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Summary

Sufficient conditions for the existence of certain optimum chemical
balance weighing designs are investigated.

1. Introduction

As relations between BIB designs and optimum weighing designs,
Saha [4] has proved constructively the following two theorems.

THEOREM 1. The existence of a BIB design with parameters v, b,
r, k, 2, satisfying b<4(r—2), implies the existence of an optimum chem-
ical balance weighing design for v objects in 4(r—2) weighings.

THEOREM 2. The existence of an affine resolvable BIB design with
parameters v, b=2r, r, k, 2, implies the existence of an optimum chem-
ical balance weighing design for r objects in v weighings.

This note investigates a BIB design with parameters v, b, r, k, 2,
satisfying b<4(r—2), and tabulates the parameters (in the practical
range) of BIB designs which validate Theorems 1 and 2. Furthermore,
some related results are similarly given with illustrations.

2. Discussions
Concerning a condition given in Theorem 1, we at first have

PROPOSITION 1. An affine resolvable BIB design with parameters
v, b, r, k, 2 satisfies b<4(r—2) if and only if it has one of the forms:
v=9, b=12, r=4, k=3, 1=1; v=4(t+1), b=2(4t+38), r=4t+3, k=2(t
+1), 2=2t+1 for a non-negative integer ¢.

Proor. It is well known (Bose [1]) that the parameters of an af-
fine resolvable BIB design are expressed in terms of only two integral
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parameters n (22) and ¢(=0) as v=n[(n—1)t+1], b=n(nt+n+1), r=
nt+n+1, k=n[(n—1)t+1], A=nt+1. In this case, it follows that b<
4(r—2) is equivalent to n[(n—2)%+n—38]<0 which holds if and only if
(i) »=38 and t=0, or (i) n=2 and any ¢=0. These cases yield the
required result.

Remark 1. Proposition 1 shows that the existence of an affine re-
solvable BIB design with parameters v, b=2r, r, k, A, which is used
in Theorem 2, also implies the existence of an optimum chemical balance
weighing design for v objects in 4(r—2) weighings. In fact, any BIB
design with b=2r yields an optimum chemical balance weighing design
for v objects in 4(r—2) weighings, as will be seen in Proposition 2 and
Remark 2.

Since the complement of a BIB design with parameters v, b, », k,
A is also a BIB design, and further a design and its complement either
satisfies or does not satisfy b<4(r—2), we can assume, without loss of
generality, v=>2k.

PROPOSITION 2. In a BIB design with parameters v (=2k), b, r, k
and %, a relation b<4(r—2) holds if and only if (v—y7%)/2<k=<v/2. In
particular, b=4(r—2) is equivalent to k=(v—4/7)/2.

PROOF. b=4(r—2) yields, from 2=7r(k—1)/(v—1), b<4r(v—k)/(v—1),
i.e., bk<d4rk(v—Fk)/(v—1), which also yields v<4k(v—Fk)/(v—1) being
equivalent to (v—4/%)2<k<(v+47)/2. Now, from k=<v/2, the proof
is completed. (Converse is obvious.)

Remark 2. Theorem 1 can be rewritten as: The existence of a
BIB design with parameters v, b, », k, 2 having k in the range (v—
VV)2=k=(v++/7)/2 implies the existence of an optimum chemical
balance weighing design for v objects in 4(r—2) weighings. For ex-
ample, a BIB design satisfying (v—4/)/2<k<v/2 is characterized by
v=2k+1 and k=[(l—1)/2 for some non-negative integer . This includes
necessarily cases in which v=2k, v=2k+1 and v=2k+2. Incidentally,
Proposition 2 shows that in Theorem 1 if the number, v, of objects to
be estimated is a priori given, then there exist at most finite number
of BIB designs, up to some duplications of the designs, in which one
can utilize the BIB designs for construction of optimum chemical balance
weighing designs.

Remark 3. Shrikhande [5] characterized the parameters of BIB

designs satisfying b=4(r—2) as two series for positive integers ¢t and m
v=[2(m+1)}}, b=4t(m+1), r=t2m+1), k=(m+1)(2m+1), A=mt;
v=(2m+3)’, b=4t2m+3), r=4t(m+1), k=(m+1)(2m+3),
2=t(2m+1),



OPTIMUM CHEMICAL BALANCE WEIGHING DESIGNS 449

which in fact satisfy the condition of attaining the bound in Proposi-
tion 2.

As a generalization of Theorem 1 of Saha [4], we can easily pre-
sent the following by referring to his proof.

PrOPOSITION 3. The existence of a pairwise-balanced design with
parameters v, b, » and 2, satisfying b<4(r—21), implies the existence
of an optimum chemical balance weighing design for v objects in 4(r—2)
weighings.

Example. We can construct a pairwise-balanced design from a BIB
design by omitting some treatments. For example, a BIB design (of
No. 9 in the tabulation) with parameters v*=10, b*=15, r*=6, k*=4,
A*¥*=2 yields a pairwise-balanced design with parameters v=9, b=15,
r=6, 2=2, k;=4 or 3. This design yields an optimum chemical balance
weighing design for 9 objects in 16 weighings.

Note that if the pairwise-balanced design has a constant block size,
then Proposition 3 yields Theorem 1 of Saha [4].

Similarly, consider a block design of the linked block type with
parameters v, b, k, yu, where p is the number of treatments common
to any two blocks. Then the dual of this design is a pairwise-balanced
design with parameters v*=b, b*=wv, r*=k and A*=g, in which b*—
4(r*—a*)=v—4(k—py). Thus, from Proposition 3, we have

PROPOSITION 4. The existence of a block design of the linked block
type with parameters v, b, r and g, satisfying v<4(k—y), implies the
existence of an optimum chemical balance weighing design for b ob-
jects in 4(k—p) weighings.

As applications of Proposition 4, we have the following two results.

PrOPOSITION 5. The existence of an affine resolvable BIB design
with parameters v=4(t+1), b=2(4¢t+3), r=4t+3, k=2(t+1), 2=2t+1
for a positive integer ¢ implies the existence of an optimum chemical
balance weighing design for 4t+3 objects in 4(t+1) weighings.

PrROOF. In an affine resolvable BIB design with parameters v, b,
r, k, 2, take from each complete replication set a block containing a
given treatment, 4, (say). For this collection of r blocks delete ¢ from
each block. The resulting design is a linked block design with param-
eters v*=v—1, b*=r, r*=21, k*=k—1 and p=Fk'/v—1, in which x>0
if and only if k*>v. From Proposition 4, if v—1=<4(k—k*v), we have
an optimum chemical balance weighing design for » objects in 4k(v—Fk)/
v weighings. Furthermore, it is obvious that v—1<4(k—Fk*/v) is equiv-
alent to (v—4/)2<k=(v+4/7)/2, which, from Propositions 1 and 2,
and k*>w, yields the required result.
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Note (cf. Sprott [6]) that the affine resolvable BIB design in Prop-
osition 5 always exists provided 4t+3 is a prime or a prime power.

Remark 4. The series of weighing designs of Proposition 5 was
also obtained in Saha [4]. But the method of construction used there
is different from that indicated here. An advantage of the present
method is that this can be generalized to affine resolvable PBIB de-
signs also, as the following proposition shows.

‘PrROPOSITION 6. The existence of an affine resolvable PBIB design
with parameters v, b, r, k, 4;, n;, D% (2, J,1=1,2,--., m) satisfying

> m=4k(v—Fk)v
i2;>0

implies the existence of an optimum chemical balance weighing design
for r objects in 4k(v—k)/v weighings, where the summation extends
over 1(=1,2,---, or m) such that 1,>0.

PrOOF. We can proceed in a manner similar to Proposition 5. But,
here the number of treatments in the resulting linked block design is
'U*: E nt ’
i2;>0

where the summation extends over ¢ such that 2,>0 for 1=1,2,..-, m.

Example. From Clatworthy [2], we present three examples.
(i) An affine resolvable semi-regular group divisible PBIB design, SR
71, with parameters v=12, b=20, r=10, k=6, i,=4, 4,=5, m=2, n=
6, n;=5 and n,=6 yields an optimum chemical balance weighing design
for 10 objects in 12 weighings.
(ii) An affine resolvable Latin square type PBIB design, LS 98, with
parameters v=16, b=12, r=6, k=8, 1,=4, 1,=2, n,=6 and n,=9 yields
an optimum chemical balance weighing design for 6 objects in 16 weigh-
ings.
(ili) An affine resolvable Latin square type PBIB design, LS 100, with
parameters v=16, b=18, r=9, k=8, 1,=3, 2,=5, n,=6 and n,=9 yields
an optimum chemical balance weighing design for 9 objects in 16 weigh-
ings. Note that the structure of this design is different from that of
the example just after Proposition 3.

Remark. A generalization of Propositions 5 and 6 to affine a-re-
solvability is immediate. Most of existing affine resolvable PBIB de-
signs have relatively small values of 7, which, in Proposition 6, corre-
spond to the number of objects in a weighing design. But, since the
complement of an affine resolvable BIB design is in general an affine
a-resolvable BIB design, in this case we can present useful examples.
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Additional remark. Let H;, be Hadamard matrices for =1, 2,-.-,
1(=1) of order n. Then @=[H,: H,:---: H] gives an optimum weigh-
ing design for n objects in In weighings. Indeed, 68’ =InI, where I is
the identity matrix. If we take two Hadamard matrices, H, and H,,
of order n» with all +1’s in the first row, then H, given by

H, Hz:I

HZ{:II 1

is an optimum chemical balance weighing design for m»+1 objects in
2n weighings, where 1'=(1,1,---,1). If more weighings are wanted,
we can repeat the above matrix H the desired number of times. As
another idea, we also can use a balanced orthogonal design to construct
an optimum weighing design.

Finally, from a practical point of view such that one wants to use
Theorems 1 and 2, and Proposition 5 for constructions of optimum
chemical balance weighing designs, we shall tabulate the parameters
of existent BIB designs satisfying b<4(r—21) with a useful range of
v=<50 and r=<20 (r<30 for a symmetric BIB design), and of existent
affine resolvable BIB designs with b=2r such that v<100 and r<20.
The reference number with asterisk (*) is an affine resolvable BIB de-
sign. Solutions for these designs can be found from tables of Takeuchi
[7] and Kageyama [3]. Note that designs constructed by taking copies
of the original BIB design are not listed.

No. v k b 7 2 No. v k b 7 2
1¥ 4 2 6 3 1 20 16 6 24 9 3
2 5 2 10 4 1 21 16 6 40 15 5
3 6 2 15 5 1 22% 16 8 30 15 7
4 6 3 10 5 2 23 17 8 3 16 7
5 7 3 7 3 1 24 18 9 34 17 8
6% 8 4 14 7 3 25 19 9 19 9 4
7* 9 3 12 4 1 26* 20 10 38 19 9
8 9 4 18 8 3 27 21 9 3 15 6
9 10 4 15 6 2 28 21 10 42 20 9

10 10 5 18 9 4 29 23 11 23 11 5
11 11 4 55 20 6 30 27 13 27 13 6
12 11 5 11 5 2 31 31 15 31 15 7
13* 12 6 22 11 5 32 35 17 35 17 8
14 13 5 39 15 5 33 36 15 36 15 6
15 13 6 26 12 5 34 36 15 48 20 8
16 14 7 26 13 6 35 39 19 39 19 9
17 15 6 35 14 5 36 43 21 43 21 10
18 15 7 15 7 3 37 47 23 47 23 11
19 16 6 16 6 2
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