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Summary

The occurrence of future record values based on data from a
sequence of independent, identically distributed random variables is
considered. Two situations are analysed, namely (i) where only the
first m record observations have been noted, and (ii) where all the ob-
servations have been noted up to the mth record. Tolerance regions
and Bayesian predictive distributions are derived for the increase in
size of the (m+7)th record value over the observed mth record value
for two exponential models. Predictive distributions are also given for
the additional number of observations required after the mth record
value until the (m+1)th record value occurs.

1. Introduction

Suppose that x;, #,,- - - is a sequence of independent, continuous ran-
dom variables, each with distribution function F'(x) and probability
density function p(x). If {N(n)} is defined by

Nm)=min {j: j>N(n—1), €;>Zyun-}

for n=2,3,---, with NQ1)=1, then zyq, yw, -+ provides a sequence
of (maximal) record values. We refer to N(1), N(2),--- as the record
times. We will be concerned here only with maximal record values
but similar results can be derived for minimal record values where we
are searching for the smallest values.

Galambos ([7], pp. 309-310) provides a useful survey of the litera-
ture on records from the early papers of Chandler [56] and Foster and
Stuart [6] on record times through the work, for example, of Renyi [8],
Tata [13], Resnick [9], [10] and Shorrock [11], [12] on record values as
well. The main results are presented in Galambos ([7], Sections 6.3
and 6.4). Many asymptotic (n— oo) results have been derived. Whilst
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these are of interest from the mathematical point of view, they are
generally of little value to the applied scientist since xy, is rarely ob-
served with large n.

Here we consider two prediction problems associated with the the-
ory of records. Firstly we investigate the prediction of the (m-+r)th
record value on the basis of observing the first m record values xy,,
Ty s Tyem (r=1,2,--+). Ahsanullah ([2], [3]) has discussed such
predictions for the exponential and two-parameter exponential distri-
butions and we confine attention to such distributions here. He only
suggests point predictions however. In Section 2 we provide tolerance
region predictions within the classical framework, whilst in Section 3
we derive predictive distributions within a Bayesian model. In some
situations besides a knowledge of the record values we may in fact
observe 2, %5, -+, Ty, that is, all the values of the underlying series
up to and including the mth record. In Section 4 we compare the pre-
dictions obtained from such data with those based on the records only.

The second problem, which is discussed in Section 5, involves the
prediction of the record time N(m+1) in each of the two situations
mentioned earlier. For the case of all the data up to the mth record
being available this prediction process proves to be independent of the
underlying distribution F'(x).

An example to illustrate the predictions obtained is provided in
Section 6.

2. Tolerance region predictions: records only

We look first at the problem of predicting the record value Zycn.n
based on the knowledge of the first m record values %y, Ty, ** *s Tycm-
Note that we do not assume knowledge of the record times N(1), N(2),
.++, N(m). We derive mean coverage and guaranteed coverage toler-
ance regions for ymin.

2.1. Exponential model

Suppose that x,, x,,--- are independently, identically distributed
Ex(6) random variables, that is, p(x;|0)=0 exp (—0z;) (x,>0; 6>0) for
1=1,2,---. From a characterization theorem of Tata [13], which
Resnick [9] presents more generally, we know that %yu), Tye—Lywm,
<oy Eyem—Lym-p are independent, identically distributed Ex(#) random
variables. Thus Zy.., is a sufficient statistic for 4 based on the data
with a Ga(m, 0) distribution, that is

mypm—1 —
D yimr | 0)= 0™ %% e;f(pwi) 0% yem) (Zyem>0) .
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We present predictions for Zy,,,, in terms of the random variable y=
Zyemir— Ly Which measures the increase in the (m-r)th record over
the mth record value. From the same theorem as above we see that
y has a Ga(r, 0) distribution independently of xyc..

From the framework provided in Aitchison and Dunsmore ([4],
Section 5.7)

1—Be(m, r; c') } { 1—Be(m, r; 1—¢') }
| - , n
B T Bem, ry 0y ver ) a0 0 ) S

are both tolerance regions for the increase y with similar mean cover-
age ¢’. Here Be(k, K; ') represents the c¢'th quantile of a Be(k, K)
distribution.

Similarly from Aitchison and Dunsmore ([4], Section 6.4) the toler-
ance regions

Ga(r,1;¢)
" Ga(m, 1;1—g')

(2) {Ga(fr, 1;1-¢)

Ga(m, 1; g") xm'")}

L nimds OO} and {O

for y provide coverage ¢’ with guarantee g’, where Ga(k, 1;c¢’) repre-
sents the ¢’th quantile of a Ga(k, 1) distribution.

2.2. Two-parameter exponential model

Suppose now that x,, 2,,--- are independent, identically distributed
Er(p, v) random variables, that is

p(xill" T)=T1 exP{—T(xi_ﬂ)} (xi>/1; >0)

for ¢=1,2.-.. Ahsanullah [3] shows that yu), Tyow—Lryws* ) Lyom—
Twom-1p are again independently distributed random variables, where
Ty 18 Er(y, 7) and Tye—2Zya-p i8 Ex(r) (k=2,38,---,m). Thus zy,
and %y —2%yq are jointly sufficient for 6#=(g, r) and have independ-
ently distributed E'r(g,r) and Ga(m—1, ) distributions respectively.
If we consider again the increase ¥==%ywmsrn—=Lywm» then y is a Ga(r, r)
random variable which is independent of x4, and Zy.,. It follows for
example that

—_ J— o pf
T

(3) and

1—Be(m—1,r;1—¢
{0, Be(nfl,—l, r;1—0) ) (mN(m)_xN(l))}

are both similar mean coverage tolerance regions for the increase y;
whilst
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NN
{ galll((;:;’_l'l’ll’(;?) (x> —Zya)s 00} and

{0 Ga(r,1;¢)

' Gam—1,1; 1—g)) (xN(m)_xN(l))}

are both similar (¢, ¢’)-guaranteed coverage tolerance regions.

3. Predictive approach

We now provide a Bayesian approach centred on the predictive
distribution. Suppose that the data can be summarized by a sufficient
statistic £ for the unknown parameter # with an underlying model
p(x|6). A prior p(6) on the parameter space @ can then be updated
to a posterior p(f|x) based on the data, and the information about the
future value y can be obtained from the predictive density function

p(ylw)=58 oy |0)p(0 ]| 0)d0 .

3.1. FExponential model

We have seen in Section 2.1 that x=uxy.. is sufficient for 4 in the
exponential model. If we assume that p(d) is of conjugate gamma
form Ga(g, k), then the predictive distribution for the increase y=
Twimer— Ly 18 of the form

HGyr—l
B(r, G)(y+H)**"

which we denote by InBe(r, G, H), with G=g+m, H=h+ Ty

¥>0),

p(y|®)=

3.2. Two-parameter exponential model

In Section 2.2 we saw that Zyp and Zye—=Tyq, are jointly suffi-
cient for 6=(g,r) in the two-parameter exponential model. We as-
sume a conjugate exponential-gamma prior distribution ElGa(b, ¢, g, h)
for 4, that is

hiz?~texp (—hr)
I'(g)

From Aitchison and Dunsmore ([4], Table 2.3) the predictive distribu-
tion for the increase ¥=2%yumir»—Lwom iS InBe(r, G, H), where

p(y, r)=cr exp {—cr(b—p)} (p<b, >0).

G=g+m—1+4d(c),
(4) )
% { b+ @ yem — Ty — (X yay—b) if oy, <b,

h+2Zym—2yvar+ (Xyay—b) if oy=b,
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and
0 if ¢=0,

3(6)={
1 if ¢>0.

3.3. Point and interval predictions

The predictive distribution provides the complete up-to-date picture
of our ideas about the increase y. Point and interval predictions can
be made to summarize this information.

For example with the two-parameter exponential model point
predictions are provided by the mode, {(r—1)H}/(G+1), or the mean,
rH|(G—1). For vague prior knowledge these correspond to {(r—1)-
(@yem—2Zyw)}/m and  {r(Tyom—2Zyw)}/(m—2) respectively. Ahsanullah
[8] suggests point estimates {7(Xywm—Zxw)}/(Mm—1) and {r(%ywm—Tyxw)}/
m for the increase, but provides no structure for their errors.

Similarly the intervals

1—Be(G, r; k) 1—Be(G, r; 1—k) H
Be(G, r; k) H, OOE and {O' Be(G, r; 1—k) }

provide Bayesian cover k. For vague prior knowledge these correspond
to the mean coverage tolerance predictors (1) or (3) with k=¢'.

4. Comparison with ‘all data’ case

In the analysis so far we have assumed that only the record values
Lyt Tayy* * *» Loy UP to the mth record are available. Situations can
be envisaged in which all the data x, s,---, Zywm up to the mth re-
cord will be available, and it is of interest to compare the information
available for prediction purposes. For the ‘all data’ case we know
that N(m)=m, say. Renyi [8] shows that the marginal distribution of
N(m) is independent of the underlying F'(-) and is given by

P(Nm=m=L5l  @=m, m+1,..),
where S™ are the Stirling numbers of the first kind, defined by
2(x—1)-- -(w—n+1)=mzz}o Sra™ .
We see that the joint distribution of the data is specified by
(5) P (N(m)=n) T] p(a:|0) .

4.1. Tolerance regions
The tolerance regions are now less straightforward to obtain. For
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example, consider a mean coverage tolerance region for the increase

y. For the exponential model a reasonable form would be {0, (k—1)
N(m) N(m)

> 2, whilst for the two-parameter case {0, (k—l)( P xi—N(m)xq))}
i=1 i=1

is more appropriate. Here xy,=min (2, &3+, Tyem). For mean cover-
age ¢’ we require the solution k of

o 1 v(n)—1 1_8)1—1
6 P N m)=mn S i—(____d —e ,
(6) 2 P(N(m)=n) v Bom. ) PC
where y(n)=n for the exponential model and (n—1) for the two-param-
eter case. No analytical solution readily presents itself. For the case
r=1 of predicting the increase to the next record we set

(1) P (N(m):n)<%)”‘"’=1—c'.

For regions of the appropriate form (x, o) we simply replace ¢’ by
1—¢' in (6) or (7).
Similarly for a (c¢/, g') guaranteed coverage tolerance region for the
increase y of the same forms as above we select g=%k—1 such that
53 P (N(m)=m) | AR W
n=m catr.1i0n/e I'(v(m)) =7
Chandler [5] provides some tables for the distribution of N(m).
For computational purposes the evaluation of P (N(m)=mn) can perhaps
best be achieved by use of a recurrence relation connecting Stirling’s
numbers of the first kind as given by Abramowitz and Stegun ([1],
p. 824, II.A). If we write

Qom, m=2EL  mzmz1),

so that P (N(m)=n)=|Q(m, n)| (n=m, m+1,---), we have that

= 5 _(et(=1)"** -
Q(m, n)--kz}_2 n—k—T)(m—Tm Qm—1, k+1) nzm=2).

With starting values
1 if n=1,

Q(lv'n)=
0 if n=2,38,---,

we are able to derive P (N(m)=n) easily.

4.2. Predictive distributions
The predictive distributions can be derived in a straightforward
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manner since from (5) P (N(m)=mn) plays no part in the updating of
p(0) to p(0|data).

Thus for the two exponential models the predictive distribution
for the increase Y=Zyumin—Lywm 18 InBe(r,G', H'), where G'=g-+n,

H'=h+ i x; for the exponential model, and
i=1
G'=g+n—1+d(c),

h+ <é m;“”'/‘”(t)) —c(xy—b) if z,,<b,
H’= t=1
h+ <é xt—nx(l)> + (@, —b) if w20,

for the two-parameter model. For vague prior knowledge we there-
fore have the following predictive distributions for the increase y:

Exponential Two-parameter exponential

Records only :
InBe(r, M, X ycm) InBe(r, m—1, Ty —Tyw)
All data:

N(m) N(m)
InBe<fr, Nm), 3, a;,) InBe(r, Nem)-1, 5 xi—N(m)xm)

5. Prediction of record times

We consider now the prediction of future record times and confine
attention to N(m+1), that is, the next record. Again we investigate
the two situations in which (i) only the first m records have been ob-
served, and (ii) all the observations up to the mth record are available.

5.1. Records only

Suppose that we have observed the data x,=(Twu» Tre» s Lywmw)
from an underlying sequence of identically distributed random variables,
each with distribution function . We do not know the value of N(m)
and so provide a predictive distribution for the additional number of
observations to the next record, that is, for =n,=N(m+1)—N(m).
Shorrock [11] showed that

Pmn>k|ty, 100+, to)=(1—e"m)*,
where v,=—log {1-F(xy)} (4=1,2,--+,m). It follows that
(8) P(n=klry, 75 -+, T0) = {F(@yen)} " {1 = F(2ym)} -
Consider first the exponential model with F(x)=1—exp (—60x). Ex-
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pression (8) is a function of ¢ and x;. Hence, since the conjugate
p(0|xz) is Ga(G=g+m, H=h+%Zyw), Wwe have the predictive function

(9) P (mn=k|records)=5" ("‘1)(—1)f H°
" =\ ¢ (HA+(t+1)Zxem)®
(k=1,2,---).
Note that for a vague prior with g—0, h—0 the predictive function
(9) is independent of %y, Ty, : s Ty and given by
(10) P (n,=k|records)=3 (k—_1>(—1)‘(i+2)'"° :
i=0 ')

This form is in fact independent of the parent populatian and is identi-
cal to that derived by Chandler [5] for the additional number to the
next record.

Similarly for the two-parameter exponential model with F(x)=1—
exp{—r(x—p)} and with a conjugate EIGa(b,c, g, k) prior for (g, ),
the predictive function P (n,=Fk|records) is given by

k-1 ; C H¢
11 (g (G Ve :
W BV F D ey e B
(k=1,2,---),
where B=min (b, yy), C=c+1, and G and H are as defined in (4).
Again the predictive function (11) is independent of ), Xy« * ) Lacm

for the case of a vague prior, and is indeed of the same form as (10)
above.

5.2. All data to mth record

Here we observe x;, 3, -, Lyc, and so know the value of N(m).
We require the predictive function P {N(m+1)=j5|N(m)=mn, 2, s -,
Tyw}. Simple conditional arguments reveal that this is identical to
P{N(m+1)=35|N(m)=n}, irrespective both of w;, 2;---, Tywm and of
the form of the underlying distribution function F. It follows there-
fore, as for example in Galambos ([7], p. 292), that

n

— if j>nzm=1,
P (N(m+1)=5|N(m)=n, @, @3-+, Ty} =1 J0—1)
0 otherwise ,
for both the models considered here. Equivalently
P m=k N =n, ’ 1%y m)) = L
(n | N(m)=mn, x, L xcm)) B (ntl—1)
(k=1,2,---)

(12) or
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_k
(n+k)
(k=1,2,---)

P (nmékIN(m)=n: L1y Lgy e *y xN(m)):

describe the distribution attached to the additional number of observa-
tions 7, from the mth to the (m-+1)th record. From (12) a predic-
tion interval for =, of the form (0, K) with cover « is readily obtained
by setting

(13) K=_"_,
1—«

6. Example

A rock crushing machine has to be reset if, at any operation, the
size of rock being crushed is larger than any that has been crushed
before. Suppose for illustration that the sizes (in suitable units) of
rocks to be crushed can be represented by independent Ex(f) random
variables. The data below are the sizes dealt with up to the third
time that the machine has been reset.

9.3, 0.6, 24.4, 18.1, 6.6, 9.0, 14.3, 6.6, 13.0, 2.4, 5.6, 33.8.

If only the sizes at the operations when resetting was necessary had
been observed we would have simply noted the record values

9.3, 24.4, 33.8.

Here then for the record data analysis we have m=3, xyu=233.8,
whilst for the full data m=3, n=N(3)=12 and i x,=143.7.
i=1

Our interest lies in when the machine will next need to be reset
and the size of rock which will necessitate the resetting.

Consider first the analysis based on the records only. From (1)
with »=1 we see that (0, 57.9) provides a 95% mean coverage tolerance
region for the increase in size, so that (33.8, 91.7) provides an interval
for the size of the rock. Similarly from (2) the larger interval (0, 123.8)
satisfies the more stringent requirements of a guaranteed coverage toler-
ance region for the increase with cover 0.95 and guarantee 0.95.

The predictive distribution for the increase in size from 33.8 to the
next resetting is of the form ImBe(1, 3, 33.8) for a vague prior. This
yields a 959 Bayesian prediction interval of the form (0, 57.9), as ex-
pected.

For the full data we find from (7) that (0, 113.6) provides a 95%
mean coverage tolerance region for the increase in size; whilst
the Bayesian predictive distribution is of the form InBe(1, 12, 143.7),
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which yields a 959 Bayesian prediction interval of the form (0, 40.7).
Here these two intervals are not the same, since the cover of the

N(m)
Bayesian prediction interval of the form <O, @—-1) > x,.) is no longer
=1

a constant but depends on the random variable N(m). Notice also that
in any particular application we do not necessarily obtain a shorter
mean coverage tolerance region when we have the full data available.
On average however over repeated applications we would expect a bet-
ter prediction for the full data case.

For predicting the additional number of operations from N(3)=12
to when the next resetting will be required we can use (9) and (12)
for the two situations. Table 1 provides the critical values K for pre-
diction intervals of the form (0, K) for various values of the cover «.
In the records only case we have assumed vague prior knowledge in
(9). The evaluation of the critical values in that case is most easily
derived from the fact that

Pmzh=1 311+ 35+

a result given in Chandler [5]. As might be expected, shorter inter-
vals result in the case in which all the observations are available.

Table 1. Critical values K for prediction intervals of the
form (0, K) for various values of the cover &

Cover « : 0.50 0.60 0.70 0.80 0.8 0.90 0.95 0.9
Records only : 10 16 28 58 92 172 469 4022
All data : 12 18 28 48 68 108 228 1188
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