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Summary

Let (X, Y), -+, (Xy, Yy) be a random sample from a bivariate
distribution function F. Based on observing only (3;, Z;) where ;=1
if X,<Y, and =0 otherwise and Z,=min{X,, Y;} for =1, ---,n, we
obtain the Bayes estimator of F' when F is a Dirichlet process under
the usual integrated squared error loss function. It should be pointed
out here that X, and Y; need not be independent which is the usual
assumption in survival analysis models. The effect of this dependence
can be seen clearly in the estimators obtained and also in the given
example which illustrates the estimator when Freunds’ bivariate ex-
ponential distribution is taken as the parameter of the Dirichlet process.

1. Introduction

The problem of estimating a distribution function F (or the sur-

vival function F,=1—F,) has been considered by several authors (for
example, see the references in Miller [9]) when a random sample Xj,
..+, Xy from F, has been randomly right censored by the random
sample Y, - -+, Y, respectively. Most of the papers dealt with estima-
tion of F, under the assumption that (X, ---, X,) and (Y;, --+,Y,) are
independent of each other. Since this kind of censoring models occur
mainly in situations involving life time data, we assume from now on
that F,(0)=P(X;>0)=1 and that P(Y,>0)=1 where, here and else-
where, i runs from 1 through N. There has been a lot of develop-
ment in the estimation of F, and its functionals like mean when one

gets to observe only the minimum of X, and Y; and whether X<,
or X;>Y,. Solet
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(1.1) (7¢:1 if Xié Yi and :O if Xi> Yi’ and Z;,:Xi/\ Yi .

However in most of the papers the results have been derived under
the assumption

(A1) X, and Y, are independent of each other.

Some papers where this has been relaxed are Lagakos and Williams
[7], and Langeberg, Proschan and Quinzi [8]. In this paper, we also
do not assume (Al). The first paper does not assume a bivariate struc-
ture for their model but rather require assumptions about the marginal
distributions of the survival times, the conditional probability of ob-
serving failure given actual survival time, and the odds of observing
a failure given the observed portion of survival time. The second
paper recommends converting first the dependent model to an inde-
pendent component model, provided certain conditions are satisfied, and
then uses the usual estimation procedures. These approaches are shown
to be useful in certain applications. However, neither of these papers
discuss the Bayesian approach. We present here this alternative ap-
proach which is useful in certain circumstances where a bivariate struc-
ture may be appropriate but the functional form is unknown.

Here, we take into consideration the dependence of X; and Y,
through a bivariate model in a Bayesian context which is described in
the next section. In this Bayes set up, we obtain the Bayes estimator
of F(s,t)=P(X,>s, Y;>t) for s, te (0, ) and by specializing this to ¢
=0, the Bayes estimator of Fi(s)=P(X;>s) can be obtained. This is
done in Section 3 which also gives needed lemmas.

Section 2 provides some comments and important special cases such
as Ferguson’s [2] Bayes estimator of a distribution function. Section 4
deals with examples employing the Bayes estimator obtained in Section
2 along with its numerical application to the data reported in Kaplan
and Meier [6] and compares the resulting estimator with that reported
in Susarla and Van Ryzin [10]. Section 5 provides comments regard-
ing the large sample behaviour of the Bayes estimator in the i.i.d. set
up that is, when (X,,Y)), ---, (Xy, Yy) are i.i.d. with P(X,>s, Y, >t)=
Fys, t).

As an example where our Bayes estimator might be applicable,
consider a situation in which there are two causes of death labelled 1
and 2. With each cause of death », associate a random variable T,
representing the time to death if r were the only cause of death.
Then, in practice, one gets to observe only min (7}, T;) and whether
cause of death is 1 or 2. For our model, we need to assume that the
cause of death is either 1 or 2 but not both simultaneously. Also,
live withdrawal from the study could be considered as a cause of death.
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2. The Bayes estimator of F

In this section we describe the Bayesian approach, introduce some
notation and state the main result.

Let P be a Dirichlet process on Rj={(0, o)X (0, o0)} with param-
eter o, where o is a nonnegative finite measure on (RS, B;) and B;
is the Borel field defined on R;. Let (X, Y)~P, and F be the bivari-
ate distribution function corresponding to P. Further let (X,, Y), ---,
(Xy, Yy) be a radom sample from F, i.e. given F, (X, Y;) are inde-
pendently and identically distributed according to F. Based on the
observable random variables (3, Z)={(9;, Z,)}{_, defined in Section 1,

we would like to estimate F. Since the Bayes estimator of F' under
integrated squared error loss function, S  (F—F)dW, where W is a
Ry

weight function, is the posterior mean, we give here an explicit ex-
pression for E [F(s, t)|(8, Z)].

Suppose that among N observations, we have n distinct 2z,’s and
without loss of generality assume them to be ordered so that 0<z,<z,
<L+ L2, <o and let 4, ---, 8, correspond to these distinct z,’s. Fur-
ther, let 4, and g, be the number of censored and uncensored observa-
tions at 2z, i.e. ,=#{J|X;AY,;=2 and X;> Y}, p.=4#{J|X;AY,=%, and
X;=Y,}. Then the following theorem holds.

THEOREM 2.1. The Bayes estimator under squared error loss is
given by

Fi(s, )=E [(F(s, 1)|(3, 2)]

@.1) =m a((3, %0) X (t, 90))+N*(max (s, )+ 3] o,}
where the summation ranges over all r such that min (s, t)<z,<max (s, t),
2.2) N+ (u)=iazzi}>u(1,-+ 2:) =4 of observations>wu ,

2.0l Z,) if s>t
(2.3) 0,=1 pailZ,) if s<t

0 if s=t,
and

o(Z,)=lim 2UX>8 Z,—e<VY<Z})
T a({X>Y, Z,—e<Y=<Z)) '

o(Z,)=lim 2UY>t, Z —e<XSZ})
" o({XLY, Z,—e<X<2Z))

(2.4)
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whenever the limits exist.

Remarks.

1. It can be checked that the Bayes estimator F, is a proper distri-
bution function.

2. It is obvious that the formula (2.1) will hold for R, (instead of R;)
also.

3. The numerator in the Bayes formula (2.1) represents the a-measure
of the set (s, o)X (t, 0), plus the number of observations greater
than max (s, ¢t), plus a quantity which may be considered as a sum of
“ conditional ” probabilities each weighted by the number of ties at
the point of conditioning.

4. If we take s=t, then the ‘conditional’ density part vanishes and
the expression reduces to an analogue in 2-dimension of the Bayes
estimator obtained by Ferguson [2]. In this case we can express
the estimator as a convex combination of the prior guess and the
empirical distribution function in two dimensions. This gives the
Bayes estimator of the probability that the life time of the com-
ponent is at least s units of time.

5. If we set t=0 in the formula (2.1), we get the Bayes estimator of

the marginal F'(s, 0) (=Fi(s) in the notation of Section 1).

6. If a is taken to be such that a(A X B)=a,(A)eyB) where a, and a,
are two measures on (R;, B,), A, B¢ B, and the os-field in R, is the
o-field generated by the rectangles {AXB: A, B¢ B} then Fergu-
son’s Bayes estimator [2] can be obtained as a special case by tak-
ing all the mass under a, to be at co. This means that Y,’s are
degenerate at oo so that there is no censoring with probability one.

7. It should be noted that these results can be generalized to the
Bayes dependent competing risk models where there are three or
more competing (dependent) causes of failure and we observe only
the life time of the component and the cause of failure.

Example. We take a to be continuous with the following density
which is a special case of Freund’s bivariate exponetial distribution
(Johnson and Kotz [5], p. 265).

BB+t (0=sx<y)
(2.5) a(x, y)=

r(B+7)e 4 (0=y<2)
and 8, y>0. Then it is easy to see that, for t<z,<s,

e{(X>s, z,—e<Y=z})=cre ¥ and
(2.6)

a( {X> Y, z,—e< Yézr)z_]_e“(ﬁh)zr(e(ﬁ'l‘r)c _ 1)
B+r
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and hence by taking the limit of the ratio as ¢ — 0, we have
(2.7) a(z,) =€t

Similarly we get

(2.8) al(z,)=ePtreE=D s<z,<t.

Also, a straight forward calculation yields,

(2.9)  a((s, ) X (t, 0))=e Fmex®Df] 4 B(t—s)I[t >8]+ r(s—t)I[t <s]}

with I[A] the indicator function of the set A. Plugging these quanti-
ties in the formula (2.1) we get, for s>t,

(2.10) FA(s, t)=L{e“"+”'[1+r(s—t)]+N+(s)+ N xre(ﬁ+i)(zr—s)} .
N+1 t<z,<2

1% similar expression can be obtained for the case s<t. For s=t,
F(s, 0)=(N+1)"(a((s, ) X (8, 0))+N*(s)).

3. Proofs
To prove the main result, we need the following lemmas.

LEMMA 38.1. For any positive integer p, let xP=x(x+1)---(x+p—1),
the ascending factorial and x®=1. Then we have

(3.1) é < p >a(r)b(p—r)=(a+b)(p)
r=0\ 7

PrOOF. We prove this lemma by the principle of mathematical
induction. For p=1, the relationship is obviously true. So let us as-
sume that it is true for k, that is,

(3.2) é < k >a(r)b(k—1‘)___(a+ b)® .
r=0\ 7

Multiplying the 4th summand on the left hand side of (3.2) by (a+
b+k) and using the fact that x®(x+0)=2%*", it may be written as
(3.3) ( I“: >a(i)b(k—i)(a+b+k)= < k )[a(i)b(lc—i)(a_}_,’:)+a(i)b(k—i)(b+k_i)]

1

1

— < k )[a(i+l)b(k—i)+a(t)b(k)] .

Collecting the coefficients of like terms and noting that <k>+(% k1>
’L —
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=<kf1

) , we obtain
)

RN ancer k+1 k+1
3.4 ( > ()b(k ) b __.< > (OOR+1) “ e ( ) (k+1DF0)
(3.4) r§=ora (a+b+k)= 0 a®pE+D +k 1a, b
k

=z+}1 < k+1 >a(r)b(k+l—r) .
r=0 r

Since (a+b)¥(a+b+k)=(a+b)**" on the r.h.s., the lemma is proved.
LEMMA 3.2. With the notations of Lemma 3.1, we have

@5 () 3E—n(P)arbrr=phatb+1oD
and

ii 1 2 ([ P\ gope-m —

(ii) W ?;(') (v 1’)( ” >a b =pb/(a+D).

PRrROOF. Since b=b(b+1)*"Y, the Lh.s. of (i) is equal to

p-1 —1)!
(3-6) 2 71&( —1:11_);”—)! ab(b+ 1) =pb(a-+b-+1)7

by Lemma 3.1. (ii) is obvious.

LEMMA 3.3. Let (X, ---,X,) be jointly distributed as Dirichlet
distribution with parameters (qi, Qs -+, qn). Then for any monnmegative
integers B, 6,, - -+, 0,, we have

3.7) EK1—§;&YXp”.X#}
ma ngi n @
- r[3@+00+8) S aro)”

PrOOF. The proof is straight forward.

To prove Theorem 2.1, we need the following representation of

E[F(s, t)|(3, Z)]. Assume 0<t<s<oco and for any e>0, divide the 2-
axis as follows :

0<21—€<zl< LI <Z;—e<zl<t<zl+1—6<21+1< e
- L2415 <8< 21— LR < 0 1 <2, <0,

Define for i=1, ---, n,

Bi:{(x! y): wéy! zi_€<x§zi}7 Biz{j: (Xj, YJ)EBi}
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Ci={(x,9): x>y, z—e<y=z}, C.={j: (X, Y)eC}
and D={(z,y): x>s, y>t}.

The sets B; and C; represent vertical and horizontal strips above and
to the right of the line x=y, respectively. Then we have the follow-
ing lemma. In the following lemma (and elsewhere), (P(4))’ and (I,)
are taken to be unity for any event A. Let T[ (I[(X, Y,) € B])=1 if

jeB;
#=0, and T[ (I[X,, Y,) € C)=1 if 2,=0.
Jjecl;

LEMMA 3.4.

_ _ E{P) [T PuBIPHC))
(3.8) E[F(s, £)|(2, Z)]=lim i
elo E {;E[; P”(Bt)Pxi(Ci)}

PrROOF. By Fubini’s theorem and the definition of conditional
probability we have, if the limit below exists,

3.9) E{F(s 1)@, 2))
=[P (Fe, > ald, Z))da

B, 0 T UK, ¥) € BIMIIX, Y) € Gl
=lm —
W BT, Y0 € BIMINX, Y) € CP

i=1

’

where the second equality follows since the conditional probability is
bounded by 1 for all a, and by interchanging the limit and the inte-
gral. But the numerator of the limit in (3.9) is equal to (see Ferguson

[2], pp. 216).
(3.10)  E{E[F,t) [T UIX, Y) € BIMIIX, Y) € CI P(D),
P(B), ---, P(B,), P(C), ---, P(C))]
—E {P(D) 1T Pr(B)PH(C)] .

Hence (3.8) follows.

PrROOF OF THE THEOREM. In view of Lemma 3.4, the theorem will
be proved by evaluating the expectations on the r.h.s. of (3.8). To do
so, we will first express the sets B, C;, and D as unions of some dis-
joint sets. Let

AJ=B1’ =12, .-+, l+k,
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Al+k+j=Cj: j=19 2’ ""ly

A=, y): 520>y, 2,—e<Ys2;} )
j=l+1, ---, l+k
A==, 9): 2>y, >, 2,—e<Yy=z;},

(thus Ay UAin=Cy, 5=I+1, .-+, 1+k),
(8.11) Aieiy;=0Cy, Jj=l+k+1, - m
Aivrs=By, j=l+k+1, ---,m

2l+2k

A= {(=, 9): 0<ass, y>01U{(@,9): 2>0, 0<y=t}\ U 4,

2142k
=R;\<Du U A,)
=1
and finally,
2n+k
Amern=D\ U A,.
F=21+3k+1
m+k+1 m+k+1
The sets A,’s are disjoint and U A;=R} and D= U A,. Now by
J=2l+42k+j

expressing the sets B, and C; in terms of A, the numerator of (3.8)
becomes

l+k l l+k
3.12) E 11’ (D) [T P4y IT P “(Az+k+i)jy+lP WAvrrrs U Avisig)

x 1T [P*i(AHW)P”i(AMm)l}.

i=l+k+1
an+k+1

Denoting by X,=P(4,), ©=0,1,2,---,2n+k+1, we have > X,=1,

i=0
and expanding the binomial term (X ir;+Xii2e,)¥, (3.12) can be
written as

@13 B{(1-"3 X[ X X 3 [2 (%) Xiteo X2

1=0 i=1 J=1+1Lr;=0 Tj

X T (Xt
i=l+k+1

Since P is a Dirichlet process with parameter «, (X, X, -+, Xenprs1) IS

distributed according to the Dirichlet distribution with parameters

(@ @1y ***y Qonyrsy) Where a,=e(4), 1=0,1, ---, 2n+k+1. Using this,

pulling the sums and binomial coefficients outside the products, and

applying Lemma 3.3, (8.13) reduces to

A1 Ntk Ltk

N1
@14 3 ,L§=o,§+1< )Q(Zai+N)f

(75 + 0] =+ 3 Gem)

i=21+2k+1 r=1l+1 i=l+k+1

(ry) (A=15)
1T [ QL+ 50 okt 5
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where

l+ i 2 n P
@15) Q=5 S e [Tl 1T o,

m+k+

Sa="3 e=aB), I (uti)=3(+2)=N.

By applying Lemma 3.1 repeatedly to (3.14), we obtain

1+1 bk Wk /2 ap G I+k an
@316 > --- >3 70 ( j)“likﬂ l+2k+j (al+k+j+al+2k+j) 7,
T14+1=0 Ti4x=0 J=1+1 Tj J=1+1
and
Y141 Ytk Itk i+k 2 ap Q-1
(3-17) 2 2 2 (A=) < )al+k+jal+2k+j
T14+1=0 T =0 r=1+1 Jj=l+1

I+k  *r +k
(ry) )
=23 X (L"‘Tr)(r >al:rk+ral+2k’::r 1T (al+k+j+al+2k+j)uj) .
x7

r=l+1 7,=0
T r j 1+1

Substitute (3.16) and (3.17) in (3.14) to get the numerator of (3.8).
A similar evaluation shows that the denominator of (3.8) is equal to

L+k
(8.18) Q',I,E (@nr @i )

Substituting these two terms in (3.8) and cancelling the common terms,
the r.h.s. of (3.8) reduces to

(3.19) lim 1

1o m{“(p)‘i‘ é (A4 pe0)

i=l+k+1

(9] (Ap=14)
Z (., _T’r)<T )alirk+ral1-2k’¥r

Lk o

rei+1 (@strtpaes )
1 S
" oRH+N {“(D)+f=l§+l(z”+”’)

i+k A )
+ 2, lim a( 14+2k+7, }
r=1l+1 6]0 a(AH.]H.T U Al+2k+1‘)

m+k+1

where the equality follows by Lemma 3.2 (ii), and a(D)=i lEk a;.
=2l +2k+1

Thus for 0<t<s< oo,

(3.20) E[F(s, t)|(3, 2)]

a((5, ) X (¢, ©)+N*(s)+ 3 z,a,(z,)}

t<l <l

1
" a(R})+N

Similar expressions can be obtained for 0<s<t< oo, and combining the
two, we get (2.1) completing the proof the theorem.
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4. Numerical example

To illustrate the method we rework the example given in Kaplan
and Meier [6]. They take eight observations, four of which are cen-
sored. We assume here that the observations arise from a bivariate
distribution function F'(x,y), which represents the joint distribution
of lifetime (z-coordinate) and censored (y-coordinate) variables. Further,
we observe only &’s and z’s. Thus, their data is ¢,=8,=d8;=08,=1, 8=
3;=08,=0,=0, 2,=0.8, 2,=1.0, 2,=2.7, 2,=3.1, z;=5.4, 2="T7.0, 2,=9.2
and z;=12.1 (in months). Based on this data we calculate the Bayes
estimator of the survival function Fy(s)=F(s,0) and compare it with
the estimators reported earlier in the literature under the assumption
that the lifetime and censoring variables are independent.

We take the Dirichlet process parameter a to be the bivariate ex-
ponential distribution discussed in the example in Section 2. Then the

Bayes estimator of survival function F(s, 0) becomes,

(4.1) Fis, O)Zﬁ e (14 78)+ N (s)+ 3 Z,e‘ﬂ‘fr)(zr-v} .

To use this estimator, we need to know 8 and y. Here we observe that
E[8.I[Z,z1]]=8(8+7)"' exp (—(B+7)), and P(3,=1)=p(8+7)"". Hence
reasonable estimators of g and y are given by

o— _§ 2 0[Z,;=1]
g=—¢8ln (——ai >
(4.2)

$=—(1-3)In (&é[?_zli>

with 5:%251. For this data 3=1/2, 4=f=.14384. Plugging these

values in (4.1), we evaluate F'; at data points and it is given in Table 1

along with the Product-Limit estimator F,, (Kaplan and Meier [6]),
and theA Bayes estimator with Dirichlet prior assuming independence

model F, of Susarla and Van Ryzin [10]. Other estimators are given
in Ferguson and Phadia [3] but are not reproduced here. In Table 1,
where there is only one value of an estimate at a data point, the
estimated survival function is continuous. When there are two values,
the upper and lower numbers represent the left and right limits of the
function at that point.

It is clear that the present estimator is also continuous at the
censored observations and has jumps only at the uncensored observa-
tions. However, it should be noted that the size of jump at each
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Table 1. Numerical comparison of 3 estimators

t 08 1.0 27 31 54 70 9.2 121
1 0 0 1 1 0 1 0
Fer  1.000 875 .700 .525
875  .875  .875  .700  .525  .525  .263  .263
Fo .992 .85  .684 502
878 .86l 522 271
880 707 .53 292
Fa 987 781 .554 .327
873 .806 415 .158
876 670 .443 .216

real observation is the same 1/(N+1), which was not the case with
either the PL estimator or the Bayes estimator. In these cases the
amounts of jump was random and dependent upon the number of cen-
sored observations between two consecutive lifetime observations.
Furthermore, it is clear from the table that this dependent model
estimator of the survival function is below the other two estimators.
This is significant and reasonable in the context of competing risk
model where, if more than one related causes are competing for the
life of a component (patient) the probability of surviving after time s
would be smaller.

5. Concluding remarks

We make some comments concerning the large sample behaviour

of F.(-) in the classical setup, that is, under the assumption that (X;, Y7),
.+, (X,, Y,) are i.i.d. F;. In this case, the Bayes estimator given in
Section 2 need not be consistent because F, need not be identifiable
if only one gets to observe the identified minimum (For special cases
of F,, Basu and Ghosh [1], and Gilliland and Hannan [4] show that F,
is identifiable by observing only the identified minimum). However,
one can get the large sample behaviour of ﬁ',,(s, s), the Bayes estimator
of F(s,s)=P(Z,>s) under squared error loss. In this case, Fy(s, s) is
uniformly (in s) a.s. consistent and converges weakly to a Gaussian
process with mean function=_Fi(s, s) and covariance function Fi(s, s)X
(1—Fi(t, t)) for 0<t<s<oco. In a similar fashion, if one considers the
Bayes estimator Fy(s) of Fy(s)=P(3=1, Z,>s), 0<s<oo, statements
similar to those given above also hold for Fi(s). Note that both Fis, s)
and F(s) are important characteristics from the practical point of view.
For example, in the competing risk model, Fi(s,s) is the probability
of survival of more than s units of time when two causes of death or
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failure are present in the system. A similar interpretation can be
made for Fi(s). The results presented here can be generalized to more
than two causes of failure.

Acknowledgements

The authors would like to thank the referee for carefully reading
the manuscript and suggesting some notational improvements.

WILLIAM PATERSON COLLEGE, WAYNE, N.J., US.A.
STATE UNIVERSITY OF NEW YORK-BINGHAMTON, U.S.A.

REFERENCES

[1] Basu, A. P. and Ghosh, J. K. (1978). Identifiability of the multinormal and other
distributions under competing risks model, J. Mulitivariate Anal. 8, 413-429.

[2] Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems, Ann.
Statist., 1, 209-230.

[3] Ferguson, T. S. and Phadia, E. G. (1979). Bayesian nonparametric estimation based
on censored data, Ann. Statist., 7, 163-186.

[4] Gilliland, D. and Hannan, J. (1980). Identification of the ordered bivariate normal
distribution by minimum variate, J. Amer. Statist. Ass., 75, 651-654.

[5] Johnson, N. L. and Kotz, S. (1970). Distributions in Statistics-Continuous Multivariate
Distributions, J. Wiley & Sons, New York.

[6] Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete ob-
servations, J. Amer. Statist. Ass., 53, 457-481.

[7] Lagokos, S. W. and Williams, J. S. (1978). Models for censored survival analysis:
A cone class of variable-sum models, Biometrika, 65, 181-189.

[8] Langberg, N., Proschan, F. and Quinzi, A. J. (1981). Estimating dependent life lengths,
with applications to the theory of competing risks, Ann. Statist., 9, 157-167.

[9] Miller, R. (1980). Survival analysis, Teckh. Report No. 58, Divison of Biostatistics,
Stanford University.

[10] Susarla, V. and Van Ryzin, J. (1976). Nonparametric Bayesian estimation of survival
curves from incomplete observations, J. Amer. Statist. Ass., 71, 897-902.



