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Abstract

Consider the class of random linear models induced by possible al-
locations of units in an experimental design with hierarchical or cross
classification. Assuming a balanced model belongs to the class, it is
shown that this model is optimal for estimation of mean.

1. Introduction and summary

Optimal allocation of units in an experimental design resolves itself
into the comparison of linear models by linear estimation, or the com-
parison of linear mormal models by sufficiency. A result of Torgersen
[6] shows that the two orderings, of linear models and of correspond-
ing linear normal models, are equivalent, providing the variance com-
ponents are known. On the other hand, the comparison of linear models
with unknown variance components is reduced to the same problem for
known variance components (cf. Stepniak and Torgersen [4]).

One way random normal models with known variance components
have been considered by DeGroot [1] and Stepniak [8]. It was shown
that the balanced (or almost balanced if there are no balanced) one
way random normal model is optimal. The same result may be ob-
tained by comparison of one way random models with unknown vari-
ance components by linear estimation. In both cases the considerations
are restricted, in fact, to only one parameter—just the mean.

Consider the class of random linear models induced by possible
allocations of units in an experimental design with hierarchical or cross
classification. Assuming a balanced model belongs to the class, it will
be shown that this model is optimal for estimation of the mean.
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2. Some general results

Consider models where the expectation and the covariances of the
observable random vector X depend linearly on some unknown param-
eters.

The assumption can be written in

(1) EX=A8
and
(2) CovX=Vr=21.Vi,

i=1
where X is observable nx1 random vector, A and V,, 7=1, ---, q, are
known matrices of, respectively, nxXp and mXxmn, while 3=(8;, ---, 8,)
and r=(ry, +++, 7,) are unknown column vectors. It is assumed that

the prior possible values of 8 and y constitute, respectively, the p-
dimensional real linear space R?, and a set I in the g-dimensional r.l.s.
Re,

It will be assumed that V7y is nonnegative definite (n.n.d.) for all
yeI'. The integers p, ¢ and the set I' are fixed, but arbitrary, while
n may vary from model to model.

We shall denote this structure by L(AB, Vy; yeI'). Say that X is
subject to linear model L(AB, Vy;ryel') if (1) and (2) hold. If I'=
{ro} i.e. the case of known covariances we may write L(AB, V), where
V = V7, instead of L(AB, Vy; r=r).

If T is a matrix then T’ and C(T) will denote, respectively, the
transposition and the column space of T.

Suppose X and Y are subject, respectively, to L(A8, Vy; r € I') and
L(BB, Wr;reI'). We shall then say that the model L(AB, Vy;rel)
is at least as good as the model L(BB, Wy;reI') w.r.t. linear estima-
tion with squared risk if for any function & on R*XI" and for any
estimator 'Y there is an estimator a'X such that

(3) E,, @X—T)<E,, ' Y-T)

uniformly for e R? and y el
If this condition is satisfied then we shall write L(AB, Vy;reI')>
L(BB, Wy;rel).

Another way of ordering of linear models was presented by Stepniak
and Torgersen [4]. Namely, model L(AB, Vy;reI') is said to be at
least as good as the model L(BB, Wy; y € I') w.r.t. unbiased estimation
with squared risk if for any unbiased estimator 'Y of a parameter ¢'g
there is an unbiased estimator a’X of this parameter such that Var (¢’X)
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<Var (b'Y) for each rbe r.
Now we shall show that the two orderings of linear models are
equivalent.

LEMMA 1. L(AB, Vy;y eI > L(BB, Wy;yeI') if and only if the
first model is at least as good as the second w.r.t. unbiased estimation
with squared risk.

PrROOF. Let X and Y are subject, respectively, to L(AB, Vy;rel)
and L(BB, Wy;rel).

Sufficiency. Suppose the first model is at least as good as the
second w.r.t. unbiased estimation. Then for each b’'Y there is a'X such
that E(@'X)=E@®'Y) and E[¢'X—E (@ X)PSE[W'Y—E (®'Y)]’. Thus,
by the identity E(0'Y—Z)'=E[l'Y—E ' Y)I*+[E ' Y)—T), b'Y satisfies
the condition (3).

Necessity. Let L(AB, Vy;ryeI')>L(BB, Wy; yreI'). We only need
to show that if 'Y is an unbiased estimator of ¢’ and a’X satisfies
the condition (3) then a’X is also unbiased. Suppose not. Then E (a’X)
—c'B=k'B, where k+0. Thus, given y eI, the risk E@®'Y—c'g)=
Var (0'Y) is bounded, whereas the risk E (a’X—c¢'g)*=Var (a’'X)+(¥'B)*
is not. This contradicts L(AB, Vr;re')>L(BB, Wy; reI') and com-
pletes the proof.

We need the following theorems.

THEOREM 1. L(AB,Vy;rel)>L(BB, Wy;rel') if and only <f
L(AB, Vy) > L(BB, Wy) for all v belonging to the convex hull of I.

THEOREM 2. L(AB, V)> L(BB, W) if and only if there is a matrix
G such that B=GA and W—-GVG' is n.n.d.

Theorem 1 reduces the comparison of linear models with unknown
variance components to the same problem for known variance compo-
nents. This theorem was established by Stepniak and Torgersen [4].

Theorem 2 was proved by Stepniak [2] under the assumption that
V and W are non singular. In the presented form it was stated by
Torgersen [5]. For completeness we shall give a short

PrOOF OF THEOREM 2. Let X and Y are subject, respectively, to
L(AB, V) and L(BB, W).
Sufficiency. Suppose B=GA and W—GVG’ is n.n.d. Then
EQY-2)y=b'Wb+('Bs—7)
ZVGVG'b+(V'BR—T)
=bGVG'b+(V'GAB—T)
=E ('X-7),
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where a=G'b.

Necessity. First we notice that {a’X: Va € C(A)} is the set of all
best linear unbiased estimators (BLUE’s) in L(AB, V) (cf. Zyskind [6]).
Denote by P the orthogonal projector on {a: Vae C(A)}. Then, by
Lemma 1, L(PAB, PVP)>L(A8, V). In particular

(4) C(ANSC(A'P).

Suppose L(AB, V)> L(BB, W). Then, by Lemma 1, C(A")2C(B').
Next, as a consequence of this, B=DA for some matrix D. Thus, by
(4), B=DCPA for some matrix C. Putting G=DCP we satisfy the
conditions B=GA and

(5) C(VGSC(A) .

Suppose, by contradiction, that W—GVG’ is not n.n.d. Then there
is a vector b such that

(6) V(W—-GVGE')H<0.

Let =b'B. It follows that b’'Y is an unbiased estimator of ¥ and,
by (6),

Var (0'Y)=b'Wb<d'GVG'b=Var (¢'X),

where a=G'b. On the other hand, by (5), a’X is a BLUE of . This
contradicts to L(AB, V)> L(BB, W) and completes the proof.

3. Optimal allocation of experimental units in hierarchical classifica-
tion

Formal definition of allocation will be preceded by an example.
Suppose 8 experimental units are submitted to a two-stage classifica-
tion. The first stage of the classification is more general and includes
2 subclasses, say S;=1{1,2,3,4,5} and S;,={6,7, 8}, while the second
stage is more detailed and includes 4 subclasses, say Sy={1, 2}, Su=
{3, 4,5}, Si={6} and S,,={7,8}. Then the observations X, ---, X; cor-
responding to the experimental units may be presented in the form

1=p+ay tay +e
X,=p+ay +ay +e;
Xy=p+ay + 0y +e
Xi=p+ay +ay +e

Xs=p+ay +ag +es
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Xs=pn +ay, +ay +e4
X7=# +ay, +ag+e,
Xs-_—‘ll +a, +ay+ey,

where g is the general mean, a,;,, j=1, 2, are the effects of the first
classification, a,, j=1, 2, 3,4, are the effects of the second classifica-
tion, and e,, j=1, ..., 8, are the experimental errors.

Assuming all these effects are independent random variables with
the expectations zero and the variances

Var (e;) =7, j=1,--.,8,
Var (au)-‘—"?’x ’ j'—'l’ 2,
Var (“21)=7’2 ’ j=1! 2,3,4,

we can see that the random vector X=(Xj, ---, X;)’ is subject to the
linear model

L(]-aﬂ» rols+ 11 Vit+7:Va; 70>0, 11, 7:=20),

where 1; is the column of 8 ones, g is an unknown scalar, and V,, i=
1,2, are 8 X8 matrices of the form

V'l':diag (151é7 181:{1) ’
and
V,=diag (1,15, 1515, 1, 1,15 .

Now let n, ¢ and k,, ---, k, be positive integers such that g=n

and k<k<---<k,<m. Moreover let my, ---, Moy 5 Magy = v 0y Moy s **° 5
Mg ** 5 Mg, D€ non negative integers such that
kg

(7) jE_lni,=n, 1=1,--+,q,
and
( 8) dia’g u"il”‘ﬂ’ T l"ikil:‘iki)_diag (1"i+1,11:'i+1,1’ Tt 1"i+l,k¢+11:'i+1,k,+1) ’
t=1, --+,¢—1, are matrices with non negative elements.

Here n denotes the total number of experimental units, ¢ is the
number of classifications, k;, 1=1, --.,q, is the number of subclasses
in the ¢-th classification, and n;, 7=1, ---,q; j=1, .-+, k;, is the num-

ber of experimental units in the j-th subclass of the i-th classification.
Any choice of such integers is called an allocation of n experi-
mental units in g¢-stage hierarchical classification with %, ---, k, sub-
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classes and is denoted by H(n, q; ki« -, k,|ny;, 1=1,-++,q; j=1,---, k).
The class of all allocations of not more than = units in g-stage
hierarchical classification with not more than k, ---, k, subclasses will
be denoted by H(n,q; ki, ---, k).
To each allocation H(n, q; ki, - -+, kj|n, i=1, ---,q; j=1, ---, k;)
corresponds a linear model

L<1n)uy TOL»JFil rtVt; To>0, 71‘,.2_0’ 7;=11 ttty q);

where 1, is the column of » ones, p is an unknown scalar, and V,, i=
1, .-.,q, are nXn matrices of the form
V,:dlag (171‘11;&” "ty 1"1:):,1/ ) .

Pk

Now let the numbers n and k, .-, k, satisfy the conditions n=
kr;, i=1, ---, q, for some integers 7, ---,7,. Then we can put

(9) Ny;="7;, 7:=19"'3q;j:1""vki-

An allocation H(n, q; ki, - -, k|ny, 1=1, -+, q; j=1, ---, k) satis-
fying the conditions (9) for some integers 7, --.,r, is said to be
balanced. We note that for the balanced allocation

Vi=L,®1,1,, i=l---,q,

where @ denotes the Kronecker product of matrices.

We shall write H(n,q; ki, ---, kny, 1=1, ---,q; j=1, -+, k)=
H(m,q; U, «++, l|myy, =1, --+,q; =1, --+, ;) if the linear model cor-
responding to the first allocation is at least as good as the model cor-
responding to the second allocation.

An allocation H(n, q; ki, - -+, k|1, 2=1, -+, q; =1, -+, k) is said
to be optimal in the class H(n, q; ki, ---, k,) if

H(n; q; kl; "'1kq]nij’ 7:=19 e, qy j=1’ ] kz)
EH(’m’q; lly "',lqlmijy 74:1’ ey qy j=1, "')lt)

for all H(m,q; L, -+, l|my, t=1,---,q; j=1,---,1) being members
of H(m,q; ky, ---, k).

THEOREM 3. Let n and ki, -+, k, be positive integers such that n=
ki, t=1, .-+, q, for some integers ry, ---,r,. Then the balanced alloca-
tton H(n, q; ky - -+, kyny=r;, i=1, --+,q; =1, -, k;) is optimal in
the class H(n,q; ky -+ -, k).

The pljoof of the theorem will be preceded by

LEMMA 2. Let k, I, m and m,, ---, m, be positive integers such that
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Ik and é m;=m. Then the matrix
i=1

(10) D=diag (1,14, -, 1m114u)—71;1m14n

18 n.n.d.

PROOF OF THE LEMMA. Note that D is a pivotal submatrix of the
matrix

(11) L®LY—TL,l=(5- T 11)@11,
where r=max {m,, ---, m;}. Since I<k and L—-;—l,lf is n.n.d., the

matrix (11) is n.n.d. too. This implies the desired result.
PROOF OF THE THEOREM. Let G=l1m1,:. Note that G satisfies the
n

condition G1,=1,,. Thus, by Theorems 1 and 2, we only need to show
that the matrix

(12)  rolat 3] 70 ding (Ll - Ly Ty ) =G rohit 3 1L, @ L,11) |67
q .
=TO[Im—GG,]+ i2=1 Ti[dla'g (1mul:n“7 A} 1m”‘1:nat)—G(Iki® lrilii)G']
is n.n.d. for all y,>0 and 7,20, ¢=1, ---,q.
As I,<k, i=1, ---,q, we can write the matrix (12) in the form

ro(I,,—GG’)—i-é v.D;,, where D,, i=1, -..,q, are some matrices of the
i=1

form (10), and hence are n.n.d.
To complete the proof we only need to see that, under the condi-
tion m<m, the matrix

I,—GG'=I,—11,1,
n

is n.n.d.

Applying the theorem to the example considered before we obtain
that the balanced allocation H(8, 2; 2, 4|4, 4; 2,2, 2, 2) is optimal in the
class (8, 2; 2,4) i.e. in the class of all allocations of 8 units in two-
stage hierarchical classification with not more than 2 subclasses on the
first stage and not more than 4 subclasses on the second stage.

4. Optimal allocation of experimental units in cross classification

As in Section 3, we start from example. Suppose 24 experimental
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units are submitted to tree independent classifications with 2, 3 and 2
subclasses, respectively. Denote by S,; the set of experimental units
belonging to the j-th subclass in the i-th classification. For example

Su=1{1, 2,5, 8, 10, 13, 18, 20, 21, 22, 23}
S.=1{3,4,6,7,9,11, 12, 14, 15, 16, 17, 19, 24}
Su=1{4, 6, 8, 15, 16, 17, 18}

Sp= {10, 11, 12, 13, 14, 20}
S»=1{1,2,3,5,7,9,19, 21, 22, 23, 24}
Su=1{1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14}
S»= {15, 16, 17, 18, 19, 20, 21, 22, 23, 24} .

To each S;; is defined a column vector N,,=(n,, ---, ny)' of zeros
and ones, where

1 ifkeS,
Ny =
0 otherwise ,
for k=1, ...,24. In our example

Ny=(,10,0,1,0,01,0,1,0,0,1,0,0,0,0,1,0,1,1, 1, 1, 0y
N;,=(,0,1,1,0,1,1,0,1,0,1,1,0,1,1,1,1,0, 1,0, 0,0, 0, 1
Ny =(0,0,0,1,0,1,0,1,0,0,0,0,0,0,1,1,1,1, 0,0, 0, 0,0, 0)
Np=(0, 0, 0, 0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,1, 0,0, 0, 0)
Ny=(,1,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,1,1,1, 1)
Ny=(,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0, 0, 0, 0)
Ny, =(0, 9, 0,0, 0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1).

By using the Hadamard product * of vectors, defined as

4 Y Y
AN
xﬂv yﬂ xnyn
the observation vector X=(Xj, ---, X)), corresponding to the experi-

mental units may be presented in the form

2 3 2
X=124# +,Z=1 Nlja'j'*'jz::l szb,+j2=l NSjcj
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+j §, Ny, * Mj,(ab)m,‘l‘jgl 2N111 * sta(a’c)jlj3
jz-lya 3 j;:{z
+1 ‘?z asz” * N‘Ua(bc)fzfa+ E N‘h * ‘sza * Mia(a’bc)!x!z!a
1321 ] 12_1 2 3
J3=1,3
where p is the general mean, a,, b,, and ¢, 5,=1, ---, ki ; =1, -+,
ky; 53=1, ---, k;, are the effects of the respective subclasses in the
first, second and third classiﬁcation, while (abd),;,, (ac),,, (bc);,;, and
(@b0); 1,5 11=1, -+ by =1, -+, ku; Jy=1, .-+, ks, are the effects of
double and trlple 1nteract10ns, and e=(e, ---, e,) is the vector of the
experimental errors.
Assuming all these effects are independent random variables with

the expectations zero and the variances

Var (¢,) =7 j=1,---,24,
Var (a,)=7 n=12,

Var (b,,) =7: 5»=12,3,

Var (¢,) =1 5=1,2,

Var ((@b);,,)=71, n=1,2; 5=1,2,3,
Var ((a¢);, ;) =74, 5=1,2; j=1,2,
Var ((b0),,,) =72 » 5=1,2,3; j=1,2,

Var ((ab0)11/213)=7’123 , 5=1,2; 5,=1,2,3; 5=1,2,

we can see that the random vector X is subject to the linear model
L<1z4#, roIz4+i2:1 r¢V2+il§<Jiznlt,Wlt,+rme; 70>0, 744,20, ‘rmZO)
where
Vi =5 NNy,
v, = jz Ny, NY,,
=jé=l MIN 3’.1 ’

Vi = s (1\’1/1 * NZJ,) (M!, * sz) )

Vi = (Nul * M/a)(thl * M/a) ’

--
Y
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Vi = (sz * Mja) (M]z * M;a) ,

F9=1,2,3
/

nw

I’lZS

M

(Mh * sz * Mj3)(M/1 * sz * lvsja), .

,3

e
nban

51
Ja
I3

Now let =, ¢ and %, ---, k, be positive integers such that g=n
and k;<n, =1, :--,q. Moreover, let N,;, t=1, ---,¢q; j=1, ---, k;, be
n-dimensional columns of zeros and ones such that

k
(13) Eiszlnr 1/219 e, q
i=1
and
(14) NN, =0, i=1,---,q9; J#J'.

Any choice of such columns is called an allocation of » experi-
mental units in g-way cross classification with k,, ---, k, subclasses and
is denoted by C(n, q; ki, « -+, k| Ny, =1, --+,q; =1, -+, k).

The class of all allocations of not more than % units in g-way cross
classification with not more than %, ---, k, subclasses will be denoted
by C(n, q; ky, + -+, k).

To each allocation C(n, q; ki, « -+, k| Ny, t=1, -+, q; 5=1, -+, k;)
corresponds a linear model

L( oty Toly +2 7 Vit Z 711i2m112+ -+ > i Ytli2--~iq_1Vili2---iq_1

1<ty 1y <ig<eee<igy
11 Vieai 1030, 720, 16420, +++, 11 20),
where
ki
V£=j2_l NijNi,j ’

aniz z."‘.,k, (Nilh * Mz/z) (Mlh * szz), ’

fg— RN

— ’
I/ﬁ'“iq—f_ 2] (Mljl Ko X Mq—lfq—1) (Mlll Ko X Mq—qu—1) !

J1=Leenky

Jgoy=linskyy_y

Viw= Z‘, (le <ok Ny J(Nyy * oo % Ny, )

/1=1
jq=1,...,kq
Now let the integers » and ki, ---, k, satisfy the condition n=

q
r [ k; for some integer r. Then we can put
i=1
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N11=E11®1k2®...®1kq®1,, g=1, -, ky,
(15) Noy=1,@Fy®: - @L,QL,  i=1 -k,

NGJ=1E1®1172®."®E(1]®11! .7’:1’ ""qu

where E,; is k,-dimensional column vector with one on the j-th place
and zeros besides.
Any allocation C(n, q; ki, -+, ky|Nyy, 2=1,---,q; j=1,---, k;) satis-
fying the condition (15) for some integer r is said to be balanced.
Refering to the example considered before, we note that the
balanced allocation of 24 units in 2,3 and 2 subclasses, respectively, is
defined by

Ny=(1,1,1,1,1,1,1,1,1,1,1,1,09,0,0,0,0,0,0,0,0, 0,0, 0)
N.=(0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1, 1)
Ny=(,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0)
Ng=(0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1, 0,0, 0, 0)
Ny=(0, 9, 0,09,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1, 1)
Ny=(,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1, 0, 0y
Np=(,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1, 1)".

We shall write C(n,q; ki, « -+, k|Ny, t=1, -+, q; j=1, -+, k)=
Cim,q; 1y, -+, | My, 1=1, ---,q; j=1, ---, k) if the linear model cor-
responding to the first allocation is at least as good as the linear
model corresponding to the second allocation.

An allocation C(n, q; ki, - -+, k| Ny, =1, -+, q; j=1, - -+, k;) is said
to be optimal in the class C(n, q; ki, ---, k,) if

Cn, q; ky + -+ k] Ny, 3=1, +++,q; 5=1, -+, k)
gC(m, q; llv ""lq‘Mtj’ ’&:1, 0 q, .7:1’ "',li)
for all C(m,q; L, ---, 1| M, 2=1, ---,q; j=1, ---,1;) being members
Of C(’ﬂ, q; kb ] ki)'

THEOREM 4. Let n and ki, - - -, k, be positive integers such that n=
rf[ki JSor some integer r. Then the balanced allocation C(n,q; ki, ---,
kN, 1=1, ---,q; j=1, ---, k;), where N;; is defined by (15), is optimal
wn the class C(n, q; ki, -+, k,).

PrOOF. As in Theorem 3, we only need to show that the matrices
I,—GG' and
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L
(16) SYMM,—GVE, =1, -4,
i=t
1" J =1Z.}. 1 (Milfl * Mﬂz) (Miljl * M’ﬂz),_G‘/‘xizG' !
j;=11.--Iz:;
(18) e (Mg M) Mgy M) =GV G
jq=1,...,zq

are n.n.d.

It was already shown that I,—GG' is n.n.d. To do the same for
the other matrices we shall simplify them by simultaneous permuta-
tions of their rows and columns. We use the fact that any such per-
mutation preserves the property of “being n.n.d.”.

First, by setting the experimental units in order according to the
subclasses of the i-th classification, i=1, --., q, we reduce the matrix
(16) to the form

(16) ding (Ln,L4,, -, n, 10,)— 2 Lul
i
where m,, j=1, ---,1, is the number of ones in the column M,,.

Similarly, by setting the experimental units in order according to
the subclasses of the classifications ¢, and 4,, the matrix (17) may be
reduced to
(17 diag (Ln Lo, =+ In, , 1o, )=t 1,10,

Mt Ml e T

where m,,, 5=1, ---, b ; j=1, --+,1,, is the number of ones in the

column M;, * Mizj2
Repeating this procedure we reduce, finally, the matrix (18) to

1
(18) diag (Lo Lo 50 I Loy n) = Ll
where m;,...;,, =1, --+, k;; i=1, -+, q, is the number of ones in the
column M, * --- *M alg

It follows from Lemma 2 and from the assumptions of the theorem
that the matrices (16’)-(18') are n.n.d. This implies the desired result.
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