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Summary

Type (B), asymptotic normality of the joint distribution of sample
quantiles is investigated when the number of sample quantiles increases
as the sample size increases. This paper aims at a refinement of the
original results by Ikeda and Matsunawa [3].

1. Introduction

Let X, <X,,<:+-<X,, be order statistics from a continuous dis-
tribution with pdf f(x) and cdf Fi(x). Let 0<2,<2,<::-<2,<1 be any
given spacing of k& probability levels, and take a corresponding set of
k (<n) sample quantiles X, =(Xun ) Xony =+ s Xun))'» With n,=[(n+1)2,],
©=1,2, -+, k. Let the corresponding population quantiles be &, (=
F-'(1)), 1=1,2, -+, k. Mosteller [4] then showed that for fixed i.,s
and k the asymptotic joint distribution of v'n(X.,—¢), i=1,2, -+, k,
is k-dimensional normal, in a sense of type (M), in our terminology,
with zero mean vector and covariance matrix Xq,=[2.(1—2,)/f(§)f(¢)],
1< 7, provided that f(x) is differentiable in the neighborhoods of ¢; and
that f(&,)+0.

Later on, Weiss [5] got a result on asymptotic distribution in a
strong sense, of a set of increasing number of sample quantiles, which
was extended to a more general situation.

Ikeda and Matsunawa [3] have proved the type (B), asymptotic
joint normality of increasing number of sample quantiles. In the first
step, they proved the result in case of uniform distribution over (0, 1):
Let U,<Ug<:--<U,, be order statistics based on a random sample
of size n drawn from a uniform distribution over (0,1). Select k order
statistics, U, <Upn<:*<Upm, and put Uuw:=(Ump Uy -+ Un)'s
where k& and (n,, my, -+, n,) may depend on n as n— co. By evaluat-
ing the K-L information, they proved that under the condition, k/

min (n,—n._)) — 0, (n — ), U, and Z,,, are asymptotically equivalent
1sisk+1
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in the sense of type (B), as m— oo, where Z,,=(Z,, Zuw, ***r Zui)
stands for a normal random variable with mean vector l,;,=(lu, las,
oy by Lu=nj(n+1), i=1,2, ..+, k, and covariance matrix L,;,=
[l.(1—1,)/(n+2)], ©<j. Here we have taken a convention 7,=0, n,,
=n+1.

In the second step, they utilized the above result to get a result
in more general situation. Let X, be as before, but in this case k
and (n,, 0, - -+, n;) may depend on % as n—oo. Also, let Y, =(Yo, Yoo,
.-+, Y,.) be a normal random variable with mean vector s,;>=(Su, Su
«o oy 8), with s,,=F"'(l,), 1=1,2, --+, k and covariance matrix S,,,=
LA —=1)[(m+2) fuifos)s ©<J, with f,,=f(s,). Then, they have proved
that, under certain conditions, X, and Y,,, are asymptotically equiva-
lent in the sense of type (B), as 7 — oo.

However, the conditions still remain unsatisfactory and are not
convenient to practical use. Moreover, in contrast with the case of
uniform distribution, there exists a stronger condition for the spacing

of (ny, ng, ++-, M), i.e., kY min (n;—n;_;) — 0, (n— o).
1Sisk+1

In the present paper, we improve these points and present the
refined conditions under which X,,,~Y,u (B); holds as n— co. In the
next section, the outline of our proof is stated. In Section 3, we give
a new result. A generalization of this result is considered in Section 4.

2. Statement of the outline of the proof

Let X, <X,:<+++-<X,, be order statistics based on a random sam-
ple of size n drawn from a continuous distribution over the real line,
whose pdf and cdf being given by f(x) and F'(x), respectively. Choose
by, X <Xpp,<-++ <X, and put

(2'1) Xn(k)‘:(Xnnlv Xnnzy ] Xnnk)l .
First, we will make the following assumption.

AssuMpPTION 3.1. The support of f(x) is identical to the entire
real line: D;=(—o0, ).

Let Uy, and Z,,, be the same as in Section 1. Then, the trans-
formed variable

(2.2) F(Xow)=(F(Xon), F(Xo0), -« 3 F(Xon,))

is identically distributed with U,y,, or

(2.3) F Y Upw)=(F " (Unny), F(Upn), ++ ) F7(Un,))
is identically distributed with X,,.
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Let us consider a trancation of Z,,, over the domain Aq,= {2w[0<
2,<1; i=1,2, ---, k}, and denote it by Z},. The pdf of Z}, p¥(zw)
say, is given by

_ DPuZ>) [T » if zq € A
(2.4) ()= .
0, otherwise

where we have used the symbol p.(z4) as the pdf of Z.,., and we
have put

(2.5) To=PZn(Aw) .

Then, it is easy to see that Z,.,~Z%, (B), holds as n— co. Indeed it
is evident that r,—1, (n — o), and

(7ot Zuw)=|, 9t 10g @/p)de
x)
=[  pH(-logrMpe=—logr,~0,  (n— )
O
which implies the required result. On the other hand, as we have

already mentioned in Section 1, Ikeda and Matsunawa [3] have proved
that, under the condition

(2.6) k/ min (n;—mn,_,) —0, (m— o0),
15iSk+1

it holds that U,y,~Z,w> (B)s, (n— o). Since the notion of asymptotic
equivalence is reflexive and transitive in the sense of any given type,
under the condition (2.6) it holds also that U,w~Z¥, (B (n— o).
Further, let us put

2.7) Yito=F"(ZY)=(F(22), F(Z3), - - -, FT(ZX)) -

Then, X,u~ Y.%, (B), holds as n — oo, under the same condition.
Finally, let Y,4=(Yu, Yu, -+, Y.)' be a normal random variable
with mean vector

(2'8) sn(k):(snlr Sngy * "% snk)’ ’ With 3ni=F—l(lnt) ’ ’b=1, 2! ] k
and covariance matrix

[ (=l t(=lw) .. . lu(—ls) ]

fr?l fnlfnz fnlfnk
La(l=lw) .. (=)
29  Sw=— A fafuw |,

n+2
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l b (1 —Lo) J
S

where we have put f..=f(s.)=f(F'{l.)), 1=1,2, ---, k. Then, if one
can show that Y,,,~ Yz, (B)s; (n— o), with possibly some additional
conditions, it holds that X,,~ Y,w (B): as n—co. We will investi-
gate this problem in the next section.

The following diagram indicates the relations among the variables
introduced so far.

B): (Bl

n(k) ~ Zn(k) ~ Zn(k)

"\ o
(B)a

n(k) ~ Yn(k) ~ Late

3. Type (B), asymptotic equivalence of Y, and Y.k,

The pdf’s of Y,y and Y%, are given respectively by

k
(3.1) (Y)= <~/_;_7r—> lTl—Fﬁ' exp |:— %‘ (Yoo — Sacw) Sy Y — sn(k)):l
n(k)

(—°O<yi<°°y 'l:=1, 21 ) k) ’

and

(3.2) q,’{‘(y(k,)z_l_.< 1 )" 1
Irn \ 27[ I-L'n.(k)lll2

X exp | =L (F (W) ~ F(s00)) LitoF () — F o)
x}i fy), (—co<y,<oo, i=1,2,---,k).

We will evaluate the K-L information

(3.3) I(Yoa: Yoby) =E [log [q.( Yaw)/at (Yaw)]]
= SR 0. 1og (2./¥)dpas -

From the relation that |Lyc|=|Sue|- {ﬁ f,,i}z, it is seen that
(8.4) log [¢.(¥yw)/T*(Yur)] =log 7, —2 {log f(y:)—log f.:}

+E {(F(Yw) — F(8100)) Lty (F (Y i) — F'(8nca))
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— (Yo —8n>) St Yo — Sacr)} +

Before proceeding to the calculation, we will make the following assump-
tion.

ASSUMPTION 4.1. f(x) is twice differentiable and f”(x) is bounded
and continuous over the entire real line.

Then, we get

(3.5) log f(y)—log f,,,=f‘f (W= )+ SRS

and

3.6)  (F(Yw)—F(8:00)) Lty (F Ycr>) — F(8nci>))
= (Yar>r — 8nw>) Sacky Y o> — Sncwr) + Uiy LintirBrcr>

_ 1 — - _
+ a:L(k)Ln(lk)Tn(k) + z ﬂ:l(k)Ln(lk),Bn(k) + ﬁ;l(k)Ln(lk)rn(k) + Tfl(k)Ln(lk)Tnm
where we have put

dn(k)z(anlv R} ank)l ’
,Bn(k)z(.‘gulv Tty .Bnk)’ ’

Tn(k)=(rnly ] rnk)l ’

U= Fas¥s—8mi) » i=1,2, -+, k,
Bui= friYs—8m)* 1=1,2, .-+, k,
@7 L .=Ru, i=1,2, -k,
Sli=1"(8n) s i=1,2, .-+, k,
R =Rl(y) =) ¥:—8:)" 1=1,2,--+,k,

Rni:Rni(yi)=%‘f”(y?*)(yi—sni)3 ’ 7:=1y 2» ] k ’

(@)= {f(@)f"(@)— (@)} (),

and y¥ and yf* are some values between y; and s,,.
Now, we will make the following

ASSUMPTION 4.2. The function, ¢(x)={f(x)f"(x)—(f'(x))*}/fX(x), is
bounded uniformly for all £ in (— o0, o).

Then, from (3.5) it is seen that
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é Ml ﬁ lni(l-lm‘.) ,
2n+2) 4 fa

(3.8) |3IEog £(Y,)—log .| =+ | S EIRS

1
2
where M= sup |¢(x)|.
—00oT< o
For notational simplicity, let us put

(3-9) 7]i=1/(lm‘.+l— ”t) , 'i=1, 2, ey, k y
and hence
[ mtn —n

—m mtm M
(3. 10) ;(lk) = (n + 2) ‘ :

— Nk-1

— k-1 Pt i1

The moments of the RHS of (8.6) will be evaluated as follows. First,
since

0

B1Y)  dhwLitobaw=(1-+2) {3 Ot 1) 50
3 P 50 Y= )
=3t i S )
we have

(3.12) E [an LngeoBaw] =0 -
Second, since
(3:13)  aha it =(n-+2){ S} (et 70 Fusi— 320 B
— 3 el 520 Bocs
— 3 e W= ) Rud
and by the Schwarz inequality
_3M, .

|E [( Yu—su)Rull= nt 2)2 *Oniy

(3.14) IE [( Yni_snt)Rni+l]|§6(;—_5'_21u)'i"ania:i+l ’

IE [( Yni+l - sn¢+ I)Rni] [ .é E(';ti—lzu)-z‘ * ont-l-lagzt ’
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where we have put M;= sup |f"(2), o%=l.(1-L)/f % i=1,2, -+, k,
—oco<T< 0
it follows from (3.13) that

(3-15) |E [an(k)Ln(k)rn(k)]]S E (7]t+"7l 1)f 2i0ni
‘/—" k-1
+Tlf_—12£ Pl ¢fma'm¢73zt+1
F Iu'z k-1

Z: tfnt+10?|iani+l .

n+2

Third, since

(3.16) 3 BiwLid nE2 151 (et mi) (2 @5

k-1
-2 hZ‘; St n,t+l(yi—sn()z(yt+l'—snt+l)z} ’

we have

(3.17) lE [71— B:L(k)L;(lk)B'n(k)]

= l nt2 s E (it 7)) () E (Yoi—80)!

= 4(n+2)

) (et i) (Flfobe
Fourth,
(318)  BrwLidbPur=0+2){S (1t 1) =, B
— 3 2L 80 B
— 3} nuF e eri— s B

Here, we see that

V105 M,
(3.19) [E[( YM_sM)ZRM”éW' ni
(3.20) IE( Y,,,—smyR,.m](sa(%%gﬁ-m:m :
and
(3.21) B 1(Fatr— 8 S e S ol

Hence we get
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(3.22) |E [Bhoy LncoYnol | S —— 2k ;{W_l_zj)‘s{fz ?:J—‘ O+ 7D Flil o
k-1
+2(~7/¢_+ng/2 pY il fasl 0ni0 i1
k-1
+?(~:L—EZL)§/2 E ntlf;i+1|0'?,i+lgzi .
Finally,

. k k-1
(3-23) r:z(k)L;(lk)Tn(k) :(n+ 2) {E (77«;+ ﬂi—l)an'—z E ﬂiRnt m'+1} .

Here

5M}
3.24 E[R}]=s——_.4d,,
(3.24) (RIS 150 o

5M;?
(3-25) E [RmRm+l]—m Ufnﬂfnn .
Hence

- 5M}
(3-26) IE [T:L(k)Ln(llc)rn(k)]lé‘lz(—+'2—)2—

Thus, summarizing the results so far obtained, it is seen that
(3.27) I(Y,w: Yitw)
<logr,+

2 (7]1.+7]1, 1)0'm+2 2 vianiant+l} .

M & 3M, &
2( +2) % m+ n+2 2(7);+7]1 l)fmam

Zéﬂ S vifuraiot LM S f i
+4( —P E(7h+7h D flifan: 2‘21_3_21)‘3 ) (i) il
1 omt2® mfiéf = s |+2(‘/—Tg— 5 4l el oot
+12(5—A£_‘27 Z (it 7:-1)0n+2 Z mamanm} .

Since 7,=1/(l,is1—1) and 1, ;=n/(n+1) for each %, it holds that

k 12 1 k 1
3.28 =nt S<1 )
( ) g& T n+2 g Nip1—MNy n+2 E Moy — Ny
<1
=0 g —m

k
Let us put w,=>1/(n;—n,), oi= max X, My= sup f(x) and M,=
1=0

Sisk —0<x <0
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sup |f’(x)|, it then follows that
—ooLxr< o

3.29) I(Yiw: Yi)<logr,+- KoM ) 51lo31yT5 )M2M3+§-M.’}
2(n+2) 2
% _ (V105 + 5 ) MM+ 20er=l

H 3n+2)

Thus we get the following theorem.

THEOREM 3.1. Suppose that the assumptions 2.1, 3.1 and 3.2 are
Sfulfilled. Then, in order thot X,uo~ Y.w (B)ay (m— 00), it 18 sufficient
that the following conditions are satisfied simultaneously :

(3.30) w=3—1 50, (n— o),
=0 My — My

and

(331) wn.g:‘—> 0, (n-—; oo) ,

where we have put
or=max oy, on=l1-L)f%, 1=12,---,k.
1sisk
It should be noted that the assumptions 2.1 and 3.1 in the theorem
are satisfied for a wider class of probability distributions including

1 -22  a-1(1 2 l_ -z
x/%e , #1427, 2e .

normal, Cauchy and Laplace:

4. Extension of Theorem 3.1

Now we generalize the result of Theorem 3.1 to the case where
D,, the support of f(x), is not necessarily the entire real line.

AssuMPTION 4.1. The support of f(x) is identical to an open in-
terval: D,=(a,b), where a and b are extended real.

Let Uy Zniry Xowrs Zikeyy Yok, and Y,,, be the same as before.
Note that the range of Y}, is now restricted to the k-dimensional
open cube: C,,=(a, b)*.

Let Y,,, be the truncation of Y,,, over the set C,, and define

4.1) 2, =P { Y, € Co}
Then, the pdf of Y, is given by
qn/pn ’ on C(k)

4.2) g,=
0, elsewhere
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if p,— 1, (n— o), then it holds that Y,u~ Y, (B, (n— o). Hence,
we will first derive a condition which satisfies this requirement.
By using the Chebychev inequality, we get

(4-3) l_Pn=P {Yn(k) ¢ C(k)}

<k-max P {|Y,;,—s,|=min (a—s,|, |[b0—s.|)}
1<i<k

2
éi.max _ Oni ,
n+2 Isisk mMIn (Ia_snil2’ Ib_snil2)

the vanishing of which imples our requirement. _
We will next find the conditions under which Y,u~ Y%, (B), (n
— o0). For this, we evaluate the K-L information

(4.4) I¥uwt Yito)=| @ log @atMdpuw

(€]

=1 S 4. log (¢./¢¥)dpar—1og o, ,

On C(k)

the vanishing of which implies the required result. But, since p,— 1,
(n — o0), under the condition that the last member of (5.3) tends to
zero as n— oo, this is equivalent to the condition

45 (Yo Yao)=| alog@ladpw—0, (o).
(€3]

Parallel with the previous section, we will make the following assump-

tions.

ASSUMPTION 4.2. f(x) is twice differentiable and f"(x) is bounded
and continuous over (a, b).

AssuMPTION 4.3. The funection, ¢(x)= {f(x)f"(x)—(f'(x))*}/f* (=), is
bounded uniformly for all = in (a, b).

Let us designate the integral operator S ‘@ dpq, by E¥[-]. " Then,

)
one can see that the calculation goes similarly to that of deriving the

preceding theorem. In fact, since E* [¢(¥w,)]SE [¢(¥w)] provided ¢(yu))
=0, this is much the same as in the previous section, except for the
case E* [a)uLaioBuaw]-

In that case, from (3.11) we have

4.6)  |E [ehyLintioBrco] — E* [y LindieyBaco ]|

k
SOADMM[S tnid) | g suldPT
i=1 y; %€, b
k-1
+2 771'5 |Yi—Suil| Y 41— Snig1 [AP T ni-Vint?
i=1 (yi,yi+1)$(a,b)2
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k-1
+ tg s

¥ ¥ pit1)
! S( e b)zly‘— i1 Y 41— Snia | AP T ni "“"}-
Vir¥i+1) S0

Here, by Schwarz’s inequality

1/2
|yt—sM|3dPYm§(§ dPYm)‘”(S (yt—s,.mdpw) ,
1Y3=8p4|2Cng 1¥3=2pi128n;

Svﬁ(a.b)

and by Chebychev’s inequality

3
< Oni

[ aps %
1¥5=8p4128ng (n+2)C7:

where {,,=min (ja—s,]|, [b—s,[). Also

1548
—8,,) dP¥ni — 38 dP¥ni= n_
S‘Vi—lnilzcni (yt snt) dP é S—“’<7/i<m (yt ni) d t (n+2)3
hence
V154
. — 3 Yo ni_ .
. Sv,;GE(a,b) |9 —8uldP = (n+2)%..

Also, we have

(4.8)

2 YunY )
S(v Vi€ mly‘—s"‘”y‘“—s"i“ldp e
vVitl ’

1/2
é (S dP(Yni'Yni+1)>
Wi Vi & @, b2

— 12

Yi—8 ’ —8, 4 I P i ¥ ity

X (S 9 l i nil lyi+1 m'+1| dP ni’ F ni+1 )
W vi4€Ca, )

2 1/2 2 4 1/2 2 3
< Oni ) / c£< OniOni+1 ) / — OniOni+1

(n+2)C2 m+2¢/ (42,

and similarly

3 2
OniOni+1

(n+2)2Cnt )
From (3.12), (4.6), (4.7), (4.8) and (4.9) it follows that

* [ -1 AP . Ohi }
(4.10) |E* [angy LngioBawl | S € W, ﬁl?é { min (a—s,, [b—s.) ,

(4.9) Y= i Y11 — Spssa|dP T Trir’ S cf

S W v €@, 02

where ¢ is a constant independent of .
Summarizing the results thus obtained, we can state the following

THEOREM 4.1. Under the assumptions 4.1, 4.2 and 4.3, in order
that X,co~ Yo (B)ay (m— 00), it is sufficient that the following condsi-
tions are satisfied simultaneously :
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(4.11) w=>—1 0, (n—o),
=0 Nyp1— My

(4.12) Wyr0,—0,  (n— 00),

and

(4.13) wymax % 0, (n— o).
1siske (2,

where {,,=min (ja—s,|, |b—8.]).

In the case of uniform distribution, this theorem gives an equiva-
lent to Theorem 3.1 as will be seen below.

Suppose the basic distribution be uniform, U(a, b). Without loss
of generality, one can assume that a=0 and b=1. Then, since ¢2;=
l..(1—1,) is less than or equal to unity, the condition (4.12) is a con-
sequence of the condition (8.11). Also, since s,;=l,;, we have

O':n' — l:i(l - lfu)
(i min (0] _lni)z)

Therefore, (4.11) implies (4.13). f(x)=1 (0=<x<1), 0 (otherwise), satis-
fies the assumptions of the theorem. Thus, the sole condition (4.11)
implies the asymptotic (B), normality of X,;, as n — oo, which is noth-
ing but the result of Ikeda and Matsunawa [3].

If a— —o and b— +o0, then (%, — oo, whatsoever the spacing
s,.’s should be. Hence the condition (4.13) of the above theorem be-
comes trivial, which shows that Theorem 4.1 is a generalization of
Theorem 3.1.

The followings are the immediate consequences from Theorem 4.1.

=max (I, 1-1,))=1.

COROLLARY 4.1. Suppose that 0<M< f(x) for some M, and f'(x),
f"(x) and ¢(x) are uniformly bounded over a finite interval D,=(a, b).
Then the condition (4.11) implies the asymptotic (B), normality of X,
as m— oo,

COROLLARY 4.2. Suppose that O<MZ f(x)SM' for some M and
M', and f'(x) and f"(x) are uniformly bounded over a finite D,=(a, b).
Then the sole condition (4.11) implies the asymptotic (B); mormality of
Xoa» 08 N — .
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