j=k=1) and by Theo-
rems 3.1 and 4.1 and Lemmas 4.1 and 4.5 of Jurec¢kova [8], both

1S, (Binr 0)— 1 28(Br 0)+ (¢, F)NVHBin— BN Moy
and 772S,,(Bi, 0) converge to 0 in P(a, g,,0-probability, It follows that
B

(8.18) 1728, 4(By, 0)—n"¢(¢, f)(Bin— B1)M, converges to 0 in
Pa, g,,0y-probability .

Multiplying (3.18) by M, ;M,, from the right, we see that

(8.19) n7AS,u(Bs OM M, —n (P, f)(Bin—B)M,; converges
to 0 in P(a, ,,0)-probability .

Finally, adding (3.19) to (3.10) and using (3.17), we obtain (3.16).

LEMMA 3.3. Under H,, V, has asymptotically the (q—r)-variate nor-
mal distribution N,_,(0, 2(¢)M), where

(3.20) M=Myy— MyM;'M,; .
Proor. The distribution of
(3.21) T.=n""2S,(8:, 0)

under H,: 8,=0 is the same as the distribution of %~2S,(8)=n""2S,(B:
B:) when B=(B,, B,) is the true parameter value. So

(3.22) (T.| H)— N0, 2(¢)M)
where 9 denotes distribution (see (4.1) of Jureckova [8]). Let T,=
(Tocs Tos)y Toiyy=1""2S, (B, 0)=T,I%*, (=1, 2), where I}*= [{)r] is gxr
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and L}= [IO ] is ¢x(g—7), I (with subscript indicating dimension) and
q-r.

0 being the identy matrix and the zero matrix of the appropriate di-
mensions. So (3.17) can be rewritten as

(3.23) Vo= T — Tuy Mt My = T (¥ — ¥ M M,y,) -
By (3.15), we have
(3.24) lim M3 M, =M' M,

So, by (3.22), V, under H, is asymptotically (¢—7)-variate normal with
mean 0 and covariance matrix

(3.25) A(P) (¥ — I M  Myy M(I¥ — I¥ M Myy)
=A%) (Myy— My M7 My) = 2% ) M

where the first equality in (3.25) follows by routine computation from
the symmetry and partitioning (3.14) of M, which implies that I*MI;}*
=My, (7,k=1, 2).

PrOOF OF THEOREM 3.1. Lemmas 3.2 and 3.3 together imply
D8 | H)— N0, 2X($)M) .
By (2.15)-(2.16) and (3.7) we have
(3.26) lnlﬂ 2,=A(¢) .

It follows that D[(nA2)"28,u|H)]— N,_,(0, M) and hence that D[(naZ)~*
S, (M) 8%y | Hl>x:_,. By (3.6), (3.15), (3.20) and (3.24), we have

(8.27) lim n*M,=M
and hence
(3.28) lim n(M,)"'=(M)™" .

So, by (3.8), Q, under H, is asymptotically »:_,.
The following theorem gives the asymptotic distribution of @, un-
der H, (see (2.20)).

THEOREM 3.2. Under H,, Q, has asymptotically the non-central chi-
square distribution y;_.(d,) with q—r degrees of freedom and mon-cen-
trality parameter.

(3.29) do=Ir(¢, £)IA($)Ib, Mb; .
We prove Theorem 3.2 through the following lemmas.

LEMMA 3.4. Under H,: 8,=p;,=n"""b,,
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(3.30) N2, — V, converges to 0 in Pa, p,, p..)-probability .

Remark. Thus Lemma 3.4 states that (3.16) still holds with P, ,,0
replaced by P, 8, 8ax)-

PROOF. We first observe the following facts.
(I) Assuming B,=0 has the same effect as replacing each X, by X*
=X,—pBic., t1=1,---,n).
(II) So the distribution of S,,,(8;, 0) under P, g, 8, is the same as
the distribution of S,;,=S.(0) under P,o0,8,), (j=1,2), what-
ever the value of B, is.

(III) If we write B,= Bi(X,) to indicate that the estimate is based on
the observations X,, then .§1 has the invariance property

(3.31) By(X,+al,+bC.)=Bi(X,)+b, for all acR and b, e R",

where C,,=(¢,,- -+, C,y) (see Jureckova [8], Section 5).

av) 8., remains unchanged if each X, is replaced by XX, (i=1,.--, n).
To see this last fact, we rewrite S,,(0) as S,;(X.), (1=1,2) to

indicate the dependence on X,. Then S’,,(z, can be rewritten as
(3-32) Sn(Z)(Xn)=Sn(2)(Xn—El(Xn)Cn(l)) .

Replacing X, by XX*=(X*,--+, X})=X,—B.C.»y in (3.32) and using

(3.31), we have B(XX)=8,(X,)—B; and hence S,u(X)=8,(X,).
By (I)=(IV) and (3.17), we can restate (3.16) and (3.30) respectively
as

(3.33) n“/zgn(z)—n“/z[s,,<z)— M7'M;;] converges to 0 in P, 0)-
probability

and

(3.34) nV28 o — VS0 — SuyMui M,i2] converges to 0 in
P(a,0, g;.y)-probability .

Thus it suffices to establish (3.34).
The joint probability densities of X, corresponding to Pe,o0 and
P4,0,8,,) are respectively

pu) =T f(&:—0)
and
q,,(x)=;[:'[l f(x,-—a—ﬂmci)-—-i[ fl@—d,)  for m=(wy, -, ) € R*,

where B.,=(0, B:,)=(0, n7?b;) and d,=a+Bwc, (t=1,---,7n). It is
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easy to check following Hajek and Sidék ([5] p. 211 and Theorem VI.2.1)
that the densities {g,} are contiguous to the densities {g,} defined by

4.0)=11 f@—a)=1] f@—a—PuS), X=(w++,2,) R

where d,=n"" é di=a+ BCo-
Note that by (1.2), (2.2) and (3.38) we have
(3‘35) n—ani = [n_llz(cmi —Em'n) * n_l/z(cm’i _ém’n)]m,m’cl,u-,q ’
(t=1,---,n).

Now by (3.33) and with the notation introduced in (III) and (IV)
above, we have

NS (X — El(Xn)Cn(l)) — S X0) — Sar(Xn) Mo Mo =20 .

Since B¢, is a scalar, we have S, ,(X,+BwC.1.)=8.(X,), (1=1,2),
and by (3.31) we have B(X,+Bwe1.)=5(X,). Thus S,, (i=1,2)
and B, remain unchanged under the simultaneous transformation X,—
X+ BwC, for all t=1,--.,n, which is the same as replacing p, by ..
So we have

(3.36) n—ms’mz) — 1" [ S — Suc> Mt M) I, 0.

Hence, by contiguity, (3.36) still holds with g, replaced by g¢,, which
is the same as (3.34), as was to be proved.

LEmMMA 3.5. Under H,, we have
D(V,|Hy)— No_(r(¢, )b, 2()M) .

Proor. Let S,=8,0). Then = ':S, is asymptotically normal
N,(r(¢, f)n'?BM, 2*(¢)M) (see Theorem 3.1 and (4.1) of Jureckova
[8]). So, under H}: B=Bu,=(0, n~*b,), by (3.14) we have

D8, | H)— No(r (¢, 1)bsMy, M), (g)M) .

The distribution of T, (see (3.21)) under H, is the same as the distri-
bution of »~'(S, under H*. Hence

DT, |H,) > Ny(v(¢5 )bo( My, M), 2(p)M) .

So, by (3.23)-(3.25), V, under H, is asymptotically normal with covari-
ance matrix %(¢)M and mean

(¢, F)bo(Myy, My)(I¥ — L¥ M7 M) B
=7(¢, )b(Myy— MM My)=7(¢, )b M .
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ProOOF OF THEOREM 3.2. By Lemmas 3.4 and 3.5 and by (3.26),

under H,, the statistic (ni2)™! A"m(M )‘ISA’,’L(Z, is asymptotically non-central
chi-square with ¢—r degrees of freedom and noncentrality parameter

{Ir(¢, NIASNOMYI) ™ {[7(¢, 1) 2($)1b:M Y
=[7(¢, )IA($)V'b Mbi=4, .

Hence unsing (3.28) we have 9D(Q,|H,)—xi_.(4o).

4. Asymptotic efficiency

We now compare the rank procedures for testing (1.2) based on
Q. with the general likelihood ratio test and the test of the same hy-
pothesis based on the least-squares estimates of 8,. For the likelihood
procedure, we make Assumptions I-V and VII of Wald [13]. And for
the least-squares procedure we make the following usual assumptions:

(4.1) E(Z)=0
(4.2) 0<Var(Z)=d*<oo,  (i=1,++-,m).

Remarks. 1. A dual form of Wald’s [13] Assumption VI is trivi-
ally satisfied by the present problem. Assumption III(c) is also redun-
dant, since here it reduces to the assumption that the determinant of
the information matrix I(f)A, is positive, which is equivalent to the
finiteness of I(f) and the positive definiteness of A, (see (2.4)).

2. (4.1) also follows from the symmetry of F. In the special case
that F' is normal, we have ¢’=1/I(f), and (4.2) is equivalent to the
finiteness of I(f).

The likelihood ratio test rejects H, (in favor of H) when the likeli-
hood ratio statistic

A,= sup {:[:Tl f(X,—a—byc,,): a€ R, b€ R’}/
sup {ﬂ f(X,—a—be): acR, b eR«}

is small, or equivalently when
(4.3) L,=—2log 4,

is large. Here f (or equivalently F') is assumed to be known but not
necessarily normal.

Let the least-squares estimate ﬁ,,=(,§,,1,- <y 1§,,q) of B (based on X,)
be partitioned as

(4'4) Bn:(lélm 521;) Where BZuz(En,r+lr M) Enq)
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and let s? be the corresponding unbiased estimate of ¢®.. We also parti-
tion A, as

= A=l 4l

where A, is (r+1)X(r+1), and define

(4.6) A =Au— A A Ay,

Then the classical normal-theory test of (1.2) is based on the statistic
.7 F o= FnAnfinll(q—7)s]

(see, e.g., Anderson [2], Section 2.2), or equivalently on the statistic
(4.8) Lt=(q—1)92= BuAofinls; -

It is well known that if F' is normal, then &,=(4;""—1)(n—q—1)/(g—7)
(see, e.g., Scheffé [11], p. 36), and &, under H, has the F-distribution
with ¢—» and n—q—1 degrees of freedom. It will be shown later (in
the proof of Theorem 4.1) that

(4.9) A,=M,.
Thus L¥ can also be expressed as
(4'10) L:=§2nﬂnﬁén/si .

The following two theorems give the asymptotic distribution of L,
and L¥* under H,, but under no assumptions about the specific form of F.

THEOREM 4.1. Under H,, L, is asymptotically y:_.(4.), where
(4.11) 4,=I(f)b,Mb; .

THEOREM 4.2. Under H,, L} is asymptotically y:_.(d4%), where
(4.12) 4% =0""b, Mb} .

Remark 3. In the special case that F' is normal, we have 4,=4%,
which comes as no surprise because in this case the likelihood procedure
is equivalent to the least-squares procedure.

It follows from Theorems 3.2, 4.1 and 4.2 that the asymptotic rel-
ative efficiencies of the rank procedures based on @, with respect to
the likelihood procedure (based on L,) and the least-squares procedure
(based on L}) are given by

@13 eoulP)=r¢, HINHW)
= [, ewpswan] /1) | 19— 7au]
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and
@1  eouF)=dr(e, HIFG)
=o[{, s wau] [| sw—3)au

Remarks. 4. If the score-generating function for @, is ¢ =¢, (see
(3.11)) then by (2.16), (2.19) and (4.13) we have e, .(F)=1, i.e., the
Q.-test is asymptotically power-equivalent to the likelihood ratio test.

5. The quantity on the right-hand side of (4.13) or (4.14) has been
extensively studied. Thus with ¢=071, ¢, ;.(F') is not less than 1, and
is equal to 1 if and only if F' is normal (see, e.g., Puri and Sen [10],
p. 118, Theorem 3.8.2). Thus the Q,-test using normal scores is asymp-
totically at least as powerful as the classical least-squares procedure,
and more powerful than the latter unless the underlying distribution
F is actually normal.

ProOF oF THEOREM 4.1. We first prove (4.9). By (2.2)-(2.4), (2.10)
and (4.5) we have

n NCr,1
(4. 15) Anll = ,

n
3 4
ne,,1 121 C,1Ci,1

(4.16) Anzz=§_l Ci,9Cla

(@.17) A= euns 3 ecacts)
and

(4.18) A=Ay ,

where ¢,,, (j=1,2) is defined by (3.12). By using the generalized
Gauss algorithm (see, e.g., Gantmacher [3], Vol. I, p. 45) and the ob-
vious identity

(4.19) M, ;= z Ci[Cu—TCn G, (4, k=1, 2)

(which follows immediately from (3.13)) we have

1

( A -77 + (_:7,,, 1Mn;11 En, 1 - c7,1, an—lll
4.20) A=

- Mn—l-llén, 1 Ju-n_lll

By (4.6), (3.6) and routine computation we have A,,A;}A,;=nE,Ch.+
M M;M,, and hence A,=M, Thus (4.9) is established. It follows
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from Theorem IX of Wald ([13], p. 480) that L, under H,: B,=n""?b, is
asymptotically non-central chi-square with ¢g—» degrees of freedom and
noncentrality parameter

4, =I(f)(n"by) A (n"7b;)
=I(f)by(n" _n)bé—’f(f)szb;:AL , as n— oo,

where the convergence follows from (8.27). The proof is completed.

PROOF OF THEOREM 4.2. Let &, be the least-squares estimate of «
(based on -Xn)' Then ,n1/2[(am 511)_(‘1; ﬂ)]:(nl/zl(&m Eln)—(ar ﬂl)]! nl/z(ﬁh—
B.)) is asymptotically N,.,(0, s*’A™") (where A is given by (2.6)), and s;
is a consistent estimate of o' (see Anderson [2], p. 25, Corollary 2.6.1
and Theorem 2.6.2). Let A be partitioned as

(4.21) a=[qn 4]

Ay Ay

where Ay is (r+1)X(r+1), and define

(4.22) A=Ay—AyAGA, .

Then by (4.4) we have

(4.23) D (Bo—Bo)1— N0, o*(A)™)

(see, e.g., Theorem 1.3.1 of Graybill [4] for inverses of partitioned

matrices). By (2.6), (4.5) and (4.21) we have lim n™'A,;,=A4;, (4, k=1,

n—00

2). So by (4.6) we have limn'4,=A. It follows from (3.27) and (4.9)

n—oo

that A=M. Now, by (4.23), under H,: 8,=n""°b, we have
DBy, | H)—>N,_(by, 6'(A)7") .

Hence, by (4.8) and consistent estimation of ¢* by s, L} under H, is
asymptotically non-central chi-square with ¢—r degrees of freedom and
noncentrality parameter.

o~ b,Ab, =070, Mb,= 4% .

5. Asymptotic optimality

Let B, be the (g—7)X(g—7) non-singular matrix such that B;B,=
A,=M,, let I';, be the (r+1)x(r+1) non-singular matrix satisfying I'/,I7,
=A,;, and define the (r+1)X(¢g—r) matrix I,=(l}})"'4,, (see (4.15)
and (4.17)-(4.18)). Then the (¢+1)x(g+1) matrix
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r, I,
an [ nl nZ]
0 B,

is nonsingular and satisfies K, A;'K,/=1,,;.
Let 2=R*'={(a, b): a € R, be R} and 2,={(a, b, 0)c2: a € R, b, €
R'}). For w=(a, b, 0) € 2, and ¢>0 define the surface

S(@, ¢)={(a, B, B) € 2: I(f)BA.Bi=c¢, (&, By B =(a, )"}

where I',=(I,, I,y) is an (r+1)x(g+1) matrix. Consider the transfor-
mation of 2

(5.1) 0=(a, B, B)—0*=(a*, B¥, B =II(/)]"0K,
which is also given by
(5.2) (o*, BH)=LI(N)])"(a, Bi) B F=[I(N]"B:B:
and maps S(e, ¢) into

S*(w, ¢)= {(a*, B, BF) € 2: (a*, BF)=[I(f)]"(a, b)), BFBY =c} .
For 6,€ 2 and p>0 define

200, p)={0€c2: 0,6,c S(w, c)
for some w e £, and ¢>0, and ||6—6,|=p}

(where || || is the Euclidean norm on £), and let 2*(8,, p) be its image
under the transformation (5.1). For 8 € 2 let

7(0)=lim {A[*(8, p))/ A2, o)}

where (1 denotes area. Then, by Theorem VIII of Wald ([13], p. 478),
the likelihood ratio test for (1.2) is asymptotically optimal in the sense
that it

(a) has asymptotically best average power with respect to the weight
function 7(@) and the family of surfaces S={S(®,c): w2, ¢>0};

(b) has asymptotically best constant power on the surface in §;

(¢) is an asymptotically most stringest test.

By Remark 4 of Section 4, it follows that with the score-generat-
ing function ¢=¢,, the Q,-test is asymptotically power-equivalent to
the Wald-optimal likelihood ratio test. Thus if the underlying dis-
tribution function F is logistic, then the Q,-test using Wilcoxon scores
is asymptotically optimal; and if F is normal, then the Q,-test using
normal scores is asymptotically optimal.

JAMES MADISON UNIVERSITY
INDIANA UNIVERSITY
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