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Summary

This paper is concerned with properties of the univariate generalized
Waring distribution such as infinite divisibility, discrete self-decompos-
ability, completeness and regression.

1. Introduction

The univariate generalized Waring distribution (UGWD) along with
many discrete distributions appearing in the statistical literature, be-
longs to a class of distributions whose probability generating functions
(p.g.f.’s) can be expressed in terms of the Gauss hypergeometric function

Fi(a, B 73 Z)=§}) 5‘7"9—)"—% , o l2I<1
= Cr .
where
h(z)=—"—-—r1(fi;i-)l) ’ h>0, leR.

In particular, the p.g.f. of the UGWD with parameters a, k, o (UGWD
(a, k; p)) is given by

(1.1) G(s)=—L®__ F\(a, k; a+k+p;3)
(a+p)w

=#2Fx(k, a;at+k+p;s),
(a)

[s|=1, a>0, k>0, p>0.
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The UGWD has been widely used in a broad variety of scientific
fields as remote and different as linguistics (e.g. Simon [14], Haight
[4]), biology (e.g. Irwin [5]), bibliographic and economic studies (e.g.
Kendall [8]) and accident theory (e.g. Irwin [6], [7], Xekalaki [20]). For
more detailed accounts of the genesis, structural properties and appli-
cations of this distribution the reader is referred to the works of Shimizu
[11], Sibuya [12], Sibuya and Shimizu [13] and Xekalaki [17], [21].

In this paper, a greater insight is given into the study of the
structural properties of the UGWD and a characterization problem
relating to it is considered.

In particular, it is shown that the UGWD has the important prop-
erty of infinite divisibility (Section 2). More precisely, the UGWD is
proved to be a discrete self decomposable distribution on the non-neg-
ative integers in the sense of Steutel and van Harn [15]. Section 3
shows that the family of univariate generalized Waring distributions is
boundedly complete with respect to the parameters a, k and p. Finally,
Section 4 is concerned with a regression property associated with the
UGWD. It is shown that this property is unique and therefore char-
acteristic for the UGWD.

2. Self-decomposability of the univariate generalized Waring
distribution

Let X be a non-negative integer valued random variable (r.v.) that
follows the univariate generalized Waring distribution, i.e.

X~UGWD (a, k; p) , a, k, 0>0.

It has been shown by Irwin [6] that the UGWD (a, k; p) can arise from
a Poisson distribution with parameter 1>0 when 1 has a gamma (k; m)
distribution whose scale parameter m is itself a random variable having
the Beta II (Pearson Type VI) distribution with parameters a and p
(@, p>0). This implies that the p.g.f. in (1.1) can be written as

(2.1) G(s)=E; {e" "}, |s|=1

where Z=X,X,X;" with X,, X;, X, independently distributed as gamma
(k; 1), gamma (a; 1) and gamma (p; 1) respectively, a fact also noticed
by Sibuya [12].

Bondesson [1] showed that if Y;, Y;,---, Y, are independent gamma
variables then the probability distribution of Y=YuY%... Y7, |¢;|21,
1=1,2,--.,n is a generalized I-convolution—in Thorin’s [16] sense—
which implies that Y is self-decomposable. Letting ¢;=¢,=1 and g¢;=
—1 it follows that the probability distribution of Z in (2.1) is self-de-
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composable. This means that, for every a € (0, 1) there exist two in-
dependent random variables Z’ and Z, with Z'~Z such that

(2.2) Z=aZ'+2Z, .
Combining (2.1) and (2.2) we can prove the following theorem.

THEOREM 1. The wunivariate generalized Waring distribution is a
discrete self-decomposable distribution on {0,1,2,..-}.

We do not provide a formal proof of this theorem as this can be
thought of as a special case of a more general result concerning mix-
tures of the Poisson distribution with the mixing distribution as self-
decomposable. This is stated and proved in the form of the following
theorem.

THEOREM 2. Let F be a self-decomposable probability distribution
with F(0)=0 and let H(x) be the probability distribution defined by

(2.3) H(ac)=ger 2 AFa),  ©=0,1,2,--- .
0 x!

Then H(x) is discrete self-decomposable in the semse of Steutel and van
Harn.

PrOOF. Let G(s) denote the p.g.f. of the probability distribution
in (2.8). Since F'(2) is self-decomposable it follows that, for every a ¢

0, 1), i=al'+2, where 2,2, are independent random variables with
=2, Then

G(s)=E {exp [(e2"+2.)(s—1)]}
=E {exp [a2(s—1)]} E {exp [2.(s—1)]}
=E {exp [A(1—a+as—1)]} E {exp [1.(s—1)]}
i.e.
G(89)=GA—a+as)G.(s)
where G.(s) is the p.g.f. defined by E (exp {4.(s—1)}). This shows that

H(x) satisfies Steutel and van Harn’s [15] definition of a discrete self-
decomposable distribution. Therefore, the theorem has been established.

Note. A result by Forst [3] using a measure theoretic approach
could also be used for an alternative derivation of the above theorem.

Obviously, the result of Theorem 1 follows as an immediate con-
sequence. To this end, the negative binomial distribution being a gam-
ma mixture of the Poisson distribution is also discrete self-decomposable.
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COROLLARY. The UGWD (a, k; p) is an infinitely divisible distribu-
tion on {0,1,2,---} with a non-increasing camonical measure r,, i.e.,
the probabilities p,, n=0,1,2,--- of the UGWD (a, k; p) satisfy the re-
lationship

(2'4) (n+1)pn+1=k§]=o DiTrnx » 71/=0, 1; 2;' °
with r,=0.

Remark 1. The p.g.f. of the UGWD (a, k; p) can be put in the
form

o=er 4 2590

where 2=2L and Q(u):%oq,uf is a unique p.g.f. The probabilities g,
Do J=1

J=1,2,-.. satisfy the relationship

r=2 +Ew qy, n=0; 1) 27"'
J=n+1
(see Steutel and van Harn [15]) and hence they can be uniquely de-
termined from the recurrence formula given below which is obtained
from (2.4) by subtraction

n—1
zpﬂnz(n+z)pn_(n+1)pn+l_l jgoqun—j ’ ’)?/=1, 2! e (%zo)
inylocny
(@+k+p)mm!

ak+p(a+k+p) _"“q <n)<a+k+p+n—1>/
ak(a+k+p+m) =0 '\j J

<a+?——1><k+?—1>} , n=1,2,-..

or, substituting for p,=p,

¢.=p5 {n

where p*=2P= and <c'>=c(c—1)--:(c—j+1) for any ce€R and jeI*
Do J J!
U {0}.

Remark 2. The infinite divisibility of the UGWD (a, k; p) can also
be deduced from the fact that it is a generalized negative binomial
convolution in Bondesson’s [2] sense as being a mixture on ¢ of the
negative binomial distribution with parameters ¢ and k (0<q<1, £>0).

Remark 3. From (2.4) it follows that the difference p,—p._; (p_,
=0) changes sign at most once (Steutel and van Harn [15]) and there-
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fore, the UGWD (a, k; p) can have at most one mode (unimodal). Irwin
[7] remarked that the mode, if it exists (i.e. if a>1, k>1, p=<(a—1)-

(k—1)—1), is located at the point [W] (Here [c] denotes
o

the integral part of ¢.)

3. Completeness of the family of univariate generalized Waring
distributions

In this section the question of completeness of the family 9=
{pw(x; a, k, p): a>0, k>0, p>0}, of univariate generalized Waring dis-
tributions is examined. It turns out that this family enjoys the prop-
erty of bounded completeness as indicated by the following theorem.

THEOREM 3. The family 9V defined as above is boundedly complete.

This theorem can be proved along lines similar to those followed
below to establish a result concerning more general families of distri-
butions.

THEOREM 4. Let P={p(x;0): ©=0,1,2,---; 0 €O} be a family of
discrete distributions indexed by a parameter vector 0 € 8. If there ex-

ists a 6, in O such that

) )lim PE+1:0) o =0,1,2,- -
(3.1) (U)agrgg o ) 4

then P is boundedly complete.

ProOF. Consider an arbitrary function g(X) of an r.v. X whose
probability distribution belongs to the family . Assume that g(x),
£=0,1,2,--- is independent of the vector § and bounded, i.e. |g(x)|<
M, x=0,1,2..., for some M>0.

We will show that if

(3.2) E(g(X))=0 for all ¢ 8

then, g(x)=0 for every =0,1,2,..-.
Assume that (3.2) holds. This implies that

(3.3) S g(@)plz; 0)=0  for all 06 .
It follows then that

& p(x; 0) _
(3.4) 9(0)+},g£ = p(o—;mg(w)—() .
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Since g(x) is bounded and because of (3.1) we have that
(3‘5) |g(x)lp(x; 0)§Mp(0; 0)5:‘7 ’ w—_—O’ 19 2,' R

for some M >0, some 0<e<1 and all 4 in @N TG, d(¢)), d()>0, where
JU(8,, 3(¢)) is a deleted d(e)-neighborhood of 6,.

This implies that g(x)p(x; 6)/p(0; 6) is absolutely bounded by an in-
tegrable function. Hence by the Lebesgue dominated convergence the-
orem, (3.3) can be written as

(3.6) 90+ g(@) lim ;‘g, ”)) =0

But, from (38.1) it is obvious that

6.7  (@)limPEET0 o for every r21; £=0,1,2,---

-0 P(x; 0)
Consequently, it follows from (3.6) that
9(0)=0.
Assume now that
(3.8) g(x)=0, x=0,1,---,n, for some n=0.

We will show that g(n+1)=0.
Using (3.8), equation (3.3) becomes

+o00 0)
3.9 n+1 + p(x 2)=0 for all 6€6.
(3.9) 9( ) 1; 6) g(x) _
The general term of the series in (3.9) is an integrable function because

of (3.5). Then, by the Lebesgue dominated convergence theorem it
follows that

_p(x;0) _
gn+1)+ Z} y(w)lagg: 0Ll 0)

But because of (3.7) the above relationship shows that
g(n+1)=0

which completes the inductive argument.
Hence g(x)=0 for all #=0,1,2,.... Therefore the theorem has
been established.

The result of Theorem 3 now follows by an argument of the type
used above if one replaces the requirement of uniform convergence in
2 of the function in (8.1) by pointwise convergence and observes that
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(@)l < S 19(@)| @k SM( (@+p)w __1> .
z=1 (a+k+.0)(z)x! = (a+k+P)<x)m! o P>

4. A characterization of the univariate generalized Waring
distribution based on linear regression

Consider X, Y to be two non-negative, integer valued r.v.’s such
that the conditional distribution of Y given X=2 is the negative hyper-
geometric with parameters z, m and n (NH(x; m, n)), i.e.,

4.1) P(Y=y|X=x)=ﬂaf_—;@, m>0, n>0;
("’é“") y=0,1,---,%.

One may observe that if X~UGWD (a, k; p) and Y|(X=x)~ NH(x;
m,n), m>0, n>0, m+n=k then, the regression of X on Y is linear
i.e.,

(4.2) E(X|Y=y)=letmtn—1)ytan

p+m—1 ’ y=0.12,:--.

The proof of this result is straightforward. The question now arises
whether (4.2), along with (4.1), uniquely determines the distribution of
the r.v. X. In other words, when Y|(X=x)~ NH(x; m,n) is the con-
dition
(4.3) EX|Y=y)=ay+p, y=0,1,.-.

for some constants @ and B sufficient to characterize the distribution
of X as UGWD?

In the sequel, it is shown that this is the case when n=1. (Char-
acteristic properties of discrete distributions along these lines have been
studied by, among others, Korwar [9], [10] and Xekalaki [18], [19].)

To show the above mentioned result we need to prove the follow-
ing lemma.

LEMMA. Let X be an rv. on {0,1,2,.--} with P(X=0)<1. Let
Y be another mon-negative and integer-valued r.v. such that the condi-
tional distribution of Y|(X=x) is given by (4.1). Assume that (4.3)
holds, for some constants a and B. Then (i) >0, (ii) a>1.

PrOOF. (i) From (4.3) and since Y<X we have E (X|Y=0)=0
i.e., B=0. Note however, that if =0 then i @ p(X=x)=0
2=l (M~+N)w
which implies that P (X=x)=0, =1, 2,.--. But, X is non-degenerate
(P (X=0)<1). Hence g>0.
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(i) Using (4.3) and the fact that X=Y we obtain E(X|Y=y)=y
for every v, i.e.,

p=(1—-a)y , y=0,1,2,..-.

Since §>0, this cannot hold for all the values of y unless a>1.

THEOREM 5. Let X, Y be two r.v.’s on {0,1,2,.--} such that P(X=
0)<1 and

(4.9) P(Y—-—le:x):(m+;/‘1> J(mFy,

y=0, 19"': x; m>0
(t.e., Y|(X=2)~NH(x; m,1)). Then, the regression of X on Y is linear
as in (4.3) with a<l+m if and only if X~UGWD< /’1 m+1;

a_ ,
« ).
a—1

ProoF. The “if” part follows immediately from (4.2) for n=1.
“Only if” Part. From (4.4) and (4.3) we have

(4'5) a%{ xgxz(ay_*-ﬁ) é{ 9z » ?/IO, 1)' M

where g,=2! P (X=2)/(m+1)).
Considering relation (4.5) for y=» and y=7r+1 and subtracting the
resulting equations by parts we obtain

(4.6) [e—Dr+glg,=e 3 g, =012

Applying the same technique once more and since, from the lemma
a>1 (4.6) reduces to

(e—1)r+8

=0, r=0,1,---.
@—Dyr+8+2a—1° "

Jry1—

This is a first-order difference equation in g, whose the solution is given
by

9,=0o (B/(a—l))(r) , ,'._:0’ 1, 2,. ...
(B+a)l(a—1)+1),
Therefore,
4.7 PX=r=Px=0)Ble—Dom+le 1 = g4 ..

(B+a)/(@a—1)+1), 7!
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where, from the fact that “1 —m>0 and the condition %P(X:r)

a—

=1,

P(X=0)=— (@D =Mmsp
((a+B)/(@a—1)—M)cms1>

From the lemma it is obvious that B I >0. Then, (4.7) shows that

a—

X~UGWD< ’Ql,m+1; al—m>. Hence, the theorem has been

a— a—

established.

Note that in the case m=n=1, (4.4) reduces to the discrete uni-
form distribution i.e. P(Y=y|X=x)=.5c_.1+_1, y=0,1,---,%. Thus, The-
orem 5 establishes also, indirectly, a relationship between the discrete
uniform distribution and the UGWD.

At this point, it is worth noting the following interesting fact.

The UGWD (a, k; p) is symmetrical with respect to the parameters
a and k (i.e. UGWD (a, k; p)~UGWD (k, a; p)). Also, the negative hy-
pergeometric distribution as given by (4.1) is invariant under the si-
multaneous exchange of the pairs (m, y) and (n, x—y). Therefore, as-
suming m=1 in (4.1) we can characterize the distribution of X as UGWD
using the linearity of the regression E (X|X—Y=z) as a necessary and
sufficient condition.

Note also that if Y|(X=x)~NH(xz; m,n) as in (4.1) and X~UGWD
(@, m+mn; p) then the random vector (Y, X—Y) has a bivariate distri-
bution with probability function

4.8) P(Y=y, X—Y=2)= Oimim Ay MM
( ( ) (a+p)(m+n) (a+m+’n+P)(y+z)yIZ!

¥=0,1,2,..--; 2=0,1,2,..-.

This is a bivariate distribution which the authoress (Xekalaki [17]) has
named the bivariate generalized Waring distribution and has examined
in the context of accident theory. (This distribution has also been
studied from a different viewpoint by Sibuya and Shimizu [13].)

It is now clear that the result of Theorem 5 is essentially a char-
acterization of the bivariate distribution in (4.8) when n=1. It follows
then, because of our previous remark that assuming the linearity of
either of the regressions E (X|Y=y) and E (X|X—Y=z2) we can arrive
at a characterization of (4.8) provided that (4.1) holds with n=1 or
m=1 respectively.
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