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Summary

Let X, -+, X, be random variables forming a realization from a
linear process X,:i 9.Z,_, where {Z,} is a sequence of independent
r=0

and identically distributed random variables with E|Z|'<co for some
>0, and g, — 0 as r — oo at some specified rate. Let X, have a prob-
ability density function f. It is then established that for every real

x, the standard kernel type estimator f,,(x) based on X, (1<t<n) is,
under some general regularity conditions, asymptotically normal and
converges a.s. to f(x) as nm— oo.

1. Introduction

Let X, -+, X, be a set of identically distributed random variables
(r.v.) with a common distribution function (d.f.) F' and let us assume
that F admits a probability density function (p.d.f.) f at some point
z. If f(x) is not known it can be estimated by using kernel type

density estimators f,. Several important properties of such estimators
have been derived in the past (for a bibliography see Rosenblatt [4]
and Wegman [6]). In most of these cases, however, the r.v.’s have
been assumed to be mutually independent. Recently, attempts have
been made to extend these results to other than independent r.v.’s.

Rosenblatt [3] has derived some interesting results about f,, for X,’s
forming a Markov sequence. Similar results exist (Ahmad [1]) for X,’s
forming a ¢-mixing process. Delecroix [2] has derived the central limit
theorem for f; when X,’s form a L,-mixing process.

The aim of the present paper is to extend these results for X,’s
when they form a linear process defined by
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(1.1) X,= ﬁo 9.%,_.

where {Z,} is an innovation process consisting of independent and iden-
tically distributed (i.i.d.) r.v.’s, and the convergence in (1.1) is in some
probability sense. Most of the important stochastic process models
such as the autoregressive (AR) schemes, and the mixed autoregressive
moving average (ARMA) schemes are linear processes. The primary
use of density estimation is possibly its application to discriminant
analysis. In fact, the density estimates may be used to derive some
sample based classification rules when the observations in the sample
form a linear process. In such cases it will be interesting to find out
if these estimates behave in a manner similar to those based on i.i.d.
observations.

In the present paper we concentrate on the one-dimensional p.d.f.

f and study the properties of f, defined in (2.1). We plan to deal
with estimators of p.d.f.’s of more than one-dimension in a subsequent
article.

2. Probability density estimate and its asymptotic property
We define the estimator f,,(x) of f(x) by

@1 f=fi@)=n" 3 gla—Xi; m,)

where {r,} is a sequence of real numbers such that r,— 0, but nr,—
oo as n— oo, ¢(y; r.)=7:'¢(y/r,) (—oo<y<oo) and ¢ is a nonnegative
Borel function which satisfies the following condition.

A. (i) For every real y, ¢(y)<M where M is used as a generic symbol

which denotes a finite positive constant independent of %, (ii) Sm o(y)dy
<oo, (iif) lim y¢(y)=0, and (iv) for every real a, S|¢(y+a)-—¢(y)|dy§
y—koo

Mial.
B. Further assume that if ¢, denotes the characteristic function (ch.f.)
of Z, then

|- luawldu<oo .

C. E(Z])<oo for some ¢>0, and if e=1 then E (Z,)=0.
D. kéklgklﬁ=0(v"') for some 6>0, where B=¢/2 if ¢<1 and p=1/2 if
e>1.

Define
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2.2) Tu= (1) (fo— 1)
where f,=f.(®)=E (¢(x—X;; r,)). We then have the following

THEOREM 2.1. Let conditions A, B, C and D hold with {r,} chosen
as above. Then as n— oo
(2.3) L(T,) — J(0, ¢*)
where o= f(x) Sw '(w)du.

In order to prove this theorem we need to establish a few lemmas.
We first set

(2.4) Y. =rl(p(x—X.; 1) —fo(®)) .
Note that Y, does, indeed, depend on 7, Y,=Y;,.
LEMMA 2.2. Let the conditions of Theorem 2.1 hold. Then
2.5) S E VY| Mr
for some 1€(0,1), where M is used here and subsequently as a generic
symbol which denotes a finite positive constant, independent of n.

PrROOF. Let X,*:ti 9.Z,_, and let the d.f. of X;*, be denoted by
r=0
G,. It is then easy to see that

(2.6) Gowsen | jwamldu<d  (=0,1),

for every real y. Let the conditional expectation of ¢(x—X,,,; 7,)
given X,,,—X*,=vy be denoted by J(y) and let

o0 1/(1+8)
C=max J@), d,=minJ@), ""2’7"(”)=<,§ |g,,|"/'r,,> ,

lvlsn,

where d=¢ if 0<e<2 and 3=2 if ¢=2. Then by (2.6) we have that
2.7 0=d.<c,=M, 0<¢,—d, min (M, My,) .
Now set
I=E (¢(x—Xi; 1) =)@ — Xiro3 Ta) »
(2.8) L=E (p(x—X,; 1) —fu)p(@— Xipos T) W,
L=I—-1,

where W,=1 if | X,,,— X*,|<7%, and W,=0, otherwise. Note that since
¢(x—y; r.)SMr;' for every real z, y, fi2E¢(x—X;; r)W,=f.—E¢(x—
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Xi; r)(1—=W,) 2 fo— Mr;'Q, where Q,=P(X,,,—X%,|>7,). Also d,(1—
Q)=EJ(X,,,—X*,)W,<c,. Therefore

(2'9) - (cn - dn)qn - Mdn'r;le é Il é (cn - dn)fn + dnfn v
Similarly we can show that
(2.10) |L|< Mr;'Q,

and hence from (2.7), (2.9), (2.10) and the facts that f,<M, and r,—
0 as m — o we have for sufficiently large n that

(2.11) |E Y, Yy |=7a IS M(7a9,+ Q) -

Now observe that E|X,,,—X* <M g‘,vlg,,r by Theorem 2 in von Bahr
and Esseen [5]. Therefore, Q,<M élgkr’n;". It follows immediately
that the right side of (2.11) is <Mri (é‘;[gkl")l/(m)§Mfri§|gk|‘ where

2=3/(1+3). Since 128, 31 31|g:'< S k|gf<oo by condition D. The
v=1 k=v

result (2.5) follows easily.

1

LEMMA 2.3. Let the conditions of Theorem 2.1 hold. Let {m,}, {t.}
and {k,} be sequences of positive integers such that (i) k,=[n/(m,+1,)]
and as n— oo, (ii) m,, t,, k, — oo, t,/m,— 0, (iii) m,/(nr,) — 0 for some
1(0<y<1/2) and (iv) m;'n'=#r %0 — 0. Write

Uj='n-1/2 Z Y't’

tedj

(2.12) Vi=n"3Y,, 1=j=k,

teBj

W=n""3Y,

teC

where A;={a;, +1, -, a;,—t,}, B;={e;—t,+1,---,0a,}, C={n—d,+1,
<o, ), ay=j5(m,+t,), and d,=n—k,(m,+t,). Then as n —

k'ﬂ
2.13) .£’< > U,) — 900, o,
and
k'ﬂ
2.14) 2 V,+ W0 in probability

o* being defined as in (2.3).

PROOF. Let ¢ denote the ch.f. of U, ---, U, and let ¢, be the
ch.f. of U,. Then
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Ky kp
215) |-, 0)~T] 0,(0)| S 2 160w+, W)~ W, -, 1)

Now set N,=exp<iu12‘,i1 U,>—go‘f‘“(u, -+, u), P,=exp(iul,), P}=P,—

E (P|31,), where Jl;=0{Z,; _; 11, -+ +, Zoy_,} (2=5<k,). Since E (P,|T1,)
is independent of N, and E N,=0, the jth summand on the right hand
side of (2.15) is equal to

(2.16)  |E N,P,|=|E N,P¥|<|(E|N,[)E | P}[) < M(E | PP,

Again we can write P=n(X,, ---, X,) (m=m,) where h(y, -+, Yn)=
exp (iu ig (x—yt)>, g(w)=n""2ri(p(w; r,)— fu(x)). This implies that
(217) E|P*P<SE|MRA+W,, ---, R,+ W,)—h(R,+ W, -+, R,+ W]

tpt+i-1

where R;= % 9.2, W;=X,—R; (1=j<m) and (W}, ..., W¥) is an

independent copy of (W,, ---, W,) and is also independent of R,, ---, R,,.
Note that (W,,---, W;) is independent R,,---, R,. Again since |exp (ia)
—1F<Mjal** for every real a,

218)  |hyy oY) =R, - g
<Mlupntrst 3 g(@—v)/r) — 4@ —ypir) P

for any real y,, ¥} (1=<t<m). Therefore, by (2.17), (2.18), condition A,
the fact that E| X [*<E*|X| for any r.v. X and that E|W,[*<M i A
k=t +j

we have the relation
(2.19) (E|PXH S M |ulfn=# r #? i EV W, — W[

j=1

SM|ul|ntrr; 2 3D 19:lf
J=1k=t,+j

=Mlubn™ro? 33 klgil’ -

n

Conditions D and (i), (ii), (iv) in Lemma 2.8 will, therefore, imply
that the right hand side of the inequality in (2.15)

(2.20) < M|ulpn=*tr; 2k, t70 — 0
as n— oo. Therefore, in order to derive the asymptotic distribution

"n
of 31U, we can assume that the U, (1=<j<k,) are i.i.d.r.v.’s. Let a
j=1

=27/(1—2y) where 7y is defined as in condition (iii) of Lemma 2.3. Now
note that E[Y,[*< Mry " E (o —Xi; r))**+(f)"*) < Mrs e,
Hence
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(2.21) E lljl |2+“§Mn—l‘ﬂ/2mi+ar;n/2 .

Again for sufficiently large =,
2.22) E U}:n“m,,(E Y423 (1—v/m,) E Y,Y1+,,>g on-m, 2

by Lemma 2.2 and the fact that
EY=r,E¢i(x—X;; r)—1.fi=0"—1.fi— o as n— o0,

(2.21) and (2.22) and condition (iii) in Lemma 2.3 will, therefore, imply
that

(2_23) ;2 E IUllHa/(E l']lz)1+a/2§ M(n,rn)—a/zm:l+“
=M(m,[/(nr,))t*—0 as n— oo .

Hence the Liapaunov condition for the central limit theorem holds and
(2.13) follows immediately. Now observe that since k,m,/n—1 as n —
oo, n Y kit,+d,)=1—km,/n—0 as n— . Consequently

kn o
224) E ( SV W>2§n"‘(k,,t,,+dn)(E Y:+23|E Y1Y1+,,|>
=1 =1
<Mn-'(kt,+d,)—0, as m— oo
and the result (2. 14) follows

Now since T,= Z U,+§_‘, V,+ W the result (2.3) is a direct conse-
quence of (2.13) and (2 24) Theorem 2.1 is thus established.

Let gb(u):S exp (1uy)p(y)dy and let ¢ be the ch.f. of X;. Then as-
sume that the following condition holds.

E. For some ¢>0, lim (1—g¢(u))/|ul*=k,, |k|,<o and ‘Sm exp (—iux)-
[ulp(u)du | <co.

THEOREM 2.4. Let the conditions of Theorem 2.1 and condition E
hold. If, additonally, {r,} is such that nri*' — 0 as m — co, then as n

—> 00,

(2.25) Lr ) fo— 1)) — 0, o) .
PrROOF. Note that as n— oo,
(fa=DIre=(2m) | exp (—iue) (@)~ Dirauf) ulrglwdu —
—(20)k, S o= g (w)du .
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This implies that (nr,)"(f,—f)— 0 as m— oo, and, therefore, (2.25)
will, now, follow immediately from (2.3).

It is necessary to establish that the sequences {m,}, {t,} and {r,}
can, indeed, be chosen such that the conditions on {r,} and (i)-(iv) in
Lemma 2.3 will hold. If we take t,=[n%], m,=[n'] and r,=n"° then
for given ¢, ¢ (which determines g) and ¢ we have the following con-
straints on a, b and ¢. (i) (2¢+1)'<e<], (ii) 0<a<b<r(l—c)<1
(note that 0<7<1/2), and fa+b+p(1—c)/2>1. It is easy to see that
a sufficient condition for these constraints to hold is that 6>1+4q".

3. Almost sure convergence

We shall now establish the following

THEOREM 3.1. Let the conditions of Theorem 2.1 hold. In addi-
tion, assume that (i) r,| and for some a (0<a<1/2) n°r,— oo, (ii) for
every p>1, k(1—r((k+1)?)/r(k?)) — a finite constant as k— oo, (iii) for

every a, b, 0<b<a<l, S]¢(t)-a¢(at)|dt§Mb'1(1—a) where M is inde-

pendent of a and b, (iv) S|u|’|¢o(u)ldu<oo (s=0,1,2). Then as n— oo

A

3.1) fo—f as.

as n— oo,

ProoF. Note that since f,— f as m— oo, it is sufficient if we
establish that f,,—- f.—0 a.s. as n—oo. We can write f,,—f,,=Sm./n

where Snmzﬁ (d(x—X;; rn)—fn). Let n,=[k?] where p is any number
t=1

€(1—a)™",a™), a being as given in (ii) above and k=1,2, ---. Then
since E Y2 <M and (2.5) holds we have that V(Syn /M) =E (2 Yoo )’ [mirs,
SM(nr, ) ' <Mk '~ by condition (i) above. Hence

3.2) Sy /m, — 0 a.s.

as k— oo. Let n be any integer. Then n,<n<n,,, for some k and

if we set C,= max |Ssn—Snnls Dy= max |S,,—S, .| then
PESP<Tg M SA<Tg41

3.3) |Sun/ 1| S| S n /Tl + Cif i+ Dif s -

K"k
It is easy to show that
Tk +1 n 2 T 4+1
ECi/misS SE( 3 Ya) [nirs 3] (n—n)mir, .
n=ng t:nk+1 n=ng

Again we can conclude from condition (ii) above that »,/r, —1 as k
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— oo, Therefore E C?/ni< M (nk+1—nk)2/n,ir,,k S<Mkr—t Since p<a™! we
have that

(3.4) Ci/n,— 0 a.s.

as n— oo, Similarly from (3.6) below we conclude that E Di/ni<
SVE (Syn—Su ) S M(teys— 1) (7, — 7, )i, < MJ.  Therefore

n=ny

(3.5) D,/n,— 0 a.s.

as k— oo. (3.1) now follows easily from the results (3.2)-(3.5).
LEMMA 3.2. Let the conditions of Theorem 3.1 hold. Then

(3.6) E (Spn—Snn 'S M1y, — T, YT, -

ProOF. The proof follows details similar to those in Lemma 2.2.
First note that S,,—S, . is the sum of n, terms. The expectation of
the sum of squares term in E (S, ,—S, )’ can easily be shown to be less

than or equal to =, E (¢(x—X,; r,)—g(x—X;; 7,))'<7:" S (P(t) — rxp(7:t))*-

fE—r)dt<Mr;'(1—y)mM(r, —1,,, )0/r, where 1Zy,=r,[r, =7, [
7,,—1 as k— oo by virtue of conditions (i)-(iv) above. If we now
replace ¢(x —X;; 7,), ¢(x—X,,,; 7,) and f, in the expression for I in (2.8)
by ¢(x—Xi; ) —d(@—Xi; 1), HE—Xip0; 7)) — (@ —Xiyo; 70,) and fo—f,
respectively then by routine analysis and following the same sequence
of arguments as led to (2.11) and eventually to (2.5) we can establish
that the expectation of the sum of the cross products in E (S, ,—S,,,,)’

is sM(r,, —1.,,)rsrs,. The result (3.6) will then follow immediately.
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