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Summary

We consider the weighted least squares (WLS) estimation of the
transition probabilities of binary processes on the basis of given sample
paths in connection with log linear and logistic model analyses. We
investigate, in particular, its effectiveness in the analyses supported by
a Bayesian method with a smoothness prior over the time domain.

1. Introduction

Practically, we frequently face the data based on a sample from
a binary process such as the pattern of giving birth to a child after
marriage and the data of the spasms of asthmatic patients. The first
can be formulated as a renewal process if the lengths of the intervals
between births are of interest, and the second as a Markov chain, since
patients are likely to have spasms if they have those on the previous
day. In the latter case, the transition probability would vary in con-
nection with seasonal fluctuations.

These data are formally expressed as the N X T matrix, Z={z";
n=1,---,N, t=1,-.-,T}. Here, each element of the matrix takes the
values 1 or 0, according as the event occurs or does not. Each row

corresponds to a sample path. For given random matrix Z={»; n=
1,---, N, t=1,.--,T} corresponding to Z, we estimate the transition
probability

'r,.(t, Z¢_1; 0)=P,(§£")=1 IEE’?]'——-—Z;_I) .

Here z,_,=(2y," -+, 2,-,) and ™ =(z",---,2™). 6 denotes an unknown
parameter vector. Throughout this paper, 2{° (n=1,---, N) are assum-
ed to be mutually independent.

If the processes are Markovian and identically distributed to each
others (i.e. 7.(t, z._,)=7(t, 2,_;)—independent of » and 2,_q—for n=1,--.,
N, t=2,--.,T), Anderson and Goodman [2] discusses the maximum
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likelihood (ML) estimation of the transition probability. In the case
where only the aggregate data n,(t) is at hand, Miller [10] and Madansky
[9] get by the equality

(1) pi(t)sz: a,t; O)p,(t—1)

the regression model
M
(2) Ini(t)sz:l q;{t; O (t—1)+e;(t) ,

and estimate g¢,’s by the weighted least squares (WLS) method, since
each sample path in this case cannot directly be observed. Here, n,(t)
denotes the size of the sample on the state ¢ at time ¢, and q,(t) is
the transition probability from j to ¢. However, it should be noticed
that the equality (1) holds only when the process is Markovian. For
many other binary processes, p,(t) cannot be expressed by the transi-
tion probabilities ¢,(t; #) in the way stated in (1). Therefore the ap-
plicability of the method expressed in the model (2) is limited to the
analysis of data for a Markov chain.

In this paper, we consider the WLS method for estimating the
parameter @ in the log linear and logistic models of the transition prob-
abilities of various binary processes, when each sample path is observed.
Under the situation where a sequence of sample paths can be used as
a data, we estimate the parameter # using the log linear regression
model for a general process,

(3) log 7(t, z.-)=log r(t, z,_;; O)+e(t, z,_1)
for z,_/’s, t=1,---,T.

Here, #(t, z,_,) is defined as m(z,_;, 1)/m(z,_,) and m(z,)=m(z,,- - -, 2,) de-
notes the number of the sample paths in the vector expressions of
which the first ¢ elements are identical with the vector z,. In Section
2, we consider the asymptotic distribution of #(¢, z,_;) in the aforemen-
tioned model and also in the logistic model in order to make the appli-
cability of these models clear. Further we obtain the asymptotic dis-

tribution of the estimator 6 of 6. In Section 3, we treat the log linear
and logistic models for multiple Markov chains. (We deal with renewal
processes in [7]). In 8.1 and 3.2, we consider the asymptotic distribu-
tions of the estimators for the parameters in multiple Markov chains.
In 8.3, we consider the non-parametric estimation of the transition prob-
ability r(t, z,) of a non-homogeneous multiple Markov chain under the
constraint that this transition probability changes slowly. We show
that this approach is equivalent to the Byes method with a smoothness
prior over the time domain. In this case the WLS method is also avail-
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able to calculate the marginal likelihood of hyper-parameters. (Cf.
Shiller [11], Akaike [1] and Ishiguro and Akaike [6]). We have that
the covariance matrices of the error terms of the regression models
are of the almost common form in all these binary processes. Finally,
in 3.4, a numerical example is given.

2. The asymptotic distribution of #(t, z,_,) and the log linear models

We first show that the asymptotic distribution of (log #(¢, z._1); ¢,
z,_;) as stated in Section 1 is a normal distribution and its covariance
matrix is diagonal. This result makes it possible to use the WLS method
for the estimation of the parameter §. Put p(z,)=m(z,)/N, and let p
denote, for short, the (27+'—2)-dimensional vector (p(z,): for all z,; t=
L.+, T)'=(®0), p(1), (00), p(01), (10), p(11),-- -, p(11---1))’. The 27*
—1 dimensional vector p is defined by (p(z,): for all z,; t=1,.--,T) in
the same way where p(z,) is P(2,=z,). Further we write the vector
(log 7(t, z,_,): for all z,_,, t=1,.--, TY (=(log r(1), log 7(2, (0)), log (2, (1)),
«oe,log (T, (11---1)))) as log (r), and log (&, r) is defined as log (i¥)—
log ().

First, we consider a natural extension of the asymptotic property
of the multinomial variate for Np. For vectors z{* and 2{* (t<s) we
write 2{1<z!", if the first ¢ elements of z{*¥ are the same as the ele-
ments of 2. Also let

1 if 2Lz

i(zH=z)=
0 otherwise .

Theh we have:

LEMMA.
(4) YN (b—p)»N(0,3) (N—>o),
where each (21, zi%)-component (t<s) of the matrix X is expressed as
(5) N Cov (p(z17), p(257))=8(2i" < 2")p(zi") — p(zi)p(25Y) -

PrROOF. Since

1 N
7 Oz, 2,
N n=1 200 %

(6) D(z)=

where

1 if 2=z
00 L=
V4 Z .
e 0  otherwise
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and

E [p(z)]=p(z) ,

the convergence follows directly from the central limit theorem. So
it is sufficient for the proof to find the covariance 3. For given z{"
and 2z (t<s), we have that

E [03, 5003,z = 3(z1" = 2)p(z1") ,
and so
Cov (93550 33,50 = (" S 27)p(a1") — Dl (") -
This implies the equation (2) stated in the lemma.

Then we get;

THEOREM 2.1.
(7) VN log (f, 1) N(0, %) (N—oo),
where the matrixz 3, 18 diagonal and its (t, z,_,)th diagonal element is
(8) d't, z-)=(D(z:c1, 1)) = (P(2e-1) ' = (D(2:-0)) (7t 2e-1)) " 1)

Remark. The result stated in (4) and (5) can be easily extended
to a general finite space, but is not mentioned here.

PROOF OF THEOREM 2.1. We have by Taylor’s formula that
log p(z.)=log p(z.)+f(2)+e(2) ,
where
f(z)=(0(2))"(D(z)—p(2)) and ¥V Ne(z)—0, (N—oo).
Hence
(9) log #(t, z,_;)=log 7(t, 2,_) + f(2.-1, 1)— f(2:-1)
+e(zioy 1)—e(z.y) -

Let g(z,) be defined as ' N {f(z,, 1)—f(z)}. By the lemma, we have
only to check the covariance structure of g(z,)’s.
We can assume t<s without the loss of generality. Since

Cov {g(z"), 9(2i")} = N{E ((f (=", 1)f (8", 1))—E (f(z}", DS (2F"))
—E (f(zi)f(z", D))+ E(F(z")f(z)}

we write the right-hand side of the abovemensioned equality as I,—1
—L+1,.
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Noticing that we have by the lemma
Cov {f(2}"), f(zi")} :—11\7 {o(z=2") (p(z{) ' —1}

E{f(z)}=0,
we calculate the terms I, I,, I; and I, in the following way;

Case 1 (when t<s).
(1a) We first show the case where z{U<2z:
(la;) When (2§, 1)<21,

L=h=(E" 1)'~1,  L=L=(pz7)"~1.
(la;) When (209, 1)%2{" (i.e. 2[,=0),
I=h=-1, L=L=(pz")"~1.
(1b) In the case where 2% 2{¥:
L=L=L=I=-1.

Case 2 (when t=s).
(2a) When z{1=2z2{1=z2,,

IL=(p(z,, 1)) -1, L=L=I,=(p(z))"-1,
(2b) When 2723,
L=L=L=I=-1.

These equalities give the covariance of g(z,).
Thus the proof of this theorem is complete.

In order to estimate the parameter 8, we can use the WLS method
for the model;

log 7(t, zt_l);log rt, z,_,; 0)+e(t, z,_,) ,

as the asymptotic normality of e and the diagonality of its covariance
matrix are provided in Theorem 2.1. We shall give an example of the
above method for the birth process after marriage. Let h(t;a, b, c) be
defined as

(10) h(t; a, b, c)=at® exp (—ct) .

The peaks of these curves are atained at t=b/c. Let e}, be the ¢-

dimensional vector whose 1,,- - -, 7,-components are 1 and the others are
i iy i

0 as e %=(0---010.-.010...010..0). When k=0, ,,=0 and 4,=0.
The length of intervals between births is important for the birth pro-
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cess, so we cqnsider the models of the types;
(i) @, e}cl,’t:;’lk)=h(t_7:k; Ay, by, Cx)
(1§i1< MR <ik<t§ T; k=09 17 tt M)9
(ii) 7, e;cl,’z.—';'ik):h(t—ik; Ak, iy bk,ikr Cr,i)-
For example, we set M=2 if we want to know about 1st, 2nd and 3rd
birth.
Taking Theorem 2.1 into account, we have the following WLS esti-
mation method; For the first model (i),
(11) 6,=A"%,
where
0.=(a, be, ), a,=loga, ,

A= 3 (¢, el y)) At —i)d(Et—1i.)

ippeeey i

X= 31 (3%, e =) '(log (¢, ety )t —1y) ,

dgyeee, it

dit)=@1, logt, —ty,

5'2(t; Z,1)= (f)(zt—lr 1))-1 - (i’(zt—l))—l

and the summation is taken for all the quantities 4,,---,%, and ¢t for
7:1< R <’£k<t§ T.

3. In the case of multiple Markov chains

When T becomes large, P(2,.,=z,_,) decreases and it is seen from
(8) that the estimators expressed in the preceding section become un-
stable. Therefore, when the character of a process—for example,
Markovian property or renewal property—is specified from another in-
formation, the WLS method stated in the same section should be ac-
comodated to the formulation of this specification. This corresponds to
the grouping in the contingency table analysis. As an example, we
get into details for a Markov chain in the following subsections.

Here we write

12) rot, z,)=PE=1|3"=z,_) .

If the process is k-multiple Markovian, then the »,(t, z,_;) can be ex-
pressed as

(13) ’rn(tr zt—l)z,rn(ty z?—l) ’
where

zf—lz(zt—kr ] zt—l)’ .
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3.1. The time-homogeneous case
If the process is time-homogeneous, the model is formulated as

(14) rat, 25 0)=1,(2:; 0) for all », t, and z,’s,

in the k-multiple Markovian case, where @ is an unknown parameter.
Here and hereafter, in the description of ».(t, z,) we abbreviate the
letter @ for simplicity. Writing the %k dimensional vector (2{%,---, 2™

as z¢® let

T
1 k,(n)

my(n; zk)=m 2 0EER, z)
1
my(n; 2z, 1)=m tgll (28, zp)z,
and
Fu(Ze)=my(n; 24, 1)/ma(n; 24)
where

1 if Z’{_1=zk ’
¥zt 2z4)= .
0 otherwise .

Then we get the 2*X N dimensional vector (log #.(z;)/r.(2:); n=1,---, N,
z,/s)'=(8l,---, s%) where s,=(log #,(00---0)/r,(00---0), log #,0--01)/r,(0
--01),..., log #,(11---1)/r,(11---1)). From now on, some ordering is
assumed in the same way in the similar expressions. Then, we have
that,

THEOREM 3.1. The statistic #.(z.) s a consistent estimator of r.(z;)
and

(15) ﬁ(IOg ';.n(zk)//rn(zk); ’l’b=1, ] Ny Zk’S)'—d>N(0, 22) (T—> 00)

where 3, is the diagonal matrixc whose diagonal elements ci(z,) are ex-
pressed as

1 1
16 2(2)= - 1).
(19 T s 7o D) Bz
PrOOF. Since (#,(2:); z)’ (n=1,---, N) are mutually independent,

we consider 7,(z,) for a fixed n. By the Taylor’s theorem,
my(n; 2, 1) — Emy(n; 2, 1)
Emy(n; 2, 1)

_my(n; z)—Emy(n; z,)
Em(n; z,) teulz) -

log #.(z,) =log 7.(2:)+
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Writing the second and third terms of the right-hand side as f.(z:)
and fi(z,), we see that e,(z,)=(1/2)(fi(z.)—fa(2))h (0<h<1), so VN
e.(2:)—0 (N—o0). The consistency and the asymptotic normality of
#.(2;) follow directly from the law of large numbers and the central
limit theorem for Markov processes (Doob [4], Chapter V, Theorem 6.2,
7.5—Considering the process & =2z{"=(Z",-- -, Z™.,,), which is Markov-
ian, we can apply these theorems to our case). Therefore let us ex-
press the covariances. In the above equation, fi.(z.)—f:(2x) are com-
biend to

my(n; 2z, ) —r(z)m(n; z) . wn; z)
Emn; 2z, 1) Emn; z, 1)

From now on, we delete the symbol n for simplicity.
(i) In the case where z{1x2{?;

1 vora T
E w(zi)w(z?)= <—T—k> E L §+ y ;H 1 3, 21
X 3(ZE_, 2) (Z,—r(#D) 3, ——'r(zm))}

(Tl k> { >3 E{a(Zt, 2020, 21
X (Z,—r(z")) Z,—r(z}))]

+3 S E[8(Z, 287)d(Zi-., 217
X (3= () @, ~ ()]} -

The first term of the last side is 0 because 8(z%_,, z{)a8(zk,, 2% =0.
Concerning to the second term, for t<s,

E[o(zl-,, 28)3(25_, 287) (2, —r(287) (2, — 7(27)) | Z,-4]
=8(zF ., 2082k, 28 (E,— (M) E [Z,— (28| 2,-1]
=38(2¢_,, 2N (7, —1(21))a(Z5_,, 2I7) (r(Z2) —7(217) ,
which is equal to 0 from the last two factors. The situation is similar

for t>s. Therefore, we have that E w(z{®)w(z{*")=0.
(ii) In the case where z{"=2{"=z,; Similarly we have that

1
T-k

= —m {E mu(2i, 1) —2r(z:) B my(z,, 1)+7%(2:) Em(2,)}

E wi(z,)= ( ) z E[0(z50, 2) G —7(z))]

_ 1 _
_ﬂ{E my(z,, 1)—r(z) Emy(z, 1)} .
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These results shown in (i) and (ii) conclude the proof.

As in the preceding section, we consider the following expression;
an VT log #(2,) =T log r.(z; 6)+e.(2:)
n=1,-.., N, for all z,,

where the variance-covariance matrix of e is 3, in Theorem 3.1. From
the normality of e and the diagonality of 3,;,, we can consider the WLS
method for the model (17). In this case, J; is replaced by its estima-

tor 5‘2 where my(n; z,) and m,(n; 2z, 1) are substituted for Em,(n; z,)
and Em,(n; z,, 1), respectively.

For the logistic type model, we provide the following proposition.
Let ri(z:)=log 7.(2:)/(1 —7.(2:)) and #(z,)=log #.(2:)/(1 —7.(2))-

ProPoOSITION 38.1. The statistic #,(z;) is a cosistent estimator of
rl(z,) and

(18) VT (#(z)—riz); my 2) p N@©, 3)) (T o).
Here 3, is the diagonal matrix whose diagonal elements are

(19) o (z)=(Emy(n; z,, 1)) +(E my(n; 2, 0))~'+o(1) .

3.2. The identically distributed case

In the identically distributed case, the model is formulated as

(20) rt, z¢; )=, z,; 0) for all n, t and z,’s

for the k-multiple Markovian chain.
Here we consider the following statistics:

(&, z)=myt; zi, 1)/my(t; 2) ,

where
1 X
my(t; 2, 1) =_]\7 % (28, z,)2”
1 y 'k, (n)
my(t; zk)zw "gl 0z, z) .

Then we have:

THEOREM 3.2. The statistic #(t, z;) is a consistent estimator of r(t,
z,) and

21) VN (log #(¢, z:)/r(t, z:); t, )’ N(0, 3) (N—> o).
Here 3, is the diagonal matrix whose diagonal elements are
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(22) o'(t, z)=(P(Zl=2, 2,=1))"'—(P(Zl.=2))" .
PrOOF. We have
log #(t, z.)=log r(t, z;)+w(t, z,)/|P(Zt_,=2,, Z,=1)+&(t, z;)
where

w(t, ) =ma(t; 2, 1) =1, z)ma(t; z:) ,
and
VN &(t, z)—0 (N—>c0).

From the analogous discussion to Theorem 3.1, the result follows.

The result stated in Theorem 3.2 leads to the regression analysis
as follows;

VN log #(t, z,)=+N log r(t, z.; 0)+e(t, z) ,

where the covariance matrix of e is J,.
For the logistic type model, let #/(¢, z;)=log #(t, z.)/(1—#(t, z.)).
Then,

ProproSITION 3.2. The statistic #/(¢, z,) is a consistent estimator of
r'(t, z,), and

(23) VN (#(t, z)—7(t, z,); ¢, z.)'— N(0, 3) (N— o).
Here 23 is diagonal, and the diagonal elements are
(24) *(t, z)=(P(Zt.,=2, 2,=1)) "+ (P(Zf., =2, 2,=0))".

3.3. An application of the WLS method to a Bayes estimation with a
smoothmness prior over the time domain

In the case where we can suppose that the (¢, z;) stated in Sub-

section 3.2 changes slowly as we, for example, have to take a seasonal

influence to the process into account, the following cost function would
be reasonable to be considered (Shiller [11], Ishiguro and Akaike [6]);

T
(25) L(z)= 31 NiJo'(t, z)(log #(t; z)—log r(t; 2,)’
T
+a? ; (log 7(t; z,)—log r(t—1; z,))* .
t=k+2
Here, log r(t; z,) t=k+1,. .-, T are unknown parameters to be estimated,
and the second term stands for the constraint that the transition prob-

ability changes slowly. The logistic type model is similarly constructed.
The problem of minimizing L(z,) is equivalent to that of minimizing
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the following formulation ;

) log #(t; zx)=log r(t; z:)+e(t; z) ,
2

log 7(t; z,)=log r(t—1; z;)+elt; ) t=(Fk+1,---,7),
or the one is the vector form,

log {z)=log r(z,)+e(z)  O=Dlog r(z,)+e(z) ,
where log r(z.)=(log r(t, 2), t=k+1,---,T) and D is the (T—k—1)X

(T—Fk) matrix
[1 —-10 }
01 -1]

Also, e(z,) and eyz,) are the mutually independent and normally distri-
buted variables whose covariance matrices are 37(z;) and a’l, respec-
tively. Here, 3¥(z,) corresponds to 3, and the diagonal elements are

o'(t, 2)=1/N(P(Z\-\ =2z, Z=1)"'—P(Zl.,=2)7) .

For simplicity, we write 3¥(z,) by the same form as 5,. We here
notice that the probability distribution of ey(z,) stands for a smooth-
ness prior over the time domain and a stands for a hyper-parameter
(see Akaike [1] and Ishiguro and Akaike [6]).

Once a is determined, the Bayes estimators are obtained by the
WLS method for

T —— A A
(log r(z0) =37 +a*D'Dy 55 log #z) -
Here, we note that the diagonal elements of ZA“ are
&Z(ty zk):I/Nt(mL(t’ Zkv 1)_1—m4(t—'1r zk)-l) ’

and the value of a is selected as the one maximizing the marginal
likelihood

27 L'(log i|a)= S f(log #|log r)g(log r|a)d(log r)

(see also Akaike [1] and Ishiguro and Akaike [6]), where f and g are
the density functions of -e(z;), ex2x), respectively. As f and g are nor-
mally distributed, the calculation of the right-hand side of the expres-
sion (27) is feasible. In fact, we have

(28) log L'(log H(z:)|a)
= const. — L ({log r(z))—log iz} 7" {{log r{z:) —log #(z)
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+(T—k—1)log a— % log det 2‘4—% log det (37! +aD'D) .

3.4. A mumerical example

Here, we give a numerical example for Section 3.2.
Let N=50, T=200, k=1,

TIME
Fig. 1 #(t, 0)=log #(t, 0)/(1—#(t, 0)).

3
1
%
%
X %
X
X
X
%
%

- X .
W XX )‘x, % xxkx
- B X x x X X ol
2 x X X% X X XXx X x
- X X x XX
"I\x X
Xy X
X

N

TINME
Fig. 2 #(t, 1)=log 7(t, 1)/(1—#(t, 1)).
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TIME
Fig. 3 7(t,i;0), r(t,i;6) and #(t, ) (i=0,1).
2t i;0)
TT7: 7t i;8) i=0,1
+: #(t,0)
x: #(t1)

r(t, 0; 8)=1/(1+exp { —(0n+ by sin £/30)}) ,
r(t, 1; 8)=1/(1+exp {— (0 + 8y sin £/30)}) ,
where
0p=—0.5, 6u=1.0, 0,=0.5, 0,,=0.7.

Figs. 1 and 2 shows #/(t, 0)=log #(t, 0)/(1—7(t, 0)) and #'(¢, 1).
Using Proposition 3.2, we estimate 8 by

o= —0.475,  6,=0.943, 6,=0.513,  46,,=0.723.

Fig. 3 shows (i, 2,_,), #(t, 2,,) and their estimates (¢, z._,; é). We see
there that the structure of these transition probabilities is well esti-
mated.
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