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Summary

In this article, we first introduce the concept of strong complete-
ness and then show that the mixture of every strongly complete dis-
tribution is complete if the mixing distribution is complete. This, in
effect, reveals the completeness of several well-known mixtures. For
instance, Xekalaki (1983, Ann. Inst. Statist. Math., to appear) showed
that the Univariate Generalized Waring Distribution is boundedly com-
plete only relative to one of its three parameters. Now, as a conse-
quence of our result, it follows that this distribution is actually com-
plete relative to any of its parameters.

Self-decomposability of mixtures is also discussed here. It is shown
that a mixture of self-decomposable distributions is not necessarily self-
decomposable when the mixing distribution is self-decomposable. For
a special case of Poisson mixture, however, the result is valid when
the mixing distribution is continuous self-decomposable, a result due
to Forst (1979, Zeit. Wahrscheinlichkeitsth., 49, 349-352).

1. Completeness of mixtures

It can be seen that mixtures have many uses in practical situations.
Since the completeness is of importance in the theory of estimation
and testing hypotheses, it appears to be worthwhile to know whether
or not a mixture family is complete. In this section, the completeness
property of mixtures, in general, will be investigated. It turns out
that a large number of mixtures including those of exponential families
are actually complete.

First we introduce a new concept, extending the usual notion of
completeness. Suppose {F(y|x, 8)} is a multivariate family of distri-
butions with vector parameters x and B8 having real components. We
give the new concept by the following:

DEFINITION 1 (Strong completeness). A family F={F(y|x, B): x¢
X}, of distributions of m-component random vectors, is said to be
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strongly complete, relative to x, if for every arbitrary function g: R*
— R satisfying

Ercx,p {9(Y)} =0 for every x in some dense subset of X,
we have

Pr(xp {9(Y)=0}=1 for every x€ X.

Obviously, strong completeness is a stronger property than com-
pleteness. Actually, every strongly complete family is complete as
every set is dense in itself.

Using the completeness, under some mild assumptions, of exponen-
tial families (see, e.g., Lehmann [7]), we shall show in the following
theorem that under appropriate assumptions exponential families are
indeed strongly complete. The proof is given for the univariate fam-
ilies. The multivariate case follows in the same way.

THEOREM 1. The exponential families (of distinct members for dis-
tinct 0) given by

(1) dF(w)=a(0)b(x) exp {c(0)d(x)} dp(x)

with ¢(6) as a continuous function of 6 and the parameter space corre-
sponding to 8 as an open interval @ are strongly complete.

ProoF. Distributions of the form (1) are known to be complete
(see Lehmann [7]). Thus, it is sufficient to show that for an arbitrary
function g(-) independent of 4,

(2) E, (9(X))=0 for every 6 ¢ B
with B as a dense subset of # implies
(3) E, (g(X))=0 for all 6eB.
From (2) we have E, (¢7(X))=E, (9 (X))< o, i.e.,
(4) a(0) | l9(@)]5(2) exp ()N dp(2)< 00
for every 6 in B. Suppose A={x € R: d(x)>0} and let 6* ¢ ® be arbi-
trary. Choose a sequence {4,} in B tending to #*. Since B is a dense

set, it is possible to choose 6’ and 6" in B such that ¢(4,)<c(¢’) and
c(8,)>c(8”) for all n. In view of (4), then we have

|, [9@)1b@) exp {e(@)d()}dp(@)<oo

and
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[, 19@)15(@) exp (e(0")d(@) dpu(@) <o .

Since exp {¢(8,)d(x)} <exp {c(6")d(x)} for every x in A and exp {c(f,)
-d(x)} >exp {c(6")d(x)} for every ze A°, for all n, in view of the con-
tinuity of ¢(6), it follows by the dominated convergence theorem that

132 E,, (9(X))=Ex (9(X))=0 .
Since 6* was arbitrary this completes the proof.

As a result of this theorem it follows that the normal, binomial,
negative binomial (and hence geometric), Poisson, beta, gamma (and
hence exponential) and several other exponential families are in fact
strongly complete.

Suppose {F(y|x, 8)} is a multivariate family of distributions with
the vector parameter x such that it itself is a random vector with
distribution G(x|8), where B and 6 are some vector parameters with
real components. As in Bayesian inference, the mixture

(5) Hy|0, )=\ Fy|x, pC(x|6)

is a family of multivariate distributions. G(x|@) in (5) is said to be
the mixing distribution. Here, the sample space X is assumed to be
such that every x ¢ X is a support point of some G(:|6). Following
Johnson and Kotz [6], we shall denote the mixture (1) by

Fy(-|x, ,B)/x\Gx(-IO) .
We shall now give the following theorem :

THEOREM 2. The mixture of a strongly complete family is com-
plete when the mixing distribution is complete.

PrROOF. Let F={F(y|x, B): x€ X} be a strongly complete family
and G={G(x|0): 0 €6} be complete. Consider g: R*—R to be arbi-
trary function such that it is integrable with respect to the measure
induced by H(y|8, B) given in (5). We shall show that if

(6a) En 16,5 {9(Y)} =0 for all €@,
then
(6b) PH(-|0,p) {g(Y)=0}=1 for all f ¢ 6.

Let (6a) hold, i.e.

Sz ) SZdF(ylx, B)dG(x|8)=0  for all €¢8.
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Applying Fubini’s Theorem, we have

I, {}, s0)iFwix, placeio=0 for aneeo.

Since G is a complete family, this implies that

(7) |, 9@F@Ix, /=0

almost surely for x with respect to G(-|6). It is easy to see that
there exists then a dense subset B in X such that (7) holds for all x
in B. Consequently, by the strong completeness of F, it follows in
view of (7) that

(8) Pr.xp{9(Y)=0}=1 for all xe X.

It is now immediate that (8) implies (6b) and hence the proof is com-
plete.

As we have seen, the exponential families are (under some mild
assumptions) strongly complete and hence the above theorem directly
implies

COROLLARY 1. All mixtures of an exponential family are complete
if the mixing distribution is complete.

It is immediate then that distributions like: Pélya-Egenberger
[Binomial (N, p)ABeta], Poisson-Normal [Poisson (6)ATruncated Nor-
p 9

mal (g, 0)], the discrete Lognormal [Poisson () ALognormal (g, g, e)],
]

Plank [mixtures of Gamma], etc. are all complete.

Recently, Xekalaki [11] was concerned with the completeness of
the Univariate Generalized Waring Distribution (UGWD). She showed
that a UGWD (a, k, p); >0, k>0, p>0; is boundedly complete rela-
tive to p. Dr. D. N. Shanbhag has pointed out (in a private commu-
nication) that her method could be improved slightly to deal with the
completeness of the family relative to p. However, as a result of the
corollary above, it is evident that this distribution is actually complete
relative to any of the parameters a, k, p. This is so because a UGWD
(@, k, p) can be expressed as a mixture of the Poisson distribution with
mean A, where 2 given m is a random variable (r.v.) with distribution
r(k, m™") for which m is also a r.v. with distribution A(a, p) of type II
(Irwin [5]). Thus by the application of Corollary 1, twice, we have
that UGWD (a, k, p) is complete when either a or p is taken as the
varying parameter. On the other hand, a r.v. Z corresponding to a

UGWD (a, k, p) can be expressed as ZéXleX;1 with X,’s independent
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and distributed as r(k,1), r(a,1) and y(p, 1) respectively (Sibuya [9]).
In view of the symmetry in X, and X,, it follows that completeness
with respect to a implies that corresponding to k. Thus we have:

COROLLARY 2. The family W= {UGWD (a, k, p): a>0, k>0, p>0}
18 complete relative to any of the parameters a, k, p.

Xekalaki has also been concerned with unimodality and self-decom-
posability of this distribution in her paper. It is hence of relevance
here if we also mention that this distribution is a non-strongly uni-
modal discrete distribution. This follows since, as it can be trivially
seen, the distribution is not logconcave (a lattice distribution {p,} is
strongly unimodal if and only if it is logconcave, i.e., P}=p,1P,-1 for
all n).

Let g(x) be a one-to-one correspondence of x such that it is home-
omorphism with values in R™. It is clear that the distribution F(y|x,
B) is strongly complete relative to x if and only if the corresponding
transformed distribution F*(y|g(x), 8) is strongly complete relative to
g(x). Thus if g(x) has a complete distribution G(-|6), it follows, from
Theorem 1, that the mixture

Fy(-|x, B) G’/(}‘)Gmw(' 16)

is also complete, relative to 6.

In view of this fact, it can be seen for example that, the Pareto
distribution and the Contagious or Neyman’s type A distribution are
also complete. The Pareto distribution has the form: exp (1) /\1 Gamma,

and the Contagious distribution is a mixture of the form : Poisson )
A Poisson (1) with ¢>0 as a constant.
0/¢

Assuming that the measure induced by F' is continuous in x for
each B, it is not difficult to see that the following theorem involving
the notion of bounded completeness remains valid.

THEOREM 3. The family H, as in Theorem 2, is boundedly com-
plete if F and G are boundedly complete families. Moreover, if H is
a boundedly complete family, themn so is the family F.

Note that in the second part of Theorem 3, there is no condition
on G.

2. Self-decomposability of mixtures

A distribution function (d.f.) is said to be self-decomposable (s.d.)
or of class L if its characteristic function (ch.f.) ¢(t) satisfies ¢(t)=¢(at)
-¢.(t) for all @€ (0, 1), where ¢,(t) is a ch.f. In the following we state,
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some well-known results in the literature.

LEMMA 1. All non-degenerate s.d. distributions are absolutely con-
tinuous (see, e.g., Fisz and Varadarajan [3]).

LEMMA 2. A non-degenerate bounded r.v. can mot be s.d. (see, e.g.,
Bauxter and Shapiro [1], Chatterjee and Pakshirajan [2] and Ruegg [8]).

LEMMA 3. The convolution of two s.d. distributions is s.d.

Steutel and van Harn [10] defined the analogue of self-decompos-
ability for lattice distributions. They define a non-degenerate lattice
distribution {p,: »=0,1,---; P,#0} to be s.d. if its probability gener-
ating function (p.g.f.) P(2) satisfies P(2)=P(1—a+az) P, (2); |2|<1; for
all @ €(0,1) with P,(2) as a p.g.f. They have proved that this is equiv-
alent to the assertion that P (z) has the following form

(9) P (2)=exp {—z Sll'l‘—Gq(:‘ldu . 1>0, |2|=1
with G(u) as a p.g.f. such that G(0)=0.

As it is implicit from their proof of expression (9), this ecriterion
can be restated. in a simpler form as given in the following lemma :

LEMMA 4. A lattice distribution is s.d. if and only if its p.g.f.,
P (z) has the form

(10) P ()=exp {—S:R(u)du} L el

with R(u) as the g.f. of a non-increasing sequence of mon-negative real
numbers.

Now let us go back to the mixtures. Consider, in general, f(-|x)
to be a density function* of a continuous or a non-negative integer-
valued lattice r.v. that is s.d. Note that by Lemma 1 any continuous
s.d. distribution is absolutely continuous. Let then h(-) be the mix-
ture of the s.d. densities f(-|x) defined as

1) hw)=|" fu|9)dG)

The question is whether or not self-decomposability of G(x), the mix-
ing distribution, implies that of A(-), the mixture. Forst [4] showed
that if f(-|«) is a Poisson distribution, then the answer to this ques-
tion is in the affirmative provided G(x) is the d.f. of a continuous r.v.

* Observe that in the continuous case the density is with respect to Lebesgue measure
and in the lattice case the density is with respect to counting measure.
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In fact, he proved that a continuous distribution G(x) is s.d. if and
only if P,,:So° e *[(xt)"/n!]ldG(x) is a lattice s.d. distribution for every
0

t>0.

In what follows, we give three counterexamples in this connection
illustrating that the result is not valid in general. Note that the nor-
mal and Gamma distributions are known to be s.d. and Poisson distri-
butions are lattice s.d.

Example 1. (Illustrating that if f(-|x) and G(-) are both lattice s.d.
then A(-) is not necessarily s.d.). Take f(-|x) to be Poisson (x) and
G(-) to have the p.g.f. Q()=exp{—2a2(1+p—2—p57Y}; |2|<1, A>0 and
0<pB<1/2. Since Q(2) can be written as in (10), with R(u) being the
g.f. of the sequence {2,284}, by Lemma 4, G(:) is s.d. It is easy to
see that the p.g.f. of h(-), P (2), has the form

P (z)=exp {—2(1+B—e "7 —Ge t1-2)}; |2|£1, 2>0 and 0<B8<1/2.
By Lemma 4, h(-) is s.d. if and only if R(u) satisfying

(12) S: R(u)du: {1 +B_e—(1—z)_ﬂe-z<1-z)}

is the g.f. of a non-increasing sequence of non-negative real numbers,
{r.}e say. From (12), it follows that

R(u):Z{e‘“"“’+2ﬁe'2“‘“’} , 2>0 ,
which is the g.f. of the sequence {r,} with
ro=A(e'+2Be?) and r,=Ai(e”'+48e7?) .
It is clear that »,>7, and hence h(-) is not s.d.
Remark 1. It is easily seen that the result of Forst remains valid
when “for every t>0” is replaced by “for a sequence {t,; n=0,1, 2,
.-} of positive numbers converging to infinity”. By the virtue of

this fact it follows that, generally, if G(-) is not a continuous s.d. dis-
tribution, there exists some t,>0 such that for every t €[t o), p.=

Sme‘“[(xt)"/n!]dG(x); t>0, is a non-self-decomposable lattice distribution.
0

In Example 1, for instance, if f(-|x) is taken to be Poisson (tx); t>0,
t, can be taken to be any value greater than or equal to 1.

Example 2. (Illustrating that if f(-|x)is a s.d. density correspond-
ing to a continuous r.v. and G(-) is lattice s.d., k(-) need not, in gen-
eral, be s.d.). Take f(-|x) to be Normal (0, ) and G(-) to be Poisson
(2). (Note that here the degenerate distribution for x=0 is taken as
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Normal (0, 0)). Thus the ch.f. of A(-) will be

E (%)= i e““?’/ze"‘ﬂ/x!
z=0
=exp {—A(1—e ")} ; —o0<t<oo, 1>0.

The distribution corresponding to this ch.f. is well-known to have a
discontinuity at the origin and hence by Lemma 1 it can not be s.d.,
as required.

Example 3. (Illustrating that if f(-|x) and G(-) are both distribu-
tions corresponding to continuous s.d. r.v.’s, h(-) is not necessarily s.d.).
Let Y, and Y/ be two independent r.v.’s with a common distribution
r(r, p7'r); >0, p>0. Suppose X,=Z+Y/, where Z is a non-degenerate
non-negative s.d. r.v. It is clear that, since Y, and Y/ tend to g in
distribution as » tends to infinity, X,->Z+pu as r—oo. Hence, the
r.v. Y,/X, tends to p/(Z+p), in distribution, as r—oo. p/(Z+p), the
limit r.v., is bounded (between 0 and 1) and hence, by Lemma 2, it
can not be s.d. As the limit of any sequence of s.d. distributions is
s.d., this implies that at least for one », 7, say, Y,/X, is not s.d.

Now take f(y|x) to be the density function of the r.v. Y, /X,
given X, =z, for any fixed x, and G(x) to be the d.f. of X,,. Observe
that f(y|x) is s.d. because Y, is a Gamma r.v. and G(x) is s.d. by
Lemma 3. Obviously then &(y), in (11), will be the density function
of the r.v. Y, /X, which is not s.d., as required.
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Added in the proof

The non-strong unimodality of the UGW distributions mentioned in
the paper also follows from the fact that this distribution does not have
finite moments of all order. Further, an alternative counterexample to
Example 1 is the Contagious or Neyman’s type A distribution. This
follows because of the fact that this distribution may have several
modes while a s.d. lattice (or non-lattice) distribution is unimodal. For
details of these, see Alamatsaz (1983, Ph. D. thesis, University of Shef-
field).



