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Summary

The error bound of an approximation to the distribution of the kth
largest order statistic as established by Reiss (1981, Adv. Appl. Prob.,
13, 533-547) is improved by making use of an asymptotic expansion of
length two in Reiss (the same as above).

1. Introduction

It is well known (see e.g. [1]) that the limit distribution of the
kth largest order statistic Z,_,,., of a sample of size » is a gamma
distribution P, if the uniform distribution, say, @ on [0,1] is the un-
derlying probability measure. The classical standardization for this
limit law is given by n(Z,_;11..—1). A result of Ikeda and Matsunawa
[2] suggests that this result holds true uniformly over all Borel sets
if k=k(n) fulfills the condition k(n)/n—0 as m—oo. Reiss [3] also
proves asymptotic expansions arranged in powers of k/n. The asymp-
totic expansions of length 2 is given by

(L) |@0Zrrin—1) € B = [1—(@+RP—k)(2n—30)dP:(z)
k 2
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uniformly over all Borel sets B where C, is a universal constant and
P, has the Lebesgue-density o, given by p(x)=(z[""/(k—1)!) ¢ for x
<0. It is immediate from (1.1) that for some universal constant C;>0:
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(1'2) lQn{n(Zn-k+1n—1) € B} —Pk(B)Iéclz‘

uniformly over all Borel sets B. Moreover, it was proved in [3] that
a different standardization leads to a more accurate approximation if
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k is large. Combining both results we shall be able to improve the
error bound of the second approximation by omitting a term exp (—%"*/
4). This possibility was already suggested by the numerical computa-
tions in [3], p. 542.

2. The result

The main idea of the following approach is to choose constants a, ,
and b,, such that the first two moments of the distribution of a,;-
(Zn-x+1:a—bn ) are accurate approximations to those of the approximat-
ing gamma distribution P,. If k=(4logn)® then the following result
is an immediate consequence of Theorem 2.9 in [3].

THEOREM 2.1. There exists a constant C>0 such that for every
positive integer m and ke {1,---,[n/2]} the following inequality holds
true:

{2 (Bnen= 1K) k] € B} - a3y 50

uniformly over all Borel sets B.

PrROOF. It remains to prove the assertion for k<(4logmn)®. Set
Deo(®)=1—((x+k)'—k)/(2n—3k). Define h(x):=(n/(n—k))"*x+k((n/(n—
k))*—1) for every real number x. The inverse of h is g(x)=((n—k)/
n)x—k(1—((n—Fk)/n)"?).

Since n¥*(n—k) Y Z,_is1.n—(m—K)/n)—k=h(n(Z,_;1..—1)) Wwe obtain
from (1.1) that

(B8] H ) -reo)

<|P,{h € B} — P{B)|+O((k/n)’)

where P, is the approximating measure in (1.1) (with P,-density p,).
By assumption we have (k/n)'<Ck'*/n. Moreover |P,,{h ¢ B} —P(B)|=

12 { (v )/ m) "plg(a))pe (@) —pul2) .

Notice that g(x)>0 if z=k((n/n—k))/*—1). We split the above
integral into two parts, say I, and I, namely from —oo to 0 and from
0 to k((n/(n—Ek))*—1). Estimates for I, and I, will establish the as-
sertion.

To show that L=O(k}n) is trivial and can be left to the reader.
Ad I;: We have ((n—Fk)/n)*=1—Fk/(2n)+O((k/n)’). Hence we can replace
in I, the expression ((n—k)/n)* by 1—k/(2n), g(z) by (1—Fk/2n))x—Fk/
(2n) which is equal to [z—k(z+k)/(2n)], and ¢ and |g(x)["' by the
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two leading terms in their series representations. The omitted terms
are of order O((k/n)}). Thus we obtain for k=2 (the case of k=1 is
treated in an analogous way):

Ilzg"_ <1__k_><|x|k_1+(k—l)k(;c:k)mk-z)(l_k(x+k)>

2n 2n

(x+k):— ke+E)? \ e Py
e e e I da+0((5))

__ 1 z )
T 2n(k—1) S- |w(z+ k)2 + k(w4 k) + (k—L)k(x + k)|

= rol())

Thus an application of the Cauchy-Schwarz inequality yields (notice
that the terms involving k', k* and k® vanish):

S (8o

The proof is complete.
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