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Abstract

Let B8,. be any beta variate with p.d.f. (I'(v+w)/I"(v)['(w))x*(1—
x)*~' and let U,,,=—logpB, ... Then U,,= U+ U*"*, where U°* and
U*TF are independent with completely monotone and PF.,, densities, re-
spectively. It is shown that U, , is infinitely divisible and B, , corre-
spondingly infinitely factorable. The asymptotic behavior of U,, and
By for large v, w is described. For different modes of increase of v
and w, U,, is asymptotically normal, gamma or extreme value dis-
tributed. The decomposition is employed to provide an algorithm for
generating random B, , distributed numbers. Many of the results are
based on insights provided by the classical theory of the Gamma func-
tion in the complex plane.

0. Introduction and summary

The Beta distribution plays a key role in multivariate analysis [2],
[12] and in order statistics [14]. A useful tool for the asymptotic study
of the beta variate B, is its logarithm U, ,=—log B,, which, as we
will see, has simple structural properties. The beta variate 8, ., has
p.d.f.
©1)  faioul@)=mt
Y B(v, w)
where B(v, w) is the beta function B(v, w)=I(v)['(w)/'(v+w). Corre-
spondingly, the density for U, is

e—v.t(l —_ e-z)w—l
B(v, w)

z*(1—x)v, 0<z<1, 0<v, w,

0.2) SU;v,0(X)=€""fg;0,u(€”") = ) 0<r<oo, 0, w.
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The variate U, , has the simple generating function ¢y;,,+(s)=E [e—sU]
—E [‘BS]ZS: Fa@)wdz, ie.,

I'v+w) I'(v+3s)

0-5) Wil = ) Totwts)

Re(s)>—wv.

The transform (0.3) is the basis for the asymptotic and structural study
which follows. We will see that U and hence B have a simple decom-
position. One finds that

(0.4) U=U*+ U,

where U°” and U*? are independent. When U°¥+0, it has a com-
pletely monotone p.d.f. When UFF#0, it has a p.d.f. which is PF.,
in the notation of total positivity [4]. On the basis of this decompo-
sition, one sees that U is infinitely divisible, and B infinitely factorable
in the corresponding sense.

The powerful apparatus of the Gamma function in the complex
plane permits one to find the asymptotic behavior of U,, and Bo,w as
v and w go to infinity. The behavior is simple and interesting. It
will be shown that
(a) U,,o,,,,—logwl»G as w— +oo for v,>0,

(b) vU,,,,,,o—d>rwo as v— +oo for w,>0,
(e) Zv,w=—g’“¢’;;M1>N(0, 1) as v,w— +o for a broad simple
S0, W

family of paths given in Section 2.

In (a), G is a conjugate transform of an extreme value variate, 7, is
the gamma variate of parameter w, and N(0,1) is the standard nor-
mal variate.

The explicit numerical evaluation of the distribution of a product
of independent betas arising in multivariate analysis under the normal-
ity assumption [2], [12] can be expedited with the help of the corre-
sponding variate U,= —log 8,, whose sums map into the desired product.
The independent sum needed is a multifold convolution which can be
performed with speed and accuracy by the Laguerre transform method

(71, [8].

1. A basic decomposition of beta variates and associated infinite
factorability

The principal objective of this section is the following theorem.

THEOREM 1.1. U= —log 8 is infinitely divisible for any B variate.
Equivalently, any B is infinitely factorable, i.e., B=0,8, -8, where
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d,; are v.1.d.

We will prove this theorem through a lemma which provides in-
sight into the structure of beta variates and is of some interest in its
own right.

LEMMA 1.2. Let w=[w]+0, where [a] is the largest integer less
than or equal to a and 0<0=<1. Then one has the decomposition

(1.1) U U + Uv+0 [w] »

where (a) US¥ and UFES (., are independent; (b) U has a completely
monotone p.d.f. when 0<0<1 and U¥=0. Furthermore, US)— (1/v)E
as 0—1, where E is an exponential variate with mean one; (¢) Ur%
has a PF., p.d.f. when [w]=1,2,8,--- and UZLS,=

PrOOF. From (0.3), one has

; _(L'(v+6) I'(v+s) I'(v+0+[w)) I'(v+0+5s)
(12) gu;v,uls) T'(v) r(v+a+s)H T'(v+60) T'(v+0+[w]+s)

=¢U; v,0(8)* BU; v-+6,[w)(8) »
i'ew Uv,w= v,ﬂ+ ljv+0,[w] and ﬂv,w':ﬂv,o'ﬂv-i-l),[w]’ Where U;),G and l]v+9,[w]

are independent and B,, and B,.,.; are independent. The density of
U,,=—log B,, is, from (0.2), fuv,s,e(y)=e**(1—e"¥)’"'. Consequently,

(1.3) Su;v,0(y)= B( 5) i Zj Due™

where p,=1 and p,k=ﬁ[1—(0/j)], 0<0<1, k=1, so that fu,,e(y) is
completely monotone. J\;\;e write U, ,=US¥. We note from (1.2) that,
for Res>—v, ¢u;v0(s)—1 as 6—0 and therefore US¥=0. Similarly,
PU; v,0(8)—v[(s+v) as §—1 and U, —»(1/v)E as 0—»1 provmg (a) and
(b). For (c), we see that, for [w]gl, oU; v+0,[w)(8)= ;Uo (w+0+3)/(s+v
+0+3). For the variate U,y 1= —10g B,4sw1» One has therefore

[w]-1 1

1.4) Usio,co1= 15:; m

E,

where the E, are independent exponential variates with E [E;]=1. It
follows that U,,,,; has PF density [4], when [w]=1, and we write
UZE ;- From (1.2) we see that UJSj5,=0, proving the lemma.

PrOOF OF THEOREM 1.1. It has been shown by F. Steutel [13]
that any completely monotone variate is infinitely divisible. Since E
is infinitely divisible and the sum of infinitely divisible variates is in-
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finitely divisible, the result is immediate.

The decomposition of Lemma 1.2 shows that fy(x) is the convolu-
tion of a strongly unimodal p.d.f. [3], the PF component, and a com-
pletely monotone component, shedding additional light on the familiar
unimodality of all beta variates.

Remark 1.3. As shown in [9], any p.d.f. fx(x) with the decompo-
sition (1.1) has the property that fx(x)*f_x(x), where the asterisk de-
notes convolution, is a scale mixture of symmetric normals, and that
for such a distribution, distance to normality is measured by the kur-
tosis of X. The kurtosis of U, therefore, provides a consistent measure
of the log-normality of B described in the next section.

The decomposition (1.1) has also been demonstrated in [6] for any
passage time T,, between any two states m, n of any birth-death
process.

2. Asymptotic behavior of beta variates for large v and w
We turn next to the asymptotic behavior of the U and B variates.

THEOREM 2.1. Let w=[w]+0, 0<6<1. Then for any v>0, U,,
—log w56 as w— +oco where the p.d.f. of G is given by fe(y)=(e """/
I'(v))-eVexp(—e™), —oo<y<oo.

PrROOF. Let K=[w]—1 so that w=K+1+4+6. Let S,.=US%wi—
log w. Then, from (1.4), the Laplace transform of the p.d.f. of S,,
K
is given by ¢s;v,4(8)=T[ (v+0+7)(K+1+0)/(s+v+6+7). This can be
Jj=0
rewritten as

2.1 ;v,wl8)= s {K ! K”vw}
(2.1) #S; v, uw(8) st+ot0 ;Ul s+v40+7
. K MK—(‘U-H)}_(I lﬂ)s
15 K

The first bracket in (2.1) converges to I'(1+s+v+6) while the second
converges to 1/I'(1+v+6) as K— +oo. Hence, for 0<6<1 fixed, one
has
2.2) ¢s;,,,w(s)—»£§§(i;%j)ﬂ, as w— oo .

From (1.2) one has ¢u,;q,6(8)=(I"(v+0)/'(v))-(I'(v+8)/T(v+6+s)).
Since U, ,—log w=UZS¥+ UFL (n;—log w=UF¥+S,,,, one has, from (2.2)
for every fixed 6 (0<60<1),

2.3)  $u:0,0(8) =00, 0(5) fs; v, uls) — L LES)

’ as ’
F('U) w— + oo
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where this limit is independent of 4.

We note that the extreme value distribution, whose p.d.f. is fr(y)
=e Vexp(—e™’), —oo<y< o, has the bilateral Laplace transform ¢r(s)=
I'(1+s). Hence the limit of both ¢s;s,4(s) in (2.2) and ¢u;»,w(s) in (2.3)
are conjugate transforms [5] of ¢L(s).

Theorem 2.1 above describes the asymptotic convergence in distri-
bution of U,,—logw for v fixed as w— +oco, to an extreme value
variate. In the next theorem, we deal with the asymptotic behavior
for w fixed as v— + oo, and show convergence in distribution of vU,,,,
to a Gamma variate. Finally, in Theorem 2.5 we will be dealing with
sequences (v,, w,) in which both v, and w, become infinite in a specified
way, and asymptotic normality will be demonstrated. The three cases
are shown graphically in Fig. 1 (a), (b), (¢).

w
4 (a) A
A (¢) B

» (b) P,

-

—

0 v

(a) Uv,w—logwiG as w—+oo along Pi.
(b) vUv,wirw as v—+oo along P;.

(C) Zv,u):MMiN(O,l) as v, w—>+o
oU; v, w

along P, where P; is a path such that either
v<Kw®°, 0<a<l, K>0 or v=Kw*, a=1,
K>0.

Fig. 1. Asymptotic behavior of U, ,=—log S, .-

THEOREM 2.2. Let w=[w]+0>0 be fixed where 0<0<1. Then one

has vU,,,.,,—d*rw, as v— +oo, where 7, 18 the gamma variate with p.d.f.
Fr,u(8)=u"""e"*|I'(w).

PrOOF. Let f{ 4y) be the p.d.f. of USY. Then, from (0.2),
f65%5,60)=Q1/B(v, 0))e=(1—e7*)~“"”. The p.d.f. of vUZY is then given
by
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Lign (4)=L Loto) _ e
v PN/ v T)I() (L—ev7)—*
1 g Tt 1 _
I'(9) vI'(w) ((L—e")/(y[v))~’

From the Stirling formula, I'(v)~+/2rv*~"2%¢~* as v— + oo, one has

1 1 i
o g%,ﬂ(%)"’mye eV, as v— +oo,

i.e., vU,,”,,,”—d>r, as v—oo. For the PF part UZFj ., with [w]=1, one
has from (1.4) that

[u%—l 1 E
=1+ ((0+5))

The theorem now follows from Lemma 1.2.

PF  __ d
'UU;:H,[w]— 7w -

From (0.3), one has

(24a)  tu;,0=E[U,.]= —dis log ¢u; 0, u(8) o= (v+w)—¢(v) ,

(24b) oy, =Var [Tyl = (-] log 4030, u)h-s=9/0) — ¢/ (0-+0) ,

where

2.5) o(2)= Edz_ log I'(2)=I"(2)/[(z), Rez>0.
Let

(2.6) Z,,=(Uyu—tU;0,0)[00; 0,0 .

We next show that Z,,— N(0,1) as v and w go to + oo along certain
paths. Two preliminary lemmas are needed.

LEMMA 2.3. x/(1—e®) <14z for all £>0.

Proor. It is clear that 1+x<§‘6—%’:—=e’ for all 2>0. Then (1+
k=0 k!
z)e*<1 so that x<(1+x)(1—e®), and the result follows.

LEMMA 2.4. Let P be any directed path in the (v, w) plane for
which either (a) v, w— 4o and v=Ku*, 0<a<l, K>0, or (b) v, w—
+oo and vzKw', azl, K>0. Then voy,,—+ as v, w— +oo
along P.

PrROOF. We note the following identity [1]
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@2.7) «p'(z):S“’ " 4t, Rez>0.
o 1—e™*

Then, from (2.4b), oy, ,=?" Sw I ¢ —¢""(1—e ")dt. Hence, since
’ ’ 0 ___e—

1—et
<1 for t>0, we have

VoY, W=V Sw e *(l—e /%) dy .
' 0
If v<Ku*, 0<a<1, K>0, one has w/v=w'*/K and by the dominated
convergence theorem Sw e *(1—e v*")dxr—1 along such a path. For the
(]
case (b), one sees that w/v=w'?/K, a=1, K>0 and w/v—0 along P.
One then has

oo 1 __e—(w/u)x
Vol , w= K zwz“'ls e"—--——/ dx .
r 0 wlv

The integral in the last term converges to Sw ze~*dx=1 by the dom-
0
inated convergence theorem and the lemma follows.

We are now ready to show asymptotic normality of U,, under
the conditions of Lemma 2.4.

THEOREM 2.5. Z,,—N(0,1) as v and w go to +co along any path
P as given wn Lemma 2.4.

ProOF. We write p=py., , and e=ay,, , for notational simplicity.
It is clear from (2.6) that

(28) 9z;0, w(3)= E [G_SZ] =e(3/d)y¢U; vm}(_j_) )

We note that for sufficiently small |s|, one has from (0.3) and (2.5)

vtw vtw+ts v+s8 vtw+s
suso.utz)=exp [ wwdu— """ gwdn|=exp [ pdu—{""" ()
-du] so that

v+w

@9) pu30uls)=exp || (9(0+2)— p(v+w+a))da] .

#z:v,0(s) in (2.8) can then be rewritten from (2.9) as ¢z, w(8)=
exp [SO/ {(‘/’(v-l—x)—¢(v))—(¢('v+w+x)—¢(v+w))}dac]. By letting y=oz,
we obtain
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(2.10) &Z;0,w(8)=€xp <S: h(v, w, y)dy>
where
(2.11) h(v, w, y):_i"- S:’ (' (v+u)— ' (v+w+w)}du .

It will be seen that (d/dy)h(v, w, y)—1 for all y>0 as v, w— +co along
the path given and that one then has ¢z;, .(s)—e%%, as needed.

From (2.11), (d/dy)h(v, w, y)=(1/e){¢'(v+ylo)—¢'(v+w+yls)} so
that (2.4b) and (2.7) lead to

Sw t e-—(v+y/a)t(1_e—wt)dt
(2.12) dih(v’ w, y)=_° 1—e
y o

S t
0o 1—e™*

e (l—e ")dt

We note that (d/dy)h(v, w, y) is monotone decreasing in y (y>0), and
0= (d/dy)h(v, w, y)<1 for all v, w,y>0. Let x=wvt. Then (2.12) bocomes

Sw x/v e—(l+y/vv)x(1_e—(w/v)z)dx
(2.13) .dih(v, w, )= 1—e"
Y T _wé’l;/v e (1 —e~ W) dy

From Lemma 2.3, (z/v)/(1—e**)<1+x/v for x,v>0 and by the dom-
inated convergence theorem one can pass v to the limit along the path
given. It follows from Lemma 2.4 that (d/dy)h(v, w, y)—1 as v, w—
+ oo along the path given. From (2.11), h(v, w, 0)=0 so that k(v, w, ¥)

=Sy (d/dw)h(v, w, u)du. Since 0Z(d/dy)h(v, w,y)<1, one sees that
0

h(v, w, y)—y as v, w— +oo along the path, again by the denominated
convergence theorem, for any y>0. The theorem then follows.

The convergence vU, , described in Theorem 2.2 has been shown
by G. S. Mudholkar and M. C. Trivedi (private communication). They
also state that U, , is “asymptotically normal as v, w— +oc0” but do
not provide a proof [10].

In the original form of Theorem 2.5, only ray paths v=Kw, K>0,
were considered. A referee suggested the more general paths of Lemma
2.4, and indicated that the result might also be obtained from Chapter
4, Theorem 18 of V. V. Petrov [11].
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3. Generation of B,, random numbers

The decomposition U, ,=US¥+ Ut% . in Lemma 1.2 may be em-
ployed to provide a simple algorithm for generating B, ., random num-
bers. From (1.3) the Laplace transform of the p.d.f. of US can be
given by

3.1 vtk

(3.1) oU; v,0(8)= Z‘.qk Py

where

P, (0—1> koL

3.2 =% P, = —-1)%, £k=0,1,2,---.

3.2) %= B, 0)(’U+k) ok k (-1

It is clear that ¢,>0 for all k. One sees quickly that i} 2 =i
k=0 v+k k=0

(0;1) . (1:*_1’1" =S:u"“(1—u)”“du, i.e.f

(3.3) §J P %-=B(, 6)

and therefore (g,); is a probability distribution. Let E, be i.i.d. with
the common c.d.f. 1—e™2, 7=0,1,---, M=[w]. From Lemma 1.2, (1.4)
and (3.1), one then has

-1 1 1
3.4 U, .= E E
(3-4) ,Z.', v+0+79 a v+N "

where N is the discrete random variable with P [N=Fk]=¢, and inde-
pendent of E,. Let U, be independent and identical uniform variates

on (0,1). Since ‘U,-i—e‘Ef and U, ,=—log B, ., Eq. (3.4) leads to
(3.5) B. w=‘!l:l} CU}/(”""”)-CU},}N )
w= 11

Hence one has the following algorithm for generating B,. random
numbers.

Algorithm
(a) Generate [w]+1 independent and identical uniform variates U (),
j=0,1,..., M=[w], on (0, 1).
(b) Generate the variate N(w) from the distribution (g.)5.
(€) Bo(@)=TT U @)U pa)liMe,
J=0

The algorithm is simple and straightforward. Advantages and disad-
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vantages of the algorithm with respect to existing algorithms will be
described elsewhere.

4. Explicit calculation of the distribution of the product of independ-
ent Beta variates

For certain likelihood ratio statistics arising in multivariate analy-
sis, one must evaluate the distribution of

(4‘1) X=ﬁvl,wl'ﬂvz,w2' * 'ﬁvK,wK ’

where the beta variates are independent. This distribution may be
obtained via the Laguerre transform procedure described in [7], [8] in
the following way. From (4.1)

K K
(4.2) —log‘X=jE=l(—logﬂ,,j,wj)=j§]=1 Uiy, -

The U, g variates are independent and absolutely continuous with p.d.f.’s
as in (0.2). They therefore have the properties of regularity and rapid
decrease required by the Laguerre transform method for convolving
p.d.f.’s and permit vector representations of modest length with high
accuracy. The Laguerre transform coefficients required are easily ob-
tained analytically and the calculation of the p.d.f. of —log X and
hence of X proceeds rapidly.
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