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Summary

In this note, we will study a consistent estimator of a mixing
distribution function (mixing d.f.). The estimator discussed in this
note is that of Choi and Bulgren [4]. Since there is some doubt about
the way of proving Lemma in [4] which is used for showing the con-
sistency of the estimator in [2], [3] and [4], we will give different
lemmas. We will show that their result (which is still true by using
our lemmas) holds under a weaker assumption than theirs. The exist-
ence of the estimator is not discussed in [4]. So, we will give condi-
tions under which the existence is guaranteed.

1. Construction of estimator G, and consistency of G,

Let F={Fyx): 6 € R} be a family of known d.f.’s on the real line
and G(0) any d.f. such that uq(R)=1, where g, is the probability
measure induced by G and R, a compact subset of the real line. Let
Fy(x) be continuous in z for each §. We define P; (%) by

(1) Py@)=| FUx)dG() .

It can be easily seen that P,(x) is a continuous d.f. The problem we
are concerned here is to estimate the mixing d.f. G on the basis of
the independent random sample X=(X, X;,---, X,) from the distri-
bution (1). For the mixing d.f. G being estimable, it is obvious that
the identifiability condition (which is investigated in [1], [7] and [8])
should be satisfied.

Let G.(6) be any discrete n-point d.f. (with jump g, at 6,€R,,
j=1,2,---,m). The estimator proposed by Choi and Bulgren [4], de-

noted by G.(6), is any G,(#) which minimizes
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n m > )2
(2)  S6)=] (P, @-Fyarw=13 {310,701,
where F,(x) and X, are the empirical d.f. and the ith order statistic
of X respectively. Assume that Fi(x) is continuous in # for each x,

then the existence of G, is guaranteed. In [4], it is assumed that R,
is an open subset of the real line. But, in this note, we will assume
that R, is a compact subset of the real line to ensure the existence of

A

G,.

We will show the consistency of G, to G under the assumption
that F,(x) is continuous in 6 for each z and continuous in x for each
6. This is weaker than the assumption (in [4]) that Fi(x) is uniformly
continuous in (x, ). We will show first the following two lemmas.

LEMMA 1. Let F(x) be any continuous d.f. and H(x) any d.f. Let
I, be the support of pr. If there exists x satisfying the imequality

(3) | H(x)— F(x)|>0
for some 3 (>0), then there exists x in I, satisfying (3).

PrROOF. Assume that the conclusion does not hold. Then there
exists (at least one) w, in I,=R—1I, satisfying (3), where R is the real
line. We study first the case H(x)>F(x,). Let x,=sup{x: F(x)=
F(x,)} and w,=inf {x: F(x)=H(x,)—d}. Then x,<x,<2%, and {z: x, <2
<®}NI is a non-empty set by the continuity of F. If x,<a*<w,,
then F(x*)< F(x,)=H(x,)—3. On the other hand, if «* € I, then |H(x*)
—F(x¥)|<8. So, we have H(x*)SF(x*)+90<H(x,), (x,<x*), contra-
dicting the assumption that H is a d.f.

When H(x,) < F(x,), we can show a contradiction in the same way
as in the first case.

LEMMA 2. Let {H (x)}>, be any sequence of d.f.’s and F,(x) the
empirical d.f. of the sample of size n from any continuous d.f. F(x). If

| (@)~ F@PdF(@)—0

with probability one as n— oo, then
”Hn—F n” —0
with probability one, where | | denotes the sup norm.

PrROOF. Assume that the conclusion does not hold. Then there
exists a Borel subset A of the infinite-dimensional Euclidean space R~
such that p$2(A)>0 and, if (X, X,,---)€ A, then sup|F,(x)—F(x)|—0
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as n—oo (by the Glivenko-Cantelli theorem) and sup |H,(x)—F,(x)|>d

for some 4 (>0) and an infinite number of n’s, where § depends on
(Xi, Xz,-++). Then there exists x,, holding |F,(x,,)—F(x,,)|<3/4 and
| H(%0,) — Fo(2,,,)| >3 for an infinite number of »’s. Then

(4) |Hn(x.,,,,)—F(xo,n)l>%a.

For any fixed ,,¢€ I, satisfying (4) (by Lemma 1), we consider two
cases, namely, H,(x,,)>F(x,,) and H,(%,,)<F(x,,) for an infinite num-
ber of n’s. We deal with only the first case as the latter case is sim-
ilar. By the continuity of F, there exists x,, such that x, ,=inf {x:
F(2)—F'(x,,)=38/4}. Then, for any « € (%0, 21,.], F(@)SF(21,,)=F(%,)+
(1/4)8<Hn(x0,n)§Hn(x)- Then’ fOl‘ xo,n<x§x1,m

| Hi(%) — Fo(2) | 2| Hi(2) — F'(2)|—| F'(2) — Fo(x)|
_Z_Hn(xo,'n)—F(xl,n) —'1_ g

2|, (@)= F (@) ~| F(@o.)— F(@,) |~ 52

3 1 1 1
—0——0——0=—0>0.
>4 4 4 4 >

So, we have

| (H o)~ F@yaF@z(10) | dF(3) .

(0, ns ¥1,m]

On the other hand, we have

dF,,(w)—»S dF(x):-i—a .

S(ro,n,zx,n]

Accordingly, if (X, X;,---)€ A, then

(o, s 1, m]

| (H,(@)~ F@)VdF.(@)2 (%")(i‘"") >0

for any fixed ¢ (<d/4) and an infinite number of »’s. This is contra-
dictory to the assumption that

| (H. (@)~ Fu(@)dF(2)—0
with probability one.

THEOREM. Assume that Fy(x) is continuous in x for each 0 and
continuous in 6 for each x. Then
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p$) {lim G.=G at every continuity point 0 of G}=1.

Proor. For any discrete n-point d.f. G}, we have

(5) 0SS,(GIZSUCNS | (Pog (@)~ Po (@)VdF,()
+2]| Po—F,|l+ | Pe—F!.

Let

(6) 00<01<“'<0n,

where 6,<min R,<0,, 0,_,<max R, <6, and each 6, (i=0,1,2,---,m) is
a continuity point of G. Without loss of generality, assume that RN
(0,.1, 0,)+¢ for each j. Let G be the d.f. with jump g} at 6} ¢ R,n
(0,-1, 8,1, where g¥=pa(0,-1, 0,]. Then Pgx(x)— P (x) uniformly in « if
3(4)—0 as n—oo by the definition of the Lebesgue-Stieltjes integral
and the Polya’s theorem (see [5], p. 120), where 6(4)=¥1Sl?.sx 0,—0,_y).
Hence

(7) | (Pos @) Po (@)dF@)<e
for any given ¢ (>0). So we have
| (P, (@)~ Fi@)}dF,(2)-0

with probability one by (5), (7) and the Glivenko-Cantelli theorem.
Hence ||P; —F,|—0 with probability one by Lemma 2 with H,(z)=
P; (x) and F(x)=Pg(x). Therefore ||Ps,—Pg||—0 with probability one
by ||Ps,—Ps||=||Ps,— F,l|+||F.—Pgl|. Accordingly, we have the con-
clusion by a simple modification of the proof of Theorem 2 of Robbins

[6].
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