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Summary

This work contains inequalities concerning random variables of the
form iciqb,-(X(,-,) where: (a) Xp<---<X,, are the order statistics of
i=1

a random vector X=(X,,---, X,) under an additive model, (b) ¢;, 1=1,
...,n are real-valued functions satisfying certain monotonicity, and

convexity or concavity conditions, and (¢) ¢;, %=1,---,n is a nonde-
creasing or nonincreasing sequence of constants. A special case is that
¢=¢,=++-=¢, is increasing, convex (or linear) and ¢,<---=c, (concave

(or linear) and ¢,;=---=c,). Inequalities are first obtained under the
additive (or location) model X =Y +43 and then extended to the model
X=Y+2Z, where 8 is a real vector and Z is a random vector. The
inequalities obtained are in terms of the ordered components of Y, 3,
and Z. Majorization is an important tool in the derivation of these
inequalities. One use of these inequalities is to extend the applicability
of the large number of known results for random vectors with i.i.d.
components to random vectors with dependent and/or heterogeneously
distributed components. Several applications are included by way of
illustration.

1. Introduction

The study of order statistics seems to have been fully developed
in the statistical literature. However, only a few results are available
for ordered random variables from dependent or heterogeneous distri-
butions. For these distributions the problem can often be very com-
plicated due to dependence or the lack of symmetry. Thus inequalities
which yield bounds become useful. With the aid of inequalities, ex-
isting results and statistical tables for the i.i.d. (independent and iden-
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tically-distributed) case can be applied to give bounds for the dependent
or heterogeneous case. It is for this reason inequalities play an im-
portant role in the area of order statistics. For a survey of existing
results in this area, the reader is referred to David [2] and Marshall
and Olkin ([5], pp. 348-355).

This paper concerns some new probability and moment inequalities
for linear combinations of functions of order random variables with
dependent or (and) heterogeneous components under an additive model.
The model we consider is X=Y+d, where Y=(Y;,---,Y,) is an =-
dimensional random vector whose density function satisfies certain con-
ditions, and 8=(4,,---, 8,) is a real vector. Let X ,<--.-<X., denote
the order statistics of the components of X=(X,---, X,). Let ¢;: R'—
R!' (=1, --, n) be real-valued monotone functions, and let ¢,---, ¢, de-
note given real numbers. Our results give inequalities for the distri-

bution function of and the expectation of the random variable i Cio;
i=1

(X)) when the ¢,’s are convex and 0=<¢,<-.:-=c,, or when the ¢, s are
concave and ¢,=---=c,=0. The inequalities depend on the order sta-
tistics of the elements of ¥ and on a partial ordering of the real vector

3, and they show how the parameters are related. If Y,,--.,Y, are
i.i.d. random variables, then under reasonable conditions the bound
yielded by the inequalities is attainable when 8,=-.-=4, holds given

their sum. Our result also yields inequalities for linear combinations
of order statistics under this additive model when the coefficients c,,
..+, ¢, are in ascending (or descending) order but not necessarily non-
negative. This includes the following statistics: the maximum (max),

the minimum (min), the range, max-X (X is the sample mean), and

min-X. The reason we pay special attention to such linear combina-
tions is partially because they are frequently encountered in statistical
applications, and partially due to the fact that the mathematical tool
we adopt is especially useful for this case. Our tool includes certain
inequalities via majorization theory and rearrangements. For refer-
ences, see Hardy, Littlewood and Pélya [3], Marshall and Olkin [5].

2. The main results

Before proceeding, we recall the following concepts for the partial
ordering of random variables (U, and U, denote two univariate random
variables).

B, (Pointwise inequality). U,=U, a.s.
B, (Stochastic inequality). U:Zt_Uz, that is,
P[Ut]<P[U,st]  for all ¢.
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B, (Moment inequality). E m(U,)=E k(U;) for all h which are mono-
tonically nondecreasing such that the expectations exist.
B, (Mean inequality). EU,2E U, (if the means exist).

It is well known that B,— B,~=B,=—B,. Since the inequalities given
in this section are either pointwise or stochastic, it is therefore under-
stood that the moment inequality (and mean inequality) will follow as
special consequences.

Now let us consider the following additive model

2.1) X=Y+d,

where ¥Y=(Y,,--,Y,) is a random vector with density g(y), and 3=(3,,
-++,d,) a real vector. Let

(2‘2) X(l)é e éX(n)! lf(l)é e éY(n)i 6(l)§. e éa(n) ’
(2-3) Xm_Z_ o _ZX[n], Ymg ce ;Y[nj, amg e ga[n]
denote the ordered components of X, ¥ and 8. For i=1,---,n let ¢,:

R'—>R' be real-valued functions, and consider the statistic f_‘,c,qst(Xm).
i=1

We first note a simple fact when a constant is added to each of the
components of Y.

_ Fact 2.1. Under the additive model given in (2.1) if 8,=-.-=3,=
3 (say), then for every ¢,---, ¢, and every given set of real numbers
¢, +, €, we have

(2.4) > e Xo) =32 c:$(Yer+0) a.s.

In the following we consider the nontrivial case in which the 4,
values are not necessarily equal. The first theorem (Theorem 2.1) con-
cerns a rearrangement inequality (the reader is referred to Chapter 10
of Hardy, Littlewood and Pdlya [3] for a discussion of rearrangement
theory); it will be stated under the following conditions:

Condition 2.1. (a) For i=1,-.-.,n and z€ R', ¢(x): R'—R' is a
function of x for each 4+ and is monotonically nondecreasing both in z
and in ¢. (b) For each ¢, (d/dx)p.(x)=¢)(x) exists for z ¢ R', and is
monotonically nondecreasing in 4 for each z.

Condition 2.2. Condition 2.1 holds with “convex” in (a) replaced
by “concave” and with “nondecreasing in ¢” in (b) replaced by “non-
increasing in 1 ”.

Note that in many applications the special case ¢,=---=¢,=¢ is
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of great interest. In this case Condition 2.1 (Condition 2.2) reduces
to: the function ¢(v): R'— R' is nondecreasing and is a convex (concave)
function of x. This of course, includes linear functions.

THEOREM 2.1. Let X, Y and 8 be as defined in (2.1).
(a) If Condition 2.1 is satisfied and if 0<¢,<---=Zc, (Condition 2.2 is
satisfied and if ¢,;=-+-=c,=0), then

(2.5) 3 oot 00) Z(S)3] e Xeo)
g ( é )fv;l ci¢t(Kt) + a[t]) a.s.

(Note that in (2.5) the Y’s and the 3’s are similarly ordered on the left-
hand side, and are reversely ordered on the right-hand side.)

(b) If ¢fx)=ax+b, a=0 for i=1,---,m, and if ¢,<---<e¢, (=~
=c,), then (2.5) also holds.

PrROOF. The proof follows immediately from two lemmas (Lemmas
2.1 and 2.2) which are stated and proved below.
LEMMA 2.1. (a) If Condition 2.1 is satisfied and if 0<¢,<---<c,
(Condition 2.2 is satisfied and if ;= --+=c,=0), then 3 cig(@ew) is a
i=1

nondecreasing and Schur-convex (Schur-concave) function of x=(x,---,
%.). (b) If ¢fx)=ax+b, a=0 for i=1,---,m, and if ¢,<- - Ze¢, (G

-+ -2¢,), then }E‘_, cp(®w) 18 a mondecreasing and Schur-convex (Schur-
=1

concave) function of x.

PROOF. (a) Assume that Condition 2.1 is satisfied and that 0<ec,
=-:-=¢,. Then from the facts that ¢/(x)=0, ¢/(x) 1+, the inequalities

Chi(®) =il (®) Z il (%) = €1l 1()

hold for all ¢ and all #,>x,. The assertion now follows from Proposi-
tion 3.H.2 in Marshall and Olkin ([5], p. 92). The proof for the other
case is similar. (b) Assume that ¢ (x)=ax+b, a=0 for i=1,-.-,n.
By definition of majorization x>y implies that

4,= ié () — i% P(Yr)) =0

holds for r=2 and 4,=0. Therefore if x>y, then from the identity
(with ¢,=0)

iE; c:ipi(%y)— g: cd(Ywr)= él (c,—e,_1)d,
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and the monotonicity of ¢; (¢=1,-..,n) this difference is =0.

Note that in Lemma 2.1(b) the condition that all ¢,’s are nonnega-
tive is removed.

LEMMA 2.2. For X, Y and 9 defined in (2.1), we have
(2'6) (}7(1)‘*' a(l), M) lf(n)+a(n))>'x>' (Kl)+a[1]y ct Y(n)+a[n])
Sfor every point in the sample space.

Proor. This lemma follows from the following result by induc-
tion: Let z=(z,,:--,2,) € R", t=(t,,---,t,) € R* be such that z,<--- <z,
and t,=t, for j<k, where j, k are arbitrary but fixed. Let ¢* be the
vector ¢ with ¢; and t, interchanged. Then we have (z+&*)>(z+%).
This result follows from the result given in Marshall and Olkin ([5],
p. 21), where the value of 2 in the T matrix is

2=(2—2,)[[(z—2;)+ (t;— )]

if z,>z, or t;>t,, and one otherwise.

In Theorem 2.1 there are no assumption made on the distribution
of Y. Thus the bounds given in (2.5) are universal. If the density
function of Y is Schur-concave, then we can prove a stochastic in-
equality which is stated below.

THEOREM 2.2. Assume that Y in (2.1) has a density g(y), and let
a(0)=Pa |31 ch(Xo)st| for teR.
(a) If g(y) is a Schur-concave function of y, Condition 2.1 is satisfied,
and if 0<¢,<---Z¢,, then a(d) is a Schur-concave function of & for
all t.
(b) If g(y) is a Schur-concave function of y, ¢(x)=ax+b, a=0 for

1=1,.--,m, and if ¢,<---=Zc¢,, then a(d) 18 a Schur-concave function of
3 for all t.

Proor. Assume that Condition 2.1 is satisfied; for arbitrary but
fixed t let us consider the indicator function y,(x) of the set A=
{xléci¢i(x(i))>t}. Since iciqst(x(i,) is a Schur-convex function of x,

i=1 i=1

and a nondecreasing function of a Schur-convex function is also Schur-
convex (see, e.g., Nevius, Proschan and Sethuraman [7] or Tong ([11],
p. 139)), it follows that [1—y,(x)] is a Schur-concave function of x. By
Theorem 3.J.1 in Marshall and Olkin ([56], p. 100) the probability

P[(Y—2) ¢ A]=E [1—y.(X)]
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is a Schur-concave function of 3. But 8,>8; if and only if —3,> —9,.
Thus

a(9)=Ps [(Y+9) ¢ A1=Ps | 3 c(Xe) St

is also a Schur-concave function of 8. This completes the proof of (a).
The result in (b) is similar.

Note that the result in Theorem 2.2(b) was previously given in
Mudholkar [6] with the additional condition that ¢;=0 for i=1,---, n.

When applying Theorems 2.1 and 2.2 to obtain bounds on the ex-
pectations of linear combinations of order statistics, they yield, respec-
tively for ¢,<---=c,,

(2.7) ,é c(E Ym+3m)zi5‘;1 ¢, E X(t)?—:é c(E Y+,

(2.8) Z]nl ¢ E X(,-)_Z_Enl c(E Y(i)+5) .

It is easy to check that the bound in (2.8) is sharper. The improve-
ment here is achieved with the additional condition that g(y) is Schur-
concave.

We now extend our results to a more general additive model given
by

(2.9) X=Y+Z
where Z=(Z,,---, Z,) is a random vector with ordered components
(2.10) Zp=- S Zw, Z[x]% te ZZ[n] .

Thus we give new results for the order statistics for sums of independ-
ent random vectors.

THEOREM 2.3. If Y and Z are independent, then the statement in
Theorem 2.1 remains true after substituting the random wvector Z for
the real vector 8.

PrOOF. For every given Z=4 (2.5) holds. Thus Theorem 2.3 fol-
lows.

Our next theorem depends on the concept of stochastic majoriza-
tion introduced recently by Nevius, Proschan and Sethuraman [7]. For
n-dimensional random vectors Y, Z, Z,, Z, we define X=Y+2Z, X;=
Y+Z, and use X{<---<X& to denote the ordered components of
X, (=1, 2).
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THEOREM 2.4. (a) Let ¢y : R'— R for i=1,---,n and let ¢, -, c,

be real numbers. If (1) Y and Z, Z,, Z, are independent and Z,>Z,
(2) the density fumction g(y) of Y is a Schur-concave function of y,
and (3) Condition 2.1 is satisfied and 0=¢,<---=c,, then the stochastic
inequality

n st n
(2.11) 2 el X$) z 5 cp( X

holds. Consequently we have, for Z:% }1‘_. Z,
i=1

(2.12) 31 e Xeo) 2 3 Yoot 2) -

(b) If ¢(x)=ax+b, a=0 for i=1,.-., n, then the condition that c,=0
Sfor i=1,---,mn in (a) can be removed.

Theorem 2.4 is a generalization of Theorem 2.2 and it reduces to
Theorem 2.2 when Z,, Z, are degenerate random vectors. It can still
be partially extended using the concept of stochastic weak majorization
(see Nevius, Proschan and Sethuraman [8] for definition and results).
This is given below.

THEOREM 2.5. In Theorem 2.4(a), if the condition that Z,>Z, is

replaced by Z,>> Z, then the inequalities in (2.11) and (2.12) remain
true.

PROOFS OF THEOREMS 2.4 AND 2.5. The proofs are similar and
they involve the following steps: (a) By Theorem 17.B.1 in Marshall
and Olkin ([5], p. 483), Z1>M-Z2 (Z, >-“>-Z2) implies that there exist ran-
dom vectors Z;,, Z, such that Z, and Z, are identically distributed (j=
1,2) and ZI;Z a.s. (Z;;—Z a.s.). Since (Y+Z,) and (Y+Z,) are
identically distributed, we can consider the expectations of functions

of Y+Z, (7=1, 2) instead. (b) Applying Theorem 2.2, we can estab-
lish inequalities for the conditional probabilities for every given (Z;, Z,)
=(d,, 8;) such that 8,>3, (8,>>3;). The proof is complete by taking
expectations of the conditional probabilities.

We observe here the known fact that if ZI;ZZ or zl_ifzz, then

Z>-Bt>Zz. Furthermore, we observe that if Z,=(U,,---,U,), Z,=(V,,
-+, V) and U,,---,U, (Vy,--+,V,) are i.i.d. random variables, then Z,

>“>-Zz if and only if Ufg”vl. The proof of this result is left to the
reader.
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Remark. As a final remark, we note that the functions ¢,(x) are
assumed differentiable everywhere in Conditions 2.1 and 2.2. We make
this differentiability assumption there mainly to take advantage of a
direct application of the result in Marshall and Olkin ([5], p. 92) for
proving Lemma 2.1. But this assumption is not always satisfied, hence
the following observation seems in order: If we modify part (b) in
Condition 2.1 (Condition 2.2) to read “For all x,>x, € R'[¢,(x,)—¢i(x;)]
is monotonically nondecreasing (nonincreasing) in 1”, and if we further
impose that the distribution of Y is absolutely continuous w.r.t. the
Lebesgue measure (which is already satisfied in Theorems 2.2, 2.4 and
2.5), then the statements in Theorems 2.1-2.5 remain true. To see
that, let

BE'L?J {z|x e R', ¢{(x) fails to exist} .

Then B is a countable set and ¢/(x) is continuous and nondecreasing on
R\B for each ¢ (see Roberts and Varberg ([10], pp. 5-7)). With the
new condition stated above it can be verified similarly that the state-
ment in Lemma 2.1 remains true except perhaps on a set of Lebesgue
measure zero. Thus the statements of the theorems remain true when
the distribution of ¥ is further assumed to be absolutely continuous.

3. Some applications

In this section we look at a number of situations in which the
theorems of Section 2 apply. These applications are presented for the
purpose of illustration; so, of course, this list is not complete.

Application 3.1 (Bounds for extreme order statistics and for the
range). It was shown by Hartley and David [4] that if Y;,...,Y, are
i.i.d. continuous random variables with means ¥ and variances ¢* (say),
then EY.,,<v+o(n—1)/(2n—1)"2. Combining this with Theorem 2.1,
we note that under the model (2.1) g, =E X, is bounded above by

(3.1) E X»,=<v+a(n—1)/(2n—1)"+3,, .

Similarly after a sign change we have

(3.2) tao=E Xy, 2v—a(n—1)[(2n—1)"+4, .

Therefore the expected value of the range is bounded above by
(3.3) o — par=20(n—1)[(2n—1)""+ (3w —dw) -

Application 3.2 (Location parameter families). Let X have a den-
sity f(x—@). Then X can be expressed as X=Y +6, where the den-
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sity of ¥ is g(x)=f(x—0). Thus for all location parameter families
Fact 2.1 and Theorem 2.1 apply with 8 replaced by 6. As a conse-
quence, Theorem 2.1 implies that, for ¢,<---=<ec,,

G4 P[RaYest-Fate|SP 5 eXost]
=P [3eYost-3 000

for all t. This includes the case when Xj,---, X, are independent with
densities f*(x;—6,), but independence is not essential.

If in addition g(x) is a Schur-concave function of x, then Theorem
2.2 also applies. Consequently, for ¢,<.--<e,

(3.5) Py eXost| P [ReYost—7 30
=1 i=1 i=1

holds for all ¢. This includes the case in which g(x) is permutation
symmetric and unimodal. As a consequence, it includes the case in
which X,,--., X, are independent with densities f*(x;—6;) such that
f*(x) is a log-concave function of z.

Application 3.3 (Elliptically contoured distributions with a shift in
location). Let the random vector X have a density function f(x, 8)=
h(x—6)X(x—8)') where h: R'—[0, o) and ¥=(o,,) is such that o,,=0*
for i=j, o,;=pd* for 1#j, >0, pe(—1/(n—1),1). If h is nondecreas-
ing, then f(x, 0) is a Schur-concave function of x (see Marshall and
Olkin ([5], p. 300)). Thus Fact 2.1 and Theorems 2.1, 2.2 apply to this
family of distributions.

Application 3.4 (Multivariate normal distribution). Let X~ N(0, X),
where Y=(o;,) then, by Application 3.2, Fact 2.1 and Theorem 2.1 ap-
ply with 8=60. If in addition X is of the form described in Applica-
tion 3.3, then Theorem 2.2 also applies. The latter case is of special
importance, and two special applications are given below:

é ¢, 0 =1 é 0,, Theorem 2.2 yields

(a) For ¢,=---=Ze,, E=-1—
n i=1 n i=1

(3.6) g‘l ¢ V(i)‘*'ié Ct(am—g)?_igl c(E X,—E X).Z_E CiVep »

where v, is the expectation of X;, when #=0. The middle term in
(3.6) is a measure of the diversity of the means of order statistics,
and the bounds in (3.6) can be calculated numerically from existing
table values of v, when p=0 and a result in Owen and Steck [9]. Com-
paring (3.6) with the distribution-free inequality
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BT |SielE Xo—F X)! < [ {z (ci-—t_z)Z} {naz+ 5 (ai—E)Z} ]”Z ,

which follows from a result in Arnold and Groeneveld [1], the bounds
in (3.6) are significantly better for most 6 values.

(b) There are existing statistical tables for the means of normal order
statistics in the presence of an outlier for selected configurations 6.
Obviously it is impossible to calculate table values for all such configu-
rations, thus Theorem 2.2 becomes useful for obtaining bounds for a
particular @ vector based on existing table values. For the treatment
of outlier in statistical applications, see, e.g. David ([2], pp. 170-195).

Application 3.5 (Power of Tukey’s studentized range test). Tukey’s
studentized range test depends on a statistic (t,,—t.), where t,=X,/S,
X~N(, X), ¥ is as in Application 3.3, rS*e*~y*(r) and S and X are
independent. It is known that the distribution of (¢,---,t,) is ellipti-
cally contoured (see e.g. Tong ([11], p. 756)). Thus by Theorem 2.2 the
power of the test =(8) is a Schur-convex function of #. In particular,
m(6)=r(f) holds for all 6.

Application 3.6 (Analysis-of-variance problems). Consider the one-
way analysis-of-variance model

(3'8) Yif:p+ai+$’l!’ j=1!"'!J7 i=17"'yI7

I
where 3} a;=0; and consider the analysis of variance procedures which
i=1

depend on the order statistics as described in David ([2], p. 158). It is
easy to see that under the assumption of normality the power function
n(a) is Schur-convex in @=(ey,- -+, a;). This remains true even without
the assumption of normality as long as the density of (ey,---, ;5) is

Schur-concave and S? is independent of (¥;,---, Y;). Moreover, as noted
in David ([2], p. 1568) this type of argument also applies to random
blocks and Latin square designs among others.

Application 3.7 (Censored data). In many statistical applications
the estimation (or hypothesis-testing) of a location parameter may de-
pend on censored data (see, e.g. David ([2], p. 109)). When a known
number of %k observations is missing at either end, we can choose ¢;=
cee=¢=0, ¢gpyy=-+-=c¢,=1 or ¢s=:--=¢,_;,=1, Cyyy=:+-=¢,=0. In
this case the theorems in Section 2 apply.
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