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Summary

Let a random variable X follow a p-variate normal distribution
N0, I) with an unknown pXx1 vector § and pXp identity matrix I,.
The admissibility of a preliminary test estimator using AIC (Akaike’s
Information Criterion) procedure will be shown if p=1 and its inadmis-
sibility will be shown if p=3 under the loss function based on Kullback-
Leibler information measure. Furthermore the two sample case is also
considered.

1. Introduction

A preliminary test estimation is described, as is well known, as
follows : After a preliminary test of a certain null hypothesis, esti-
mation is made under the alternative hypothesis if the null hypothesis
is rejected, and made under the null hypothesis otherwise. For in-
stance, suppose a random variable X follows a univariate normal dis-
tribution N(6,1). Let H,: 6=0 be the null hypothesis and H,: §#0 the
alternative hypothesis. A familiar preliminary test estimator is given
by

0 if |X|<c,

(1.1) d(X)=
X if |X|>ec.

It looks appealing at a glance, but there are some inadequacies. First
of all it is inadmissible under many standard loss functions for estima-
tion including a quadratic loss function. For an admissible estimator
must be a (proper) Bayes estimator or its limit and therefore it must
be a smooth function in X under above loss functions. But the esti-
mator (1.1) is not smooth and is neither Bayes estimator nor its limit,
which implies its inadmissibility. Secondly when |X|<¢, we should
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consider not to be able to reject H, instead of accepting it and it
seems unnatural to put zero as an estimate. So it may be appropriate
to modify so that

a(X) if |[X|=Ze¢,
(1.2) d(X)=
X if | X|>c.

Inada [4] adopts X (0<a<1) as dy(X) in (1.2) and has obtained the
optimal value of @ by minimax regret criterion (He takes ¢c=+2 by
AIC procedure which will be discussed later.). However, even if we
modify (1.1) in this way, the estimator (1.2) is still inadmissible if it
is not smooth in X.

Preliminary test estimation should not be understood to be a proce-
dure to be used merely to obtain a sharp estimate, but a procedure
that includes both model selection and parameter estimation. Therefore
we should discuss it under an appropriate loss function which fits such
a situation. Meeden and Arnold [7] assume the following loss function
and have shown the admissibility of the estimator (1.1):

(1.3) L(d, 0)= W(d, 6)+a*I(d) ,

where I(d)=0, if d=0 and I(d)=1, if d+0, and W(d, 4) is a standard
loss function for estimation. The coefficient o* in (1.3) is a cost as-
sociated with the complexity of the estimator. This loss function may
be thought of as the incorporation of the evaluation of an estimate
and the simplicity of an estimator, and seems to fit well for some
situations. We should note that the value of ¢ in (1.1) is determined
by @ (>0) in (1.83). If, in particular, W(d, §)=(d—6)* (a quadratic loss
function), (1.1) is admissible with c=ea.

In this paper we discuss the admissibility (or inadmissibility) of
the estimator (1.1) under another loss function which incorporates
model fitting and evaluation of an estimate. The loss function is based
on Kullback-Leibler information measure and has been introduced by
Inagaki [5] to show that AIC (Akaike’s Information Criterion) statistic
in normal linear regression is a generalized Bayes solution with respect
to Lebesgue measure. Section 2 deals with the one-sample problem,
where X follows a p-variate normal distribution N6, I,) with an un-
known px1 vector § and a pXp identity matrix I,. The admissibility
of the preliminary test estimator due to Hirano [2] determined with
AIC procedure will be considered. In Theorem 2.1 it is shown to be
admissible if p=1 and in Theorem 2.2 it is shown to be inadmissible if
p=3, which is a kind of Stein problem (see e.g. James and Stein [6]).
Section 3 deals with the two sample problem ; when X, follows Ny(6,, 4i1,)
and X, follows N4 (,, 6iI,), ¢} and ¢} being known scalars. Only the
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inadmissibility if p=8 under Inagaki’s [5] loss function is proved. Ex-
tention of (1.3) to the two-sample problem is treated similarly.

2. Admissibility in the one-sample problem

We shall first describe the loss function introduced by Inagaki [5]
(eq. (56.6)). Let X be a random variable with p.d.f. (probability density
function) f(x, ) e F={f(x,0); 0 € O}, where @ is a parameter space.
Suppose F,={f(%,{); {€6,} is a model for ¥ and 6, is a parameter
space indexed by y. And suppose {,(0) is defined by following equation,

(@.1) | log (6=, 0)1f,@, €O}/ @, O)da
:=min | log {/(@, 0)/f,@, O}f@, 0)ds .

The loss function has the following form,

(2.2) L((k, d), 0, x)=log {f(x, 0)/f(x, (0))}
+S log {£(¥, Cu(0)/f(y, C(@)}fi(y, Cu(6))dy .

Let k(X) be an estimator for index y, d(X) be an estimator for 6 and
(,(d(X)) be an estimator for {,(6). The loss function (2.2) is based on
Kullback-Leibler information measure, and the first term of the right-
hand-side of (2.2) is a loss for a model fitting and the second term is
a loss for an evaluation for an estimate.

Now, let X be a random sample from N4 (4, I,) with the p.d.f.
f(z, 6), where 6 is an unknown pX1 vector and I, is a pXxp identity
matrix. We consider two models, Fy={f(x, 0)} and F,={f(x, 0); 0 € 68}.
In this problem Hirano [2] proposed the following as a preliminary test

estimator by using AIC procedure,
0 if X'X<2p,
23) do(X)={ ,
X if X'X>2p.

In (2.3) the upper formula is considered to choose the model with k=
0 and lower formula the model with k=1. The loss function (2.2) be-

comes,
o'x2—(x—0Y(x—0)2  if k=0,
(2.4) L((k, d), 0, x):{
(@d—0)(d—8)/2 if k=1.

The upper formula in (2.4) denotes the loss accompanied with model
fitting and implies d=0 in (2.2), whereas the lower formula has been
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derived from the second term of (2.2). We shall discuss the admissi-
bility of the estimator (2.3) under the loss function (2.4).

LEMMA 2.1. The estmator (2.3) is the limit of a sequence of (prop-
er) Bayes solutions under the loss function of (2.4).

PrROOF. Take NL0, z’I,) as a prior distribution of #. Then the
posterior distribution of ¢ given X is Ny(a(7)X, a(r)l,), where a(r)=
7?/(1+7%). Let g(6|X) be the conditional p.d.f. Then the posterior risk
o((k, d), =, x) can be written as

2.5) (0, d), 7, )= L(©, d(a), 0, ©)g(0])d0
=(1/2)((2a(r) —a(z))a'z — pa(c)) ,

and

2.6) o1, D), 7, )=(1/2) | (@) 0y @) 00120

which is minimized by putting d(x)=a(r)x and we obtain
2.7 mdin o((1, d), =, x)=pa(z)/2 .

Therefore comparing (2.5) with (2.7) we obtain a following Bayes solu-
tion,

0 if X'X<2p/(2—a(z)),
(2.8) d.(X)=

a(r)X  if X'X>2p/(2—a(7)).

Since a(r) — 1 as 7 — oo, (2.8) converges to (2.3).

Now since the estimator (2.3) is a limit of Bayes solutions under
our framework of the loss function, it is interesting to consider its
admissibility. We shall show below its admissibility when p=1 and its
inadmissibility when p=3.

THEOREM 2.1. The estimator (2.3) is admissible when p=1.

ProoF. We shall use the method of Blyth [1]. By straightforward
calculation the risk functions of d, and d, become respectively,

2.9) R, d0)=S L((e(x), do()), 8, %) (x, 0)d
v

—1/2+(1/2) S ; (420 — 22— 26%) f (, 0)da

and
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(2.10) R(9, d,)=g L((k(x), d(x)), 0, x)f(x, 6)d
=(1/2){a(z)*+6%a(r)—1)*}
+(1/2) S“’“_“"’) (208(1+a(z))—a(z)'a* —26%) £ (z, O)ds .

- ¥2/@-a(®)

Next we calculate the Bayes risk functions of d, and d. with respect
to N(O, 7%, obtaining

V3
(2.11)  7(z* dy)=1/2+(1/2) S_ . (@¥(4a(r) —1—2a()’) = 2a(z)}f(z)d2 ,
where f.(x) is the p.d.f. of marginal distribution of X, N(0, 14+<?), and

v'2/(2-a(s))

{#*(2a(z) —a(z)") —2a(z)} f(w)da .

2.12) 7% d)=a(c)2+(1/2) S

—v3/@-a()

Suppose that d, is inadmissible. Then there exists another esti-
mator d* such that for all 4 €6

(2.13) R(6, d*)<R(6, d,)

and for some 6,€6

(2.14) » R(6o, d¥) < R(6,, dy) -

Since the loss function (2.4) is continuous in # with fixed d, there ex-
ists ¢ (>0) and 3 (>0) such that for all 6 € (6,—3, 6,+9),

(2.15) R0, d*)<R(0, d))—¢ .

Therefore from (2.13) and (2.15) we obtain

0o

(2.16) 7(c%, dy)— (%, d*)>eS i (1/¥ 2x 7) exp (—0*/2c)d0 =Kz ,

%
where K is a positive constant number. From (2.11) and (2.12) it fol-
lows that

@17) 7, dy—r(c',d)
=) |7 1wtate)—1-2a(e)) 200} (@)

¥ 2/(2—a(r))

—(1/2) S {2 (2a(r)—a(z)) —2a()} f(@)de+ 1/2(1+ ).

— ¥ 2/(2-a(r)

Using (2.16), (2.17) and Lebesgue’s dominating convergence theorem,
we have

(2.18) {r(z% dy)—1r(z}, d¥)}/{r(z? dp)—7r(<} d.)} — o0 as 7 — oo .
So the left-hand-side of (2.18) is larger than one for a large r, which
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implies
(2.19) r(z} d¥)<r(<% d.) .

This contradicts the fact that d. is a Bayes solution and we complete
the proof.

THEOREM 2.2. The estimator (2.3) is inadmaissible when p=3.

ProOOF. We take the following estimator as a candidate to im-

prove d, :

0 if X’'X<2p,
(2.20) d(X)= {

1—¢/X'X)X if X'X>2p,

where ¢ is a constant. Let S,={x; 2'x<2p} and S,={x; z'z>2p}.
We shall show that there exists a constant ¢ such that R(4, d))=R(9, d,)
for all 4 and R(6,, d))>R(6,, d,) for at least one 6,. It follows that

@2.21) R0, d)—R(, d,)
=) || @—0Y@—0)f(@, O)da
—(1/2) Ss (% — o/’ 5 — 0)' (v — cx/a'm— 0) f (x, 6)ds
- Ss, (x—ﬁ)’z(cx/x’x) f &, 0)de—(1/2) Ss, (a'z)f (x, 0)d .
By integration by parts we obtain
(2.22) S (— 0,) (cir,| ') f (=, 0)d:c=S (3/0,) (cafa'x) f (x, O)das ,

where x; and 6, are respectively i-th coordinates of x and 6. Since S,
1/2
is a region of x such that x'zx<2p, putting Ai(w):=<2p——5_‘, x?) , We
Ixi

have
(2.23) —A(x)S2,<A(x) for any z € S,.

Similarly by integration by parts we obtain
(2.24) Ssl (@0— 0,) (/') £ (, )da
=, [—(enfa/m) UV T ) exp (—(@—00'/2) 1442 e, )
+ Ssl (3/32,) (cx/='®) f (v, O)da:

ggs (0/ox,) (cx/x'x) f(x, O)dx ,
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where «/ and 6, denote the vectors obtained by deleting the ¢-th com-
ponents in x and 6 respectively, and S/ is the region after integrating
out x;. Substituting (2.22) and (2.24) into (2.21), we obtain

(2.25) R(9, d,)—R(9, d‘)gg Ss (9/ox) (ca,/x'x) f (2, B)dx
—a2) |, @) f o)z
- Ss {(pe—2c—c42)[x'z} f (w, O)da .

Therefore if we choose 0<c<2(p—2), the right-hand-side of (2.25) is
positive, which implies that d, dominates d,.

Now we extend the loss function (1.3) by Meeden and Arnold [7]
to a multivariate case, which becomes

(2.26) L(d, 6)=(d—0Y(d—0)+a1(d),

where I(d)=0, if d=0 and I(d)=1, if d#0. As the first term of (1.3)
we take a quadratic loss function for simplicity. Then the following
result holds similarly as Theorem 2.2.

COROLLARY 2.1. The estimator
0 if X'X=<a?,
X if X'X>a'

(2.27) d(X)=

18 the limit of some sequemce of Bayes solutions but is inadmissible when
p=8 under the loss function (2.26).

ProOF. The estimator (2.27) is dominated by the estimator with
o’ instead of 2p in (2.20).

Remark. i) In the case of p=2 the admissibility of the estimator
(2.3) remains open.

ii) We should note that Theorem 2.2 and Corollary 2.1 correspond
to the result of Sclove, Morris and Radhakrishnan [8] although our loss
function is different from theirs (Recall that the estimator (2.3) is the
limit of a sequence of (proper) Bayes solutions under our loss function.).
Here we have given another proof using integration by parts.

3. Admissibility in the two-sample problem

In this section we deal with the two-sample case. Let X, and X,
be random variables following independently N (6, ¢1I,) and N,(6,, o3L,),
where ¢ and ¢} are known scalars. Let X=(X/, X/) and 0=(0,, 6}).
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Let f(x,6) be the p.d.f. of X. Our models considered here are F,=
{f(z, 8); 0,=6,} and F,=(f(x, 8)}. The former is the model with equal
population means and the latter is the full model. For simplicity, we
write in the sequel X=(X|, X;) etc. instead of X=(X7, X/)’. In this
problem Hirano [3] proposed the following preliminary test estimator
using AIC procedure :

(02 X1+ 01 Xy)/(o1+03), (9:Xi+01Xs) (a1 + o2))
(B.1)  dy(X)= I (X - X)'(X— X)) /(o1 + ) =2p,
X, X)) if (X—X)(Xi— Xy)/(ai+a2)>2p.

Now we consider the loss function by Inagaki [5] again. By some
calculation (2.2) becomes

(1/203) [ — (2, — 0,) (w0, — 0,) + (0, — 0*)' (2, — 6%)

+(dy—0*)'(dy—6%)}
+(1/263) [ — (3 — 0, (03— 05) + (2, — 0*) (20, — 6*)

(3.2) L((k,d), 0, x)=4{ +(dy—0*)'(dy—6%)]
if k=0,
(1/20%)(dy— 0,) (dy—0,)+(1/203) (d: — 05)' (d— 0)
if k=1,

where d=(d,, d;) or (d,, d,), d;, d; and d, are px1 vectors and §*=(030,
+016,)/(a1+ 7).

LEMMA 8.1. The estimator (38.1) is the limit of some sequence of
Bayes solutions under the loss function (3.2).

The lemma can be proved as Lemma 2.1, so we omit a proof.
Since the estimator (3.1) is a limit of Bayes solutions by Lemma 3.1,
we are interested in its admissibility.

THEOREM 3.1. The estimator (3.1) is inadmissible when p=3 under
the loss function (3.2).

PROOF. The estimator (8.1) is dominated by
/ ((UgXx‘*‘U?Xz)/(”?'*‘Ug)’ (U§X1+UfX2)/(U§+U§))
if (Xi—Xo)'(Xi—Xy)/(ei+07)<2p,

(B.3)  d(X)=1 (X, —e(Xi— X)/(Xi— X (X — Xo),
X;—c(X,— X))/(X, - X)) (X,—X3))
if (X,—X)(Xi— X)/(@}+a)>2p,
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where ¢ satisfies 0<c<40?ei(p—2)/(c?+0}). The proof that d, is domi-
nated by d, is similar to that of Theorem 2.2.

Furthermore we consider a multivariate extension of the loss func-
tion (1.3) by Meeden and Arnold [7], i.e.

(3.4) L(d, 0)=(1/a})(d,—0,)(di—0))+(1/a3)(d,— 0,) (d:— 05)+a’I(dy, ds) ,

where I(d,, d;)=0, if d,=d, and =1, if d,#d,;. In this case the next
corollary holds.

COROLLARY 3.1. The estimator

(63 X1+ 01 X)) /(014 03), (03 X1+ 01 X0)/(a1+a2))
(8.5) dX)= if (Xi—X)(X,—X,)/(di+a7)sa’,

(X, X)) if (X=X (X, — X)/(01+ ) > e

18 the limit of some sequence of Bayes solutions but is inadmissible when
p=3 under the loss function (3.4).

PROOF. The estimator (8.5) is dominated by the estimator with o*
instead of 2p in (3.5).

Remark. In the cases p=1 and 2 the admissibility of the esti-
mator (3.1) remains open.
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