A NOTE ON UNIFORM APPROXIMATION TO DISTRIBUTIONS OF EXTREME ORDER STATISTICS

W. KOHNE AND R.-D. REISS

(Received Aug. 6, 1982)

Summary

The error bound of an approximation to the distribution of the kth largest order statistic as established by Reiss (1981, Adv. Appl. Prob., 13, 533-547) is improved by making use of an asymptotic expansion of length two in Reiss (the same as above).

Introduction

It is well known (see e.g. [1]) that the limit distribution of the kth largest order statistic $Z_{n-k+1:n}$ of a sample of size n is a gamma distribution P_k if the uniform distribution, say, Q on [0,1] is the underlying probability measure. The classical standardization for this limit law is given by $n(Z_{n-k+1:n}-1)$. A result of Ikeda and Matsunawa [2] suggests that this result holds true uniformly over all Borel sets if $k \equiv k(n)$ fulfills the condition $k(n)/n \to 0$ as $n \to \infty$. Reiss [3] also proves asymptotic expansions arranged in powers of k/n. The asymptotic expansions of length 2 is given by

$$(1.1) \qquad \left| Q^{n} \{ n(Z_{n-k+1:n} - 1) \in B \} - \int_{B} \left[1 - ((x+k)^{2} - k)/(2n - 3k) \right] dP_{k}(x) \right|$$

$$\leq C_{2} \left(\frac{k}{n} \right)^{2}$$

uniformly over all Borel sets B where C_2 is a universal constant and P_k has the Lebesgue-density p_k given by $p_k(x) = (|x|^{k-1}/(k-1)!)$ e^x for x < 0. It is immediate from (1.1) that for some universal constant $C_1 > 0$:

$$(1.2) |Q^n\{n(Z_{n-k+1:n}-1)\in B\} - P_k(B)| \leq C_1 \frac{k}{n}$$

uniformly over all Borel sets B. Moreover, it was proved in [3] that a different standardization leads to a more accurate approximation if

k is large. Combining both results we shall be able to improve the error bound of the second approximation by omitting a term $\exp(-k^{1/2}/4)$. This possibility was already suggested by the numerical computations in [3], p. 542.

2. The result

The main idea of the following approach is to choose constants $a_{n,k}$ and $b_{n,k}$ such that the first two moments of the distribution of $a_{n,k}$ $(Z_{n-k+1:n}-b_{n,k})$ are accurate approximations to those of the approximating gamma distribution P_k . If $k \ge (4 \log n)^2$ then the following result is an immediate consequence of Theorem 2.9 in [3].

THEOREM 2.1. There exists a constant C>0 such that for every positive integer n and $k \in \{1, \dots, \lfloor n/2 \rfloor\}$ the following inequality holds true:

$$\bigg|Q^{n}\Big\{\bigg[\frac{n^{3/2}}{(n-k)^{1/2}}\Big(Z_{n-k+1:n}-\frac{n-k}{n}\Big)-k\bigg]\in B\Big\}-P_{k}(B)\bigg|\leqq C\frac{k^{1/2}}{n}$$

uniformly over all Borel sets B.

PROOF. It remains to prove the assertion for $k < (4 \log n)^2$. Set $p_{k,2}(x) = 1 - ((x+k)^2 - k)/(2n-3k)$. Define $h(x) := (n/(n-k))^{1/2}x + k((n/(n-k))^{1/2}-1)$ for every real number x. The inverse of h is $g(x) = ((n-k)/n)^{1/2}x - k(1 - ((n-k)/n)^{1/2})$.

Since $n^{3/2}(n-k)^{-1/2}(Z_{n-k+1:n}-(n-k)/n)-k=h(n(Z_{n-k+1:n}-1))$ we obtain from (1.1) that

$$\begin{aligned} & \left| Q^{n} \left\{ \left[\frac{n^{3/2}}{(n-k)^{1/2}} \left(Z_{n-k+1:n} - \frac{n-k}{n} \right) - k \right] \in B \right\} - P_{k}(B) \right| \\ & \leq |P_{k,2} \{ h \in B \} - P_{k}(B)| + O((k/n)^{2}) \end{aligned}$$

where $P_{k,2}$ is the approximating measure in (1.1) (with P_k -density $p_{k,2}$). By assumption we have $(k/n)^2 \leq Ck_1^{1/2}/n$. Moreover $|P_{k,2}\{h \in B\} - P_k(B)| \leq 1/2 \int |((n-k)/n)^{1/2}p_k(g(x))p_{k,2}(g(x)) - p_k(x)| dx$.

Notice that g(x)>0 if $x \ge k((n/n-k))^{1/2}-1)$. We split the above integral into two parts, say I_1 and I_2 , namely from $-\infty$ to 0 and from 0 to $k((n/(n-k))^{1/2}-1)$. Estimates for I_1 and I_2 will establish the assertion.

To show that $I_2 = O(k^{1/2}/n)$ is trivial and can be left to the reader. Ad I_1 : We have $((n-k)/n)^{1/2} = 1 - k/(2n) + O((k/n)^2)$. Hence we can replace in I_1 the expression $((n-k)/n)^{1/2}$ by 1-k/(2n), g(x) by $(1-k/(2n))x-k^2/(2n)$ which is equal to [x-k(x+k)/(2n)], and $e^{g(x)}$ and $|g(x)|^{k-1}$ by the

two leading terms in their series representations. The omitted terms are of order $O((k/n)^2)$. Thus we obtain for $k \ge 2$ (the case of k=1 is treated in an analogous way):

$$\begin{split} I_{\mathbf{i}} &= \int_{-\infty}^{0} \left| \left(1 - \frac{k}{2n} \right) \left(|x|^{k-1} + \frac{(k-1)k(x+k)|x|^{k-2}}{2n} \right) \left(1 - \frac{k(x+k)}{2n} \right) \\ & \cdot \left(1 - \frac{(x+k)^{2} - k}{2n - 3k} + \frac{k(x+k)^{2}}{n(2n - 3k)} \right) - |x|^{k-1} \left| \frac{e^{x}}{(k-1)!} dx + O\left(\left(\frac{k}{n}\right)^{2}\right) \right. \\ &= \frac{1}{2n(k-1)} \int_{-\infty}^{0} |x(x+k)^{2} + kx(x+k) + (k-1)k(x+k)| \\ & \cdot \frac{|x|^{k-2}e^{x}}{(k-2)!} dx + O\left(\left(\frac{k}{n}\right)^{2}\right). \end{split}$$

Thus an application of the Cauchy-Schwarz inequality yields (notice that the terms involving k^4 , k^5 and k^6 vanish):

$$I_1 \leq \frac{(10k^3 + 14k^2 - 24k)^{1/2}}{2n(k-1)} + O\left(\left(\frac{k}{n}\right)^2\right) = O\left(\frac{k^{1/2}}{n}\right).$$

The proof is complete.

Universität-Gesamthochschule-Siegen

REFERENCES

- [1] Galambos, J. (1978). The Asymptotic Theory of Extreme Order Statistics, Wiley, New York.
- [2] Ikeda, S. and Matsunawa, T. (1976). Uniform asymptotic distribution of extremes, Essays in Probability and Statistics (ed. Ikeda et al.), Shinko Tsusho, Tokyo, 419-432.
- [3] Reiss, R.-D. (1981). Uniform approximation to distributions of extreme order statistics, Adv. Appl. Prob., 13, 533-547.