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Summary

We consider the estimation of frequency w of a sinusoidal oscillation
contaminated by a stationary noise under a random sampling scheme
according to a stationary point process N. We prove the strong con-
sistency and the asymptotic normality for a certain estimator of w.
Then we apply these results to the case where N is a stationary de-
layed renewal process.

1. Introduction

Let Y={Y(t); te¢ R} be a stationary stochastic process, and N=
{N(B); B is any bounded Borel set in R} be a stationary orderly point
process which is independent of Y. Suppose that Y is sampled at epochs
when events of N occur. Then, Brillinger [4] studied the estimation
of mean of Y, and Brillinger [3] and Masry [11] studied the estimation
of spectral density of Y. In this paper we investigate the estimation
of the discrete spectrum of Y under the same random sampling scheme.
More precisely, we consider the model Y(t)=m(t)+X(t), t € R, where
m(t) is a nonrandom trigonometric polynomial with unknown parameters,
and X={X(); te R} a stationary stochastic process with zero mean.
We shall propose certain estimators of these unknown parameters based
on sample {Y(t.); 1<k<K}, where {t,; 1<k<K} are epochs when
events of N occur in a time interval (0, 7]. And we shall investigate
the strong consistency and the asymptotic normality of these estimators
as T tends to infinity.

In what follows we study only the simplest case that m(t)=a cos
ot+bsin wt, where w, a, and b are unknown parameters such that >0
and a’+b>0. The general case that m(f) contains more than one har-
monic oscillations as well as a nonzero constant term can be studied in
much the same way as the present case (see Walker [16], Hannan [8]
and Ivanov [10]). Suppose that Y is sampled randomly according to N
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in a time interval (0, T]. Then, following Walker [16] and Hannan [8],
we introduce a periodogram

L(1)= HT S: exp (i)Y (R)IN()| .

Suppose that we know that o is contained in an interval (0, ), where
a does not depend on N and is allowed to be arbitrarily large. Now
we define an estimator of w, &,, as the value 1 which maximizes I(2)
in the interval [0, ¢]. Furthermore, assuming that the sampling rate,
B=E (N(0, 1]), is known, we define estimators of a and b by

_ﬁ% S: cos &t Y(£)AN(t)

Il

ar

and

bp=—2_ ST sin & Y(E)AN(E)
T B T 0 T

respectively (When B is unknown and N is ergodic, we can replace

B by B}:T“N (0, T] in the above definition without any change in the
conclusion of this paper.).
In Section 2 we show the strong consistency of estimators @, dr,

and I;T under the assumption that both X and N are purely nondeter-
ministic. In Section 3 we show the asymptotic normality of them under
certain mixing conditions on X and N. In Section 4 we investigate the
applicability of these results for the random sampling scheme according
to a stationary delayed renewal process N. In particular, we show
that, for the consistent estimation of frequency, that is, the discrete
spectrum, it is sufficient to assume that the common probability distri-
bution of time intervals of N is absolutely continuous and has a finite
second moment. Thus we need not assume the condition that time
intervals of arbitarily small length appear in each realization of N. On
the contrary, it is known that we need this condition for the consistent
estimation of spectral density under the random sampling scheme (See
Corollary 1.3 of Masry [11]. For the discrete time parameter versions
of this Corollary, see Bloomfield [1] and Blum and Rosenblatt [2].).

Recently Vere Jones [15] studied a closely related problem to ours.
He investigated the estimation of frequency of the periodic intensity
function of a Poisson process. While we treat more general point
processes than those in his paper, he discussed some interesting prob-
lems which we do not consider here.

In what follows, the stationarity always means that in the both
strict and wide sense. As usual, Z and R stand for the set of integers
and the set of real numbers respectively.
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2. Strong consistency

In this section we prove the strong consistency of estimators &y,

dr, and b,. Slightly generalizing the condition assumed by Hannan [8],
we assume that X is purely nondeterministic. We need a similar as-
sumption on N. In fact, consider a stationary deterministic point process
with interval length d (see Daley and Vere Jones [5], p. 311). Then,
using a realization of Y, we can not identify w, even if X is identically
zero. It is easily seen that this point process N has the purely atomic
spectral measure 3} 3,..¢-1, Where 8,.,..1 denotes the Dirac measure

meZ,m#0

at point 2zmd~!. Considering this example, in Theorem 1, we assume
that N is also purely nondeterministic.

THEOREM 1. Assume that both X and N are purely nondeterministic.
Then, as T—co, it holds that T(é;—w)—0, ar—a, and by—b almost
surely.

In order to prove Theorem 1, we need several lemmas. The fol-
lowing lemma is a slight generalization of the lemma of Hannan [8].

LEMMA 1. Let {x(n); ne Z} be a stationary stochastic process which
18 purely nondeterministic and of zero mean. We put

I,=sup [n?! ﬁ‘, k? exp (11k)x(k)
k=1

0sisn

for a monnegative constant p. Then, lim I,=0 almost surely (a.s.).

n—oo

PrROOF. We prove this lemma in the same way as in Hannan [8].
Let &, be the o-field generated by {x(m); m<mn}, and H, be the Hilbert
space of random variables measurable with respect to &, and of finite
second moment. Defining w(n, j) to be the orthogonal projection of

x(n) on H,OH,_,, we have x(n):i u(n, n—3). We put
Jj=0

vr(n)=ji Jwmn—=3),  §m)=uln, n—5I(uln, n—3)|=C),

=r+

e(n)=¢§,(n)—E (§,(n)|F.so1) n,(m)=u(n, n—J)—e,(n),

and
I, ,=sup |n?! é k? exp (tak)e (k)
0SAsx k=1
for 7=0,1,---, 7, where I( ) denotes the indicator function of a set,

and C is a positive constant. It holds that
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n 1/2 r n
L5 (n B o)+ 3 (L+n S ln00l) -
Then, by the ergodic theorem, we have
lim sup L,<E (0,(0) )"+ 33 (lim sup I, ,+ E (,0)]|9) ,

where G is the o-field of sets invariant with respect to the measure
preserving transformation defined by {x(n); » € Z}. Since, for each j,
{e,(n); meZ} is a stationary bounded martingale difference, we have
lim I, ,=0 a.s. as is shown in Hannan [8]. Since cTF_.= N &, by

n—oo nez

Lemma 4.6.1 of Rozanov [12], it holds that
E (v,(0)| ©)=E (E (v.(0)*| F_,-2) | ) ZE (v,,1(0)*| &) .

Then, noting that lim E (v,(0))=0, we have limE (v,(0)}|G)=0 a.s.

Similarly, from the fact that |7;(0)|<2|u(0, —3)|I(%(0, —5)|>C), we
can show lim E (|7,(0)||G)=0 a.s. Accordingly we obtain lim I,=0 a.s.
C -0

N—s00

Thus we complete the proof of the lemma.

We define a stationary random measure Z by dZ=XdN, that is,
Z(B)-——S X(t)dN(t) for any bounded Borel set B. We denote spectral
B

densities of X and N by g and f respectively. From the formula (5.16)
of Daley and Vere Jones [5], the random measure Z has a spectral
density h(2)=g x f(2)+S%9(2), where x denotes the convolution operation.
We put Z,(n)=Z(nd, (n+1)3] for a positive constant 4.

LEMMA 2. Assume that g is bounded on R. Then, a stationary
stochastic process Z;={Zn); n€ Z} has a spectral density

hy()=4sin? (2792) 3 (A+27md~) h(A+2mmd™Y) ,  |A|<mdt.
nez

PrOOF. We define a stationary process {Z(f); te R} by Z(f)=
SR Iy 5(t—u)dZ(u), where I, denotes the indicator function of an in-

terval [0, 3). We approximate I,,, by a sequence of infinitely differ-
entiable functions ¢, such that the support of ¢, is [—n7}, 3], 054,51

on R, ¢,=1 identically on [0, 3—n"'], and |¢.(2)|<C1+|2])~* for all 1€
R, where C is a positive constant and ¢, is the Fourier transform of
#.. We define a stationary process {Z,(t); t € R} by Z,,(t)=S o (t—u)-
dZ(w). Then we can easily show that limE(Z,,(t)—Z(t))Z;O. Now,
from Theorem 2 of Vere Jones [14], {Z,,(t;;mteR} has a spectral den-
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sity |@(A)Ph(4). Accordingly, {Z(t); ¢t ¢ R} has a spectral density |,
-h(2), where IA[O,,,) denotes the Fourier transform of I,,. Hence we
can derive a spectral density of Z, immediately. Thus the proof is
completed.

LEMMA 3. Under the same assumption as in Theorem 1,

lim sup
T —c0 0525a

-7t S: 7 exp (48) (Y ()AN(E)— fm(t)de)| =0

a.s. for any constants p=0 and a>0.

PrROOF. Obviously the problem can be reduced to proving that

(1) lTim sup T~ ST t? exp (ilt)dZ(t)‘ =0 a.s.
—o 0S2Sa 0

and

(2)  lim sup |- ST % exp (ilt)m(t)(dN(t)—ﬁdt)l =0 as.
—o 051Sa 0

We shall prove only (1), since (2) can be proved similarly. As is easily
seen, it suffices to prove (1) when T tends to infinity through {ns;
n=1,2,---}. Now, defining a random measure |Z| by d|Z|(t)=|X(¢)|-
dN(t), we have

(3) | @y [ v exp (i2)dZ(®)— ) > 5 (joye exp (1230)23)
<(p+am™ 51212, (G+1)9]

By the ergodic theorem, the right hand side of (3) converges to (p+
o) E((Z](0, 8]|F) a.s. as n— oo, where F is the o-field of sets invariant
with respect to the measure preserving transformation defined by both
X and N. Since ldirzlE(IZKO, d]1F)=0 a.s., it suffices to show that

(4) lim sup [n~?"! ?S—_,‘l j?exp (t1258)Z,(5)| =0 a.s.
n—oo 0SiSa Jj=0

Since both X and N are purely nondeterministie, so is Z,. Accordingly,

(4) follows immediately from Lemma 1. Thus the proof is completed.

PROOF OF THEOREM 1. We can prove the theorem in the same
way as in Walker [16] or Hannan [8]. Thus we give only a sketch of
the proof. First we note that

limsup sup
Too  |i-w|2yT 1

T S: m(t) exp (zat)dt :
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<4(@+b)=lim ’ -1 ST m(t) exp (iat)dt|
—00 0

where 7 is a positive constant. Then, using Lemma 3 with p=0, and
recalling the definition of &,, we have |@,—w|<7T™* for all sufficiently
large T a.s. Since 7 can be made arbitrarily small, we obtain lim (&,

T —o0
—)=0 a.s. Using this result, we can prove the strong consistency of
4, and b,. Thus the proof is completed.

3. Asymptotic normality

In this section we prove the asymptotic normality of estimators
&7, 67, and b,. Let M, and I, be the o-fields generated by {X(s);
s<t} and {N(B); B is any bounded Borel set contained in (—oo, ]}
respectively. We put Ny(k)=E (N(k3, (k+1)8]|T,)—pB3 for a positive
constant 6. Furthermore, we put

¢i(n, k)=sup {|E (X(t) E (X(s)| M))|; nd<s=(n+1)3, k3=st=(k+1)d}
and
¢o(m, k)=|E (Ny(k) E (Ni(n) | Th))| .

In Theorem 2, we assume the following conditions;

oo

(5) lim 33 (n, k)=0
and
(6) limkﬁlgba(n, k)=0

for any >0 (see Hall and Heyde [7], Chapter 5).

THEOREM 2. Assume that both X and N are purely nondetermin-
istic and weakly mixing, and satisfy the conditions (5) and (6) respec-
tively, and moreover, assume that the covariance fumction of X 1is inte-
grable on R and the reduced covariance measure of N is totally finite
on R. Then, as T— oo, the joint distribution of (T¥¥(&r—w), T(Gr—

a), T‘/Z(BT—b)) converges to the mormal distribution with zero mean and
covariance matrix

(4n(a®+b%)"'g(w)+4rBH(a’+b) (g * f)(w)+ B2 f(20)) 21 +27872f(0)3, ,
where
12 —6b 6a 0O 0 O
3=|—6b a’+4b* —3ab and = (0 a’ ab) .
6a —3ab 4a’+b’ 0 ab b
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In order to prove Theorem 2, we need several lemmas. The fol-
lowing lemma is a slight modification of Theorem 1 of Hannan [9].

LEMMA 4. Let U be a measure preserving transformation, F, be a
o-field such that F,cU™'F,, and 2(0) be a random wvariable measurable
with respect to F, and with zero mean and finite variance. We use
the same notation for the umitary transformation which is defined by U
in the Hilbert space of random variables with finite second moment. We
put x(n)=U"%(0), and c(n)=n*cos An or mPsin Ain, where p is a non-
negative constant and A is a number such that 0<2<w. Now we assume
that the stationary process {x(n); n € Z} is purely nondeterministic and
weakly mixing, and satisfies the condition

lim 3 |E (a(k) E (s(n)|F))|=0 .

n—oo k=n+1

Then, the distribution of n=?"*"' i‘, c(k)x(k) converges to the normal dis-
k=1

tribution with zero mean and variance n(2p+1)~'s(2), where s denotes a
spectral density of {x(n); neZ}.

Proor. We put

dny=3 ek, ym)=dm)y 3 olk)a(k)
and

yi(m)=d(n)" 33 (k) a(k) ~E (a(k) | F+-.))
where &,=U"%,. Then we have easily

E (y(n)—y,(n))}'<E (E (2(0)|F_,)")+2 k;ﬂ |E (@(k) E (2(r)|Lo)]

which can be made arbitrarily small by letting r large. Now, the
central limit theorem (c.l.t) for {y,(n); n € Z} is established in the
proof of Theorem 1 of Hannan [9]. Therefore we complete the proof.

LEMMA 5. Under the same assumption as in Theorem 2, the sta-
tionary process Z, is purely nondeterministic and weakly mixing, and
satisfies the condition

oo

(7) lim 3 |E (Z(k) E (Zm)| HoV T)|=0

Proor. First we prove (7). For brevity, we write E,( ) for the
conditional expectation given J1, and {N(nd, (n+1)3]=[} simultaneously.
We put J1=V Jl,. Then we have

teR
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E (Z(0) E (Zi(m)| HoV 90| 9)
=5 1B {P V2, (n+1)0]=U| %) E. 3} E (X () B (X(s,) | M)} ,

where {t;; 1<i<m} and {s;; 1=<j<l} denote epochs when events of
N occuring in intervals (kd, (k+1)8] and (nd, (n+1)3] respectively.
Hence we can deduce
|E (Zy(k) E (Zy(n)| MoV T))|
=¢i(n, k) E (N(k3, (k+1)3] E (N(nd, (n+1)d]|IL))
=¢i(n, k) E(N(O, oT) .
Accordingly, the assumption (5) implies (7).
Finally, noting the mutual independence of X and N, we can prove

easily that Z, is weakly mixing as in the lemma of Hannan [9]. Thus
we complete the proof.

Now we establish the c.l.t. for

Up=T-" S: cos wtdW(t) , Ve=T-n S: sin wtdW(t) ,

Rp=T-" S: tcoswtdW(t),  Sp=T-" S: t sin wtdW(2) .
where dW(t)=Y(©)AN(t)— pm(t)dt =dZ(t)+m(E) (AN ) —pdt).

LEMMA 6. Under the same assumption as in Theorem 2, as T— oo,
the joint distribution of (Ur, Vi, Ry, S;) converges to the mormal distri-
bution with zero mean and covariance matrix

(o) +4-m@+ws@a( L 2w K

2“K>
27 37 ’

3K
where I is the 2 X 2-identity matriz, and

Ke( ).

Proor. It is sufficient to prove the c.l.t. for any linear combina-
tions of U, V,, R;, and S;. Taking Q,=T"'"* chos wtdZ(t) and P,=
0
T
T2 So cos 20t(d N(t)— pBdt) as typical terms in these linear combinations,

we shall give the detailed proof only for these terms. As is easily
seen, it suffices to show the ec.l.t. when T tends to infinity through

{nd; n=1,2,---}. We put Q.,(n)zn“/ZEZ,,(k) cos wkd. Then we have
k=0
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E @u—0""Qm)<d0 | 1dC,w),

where dC,(u) denotes the reduced covariance measure of Z. Denoting
the covariance function of X by R(u) and reduced covariance measure
of N by dCy(u), we have dC;(u)=R(u)dCy(u)+pR(u)du (see Daley and
Vere Jones [5], p. 340). Then, from the assumptions on R(w) and
dCy(u), it follows that dC,(u) is totally finite on R. Accordingly, let-
ting ¢ small, we can approximate @,; arbitrarily by 4-*Q,(n) uniformly
in n. Now Lemmas 4 and 5 show that, for d<rne™, the distribution
of Q,(n) converges to the normal distribution with zero mean and vari-
ance nd 'h,(w) as m—oo. Furthermore, using Lemma 2, we can easily
see that 1}1? 07 *hs(w)=h(w). Accordingly, the distribution of Q; con-

verges to the normal distribution with zero mean and variance wh(w)
as T—oo. Similarly, using the assumption (6), we can prove the c.l.t.
for P,. Therefore, with the aid of the Cramér-Wold technique, we
complete the proof.

PROOF OF THEOREM 2. We can prove the theorem in the same
way as in Hannan [8]. First we note that T 'I}(w)=T" wr—w)-
(—T-*I}(&7)), where I} and I} denote the first and the second deriv-
atives of I, respectively, and @, is a number between v and &,. Using
Lemma 3, we can prove that

im T2 IY(6;) = — (24)~'fH(a*+ b)) a.s.

T —00
Moreover, we can show that
T I}(w)=p(—270U;+27'aV, +bR; —aSr)+er ,

where e, denotes the term which converges to zero in probability.
Accordingly, Lemma 6 implies the c.l.t. for 7% &, —w). Furthermore,
we can show that

T"ar—a)=2p"'U,—27"bT" @; —w)+§r
and
TY(b, —b)=28""Vy+2-'aT"*dr—w)+7r ,

where £, and 7, denote the terms which converge to zero in probability.

Hence follows the c.l.t. for T"*a,—a) and T‘/’(I;T—b). Thus the proof
is completed.

Remark 1. As will be expected, when the sampling rate 3 tends
to infinity, the asymptotic covariance matrix in Theorem 2 reduces to
the same form 4r(a’+b*)~'g(w)>; as was obtained by Walker [15], Hannan
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[8], and Ivanov [10] in the case of nonrandom complete sampling of Y.

4. Random sampling by stationary delayed renewal processes

In this section we study the random sampling scheme according to
a stationary delayed renewal process N. Following Daley and Vere
Jones [5], p. 310, we define N by specifying its points as {&, &_;, &+

kﬁ] Nks *5_1—i 7 (=1,2,--.)}, where {5,; ne€ Z, n+0} is a sequence
=1 k=1

of independent and identically distributed nonnegative random variables
which have a common distribution function A with a finite first mo-
ment 87, and &, and ¢§_, are nonnegative random variables which are
independent of {»,; » € Z, n+0} and have the joint distribution P (¢,

<u, £, Zv)=4 S:(A(w—l—v)—A(w))dw. We define the renewal function

H by H =§‘;, A" where A™* denotes the n-fold convolution of A with
n=1

itself. Then, the reduced covariance measure of N is given by dC(u)
=pdd,(u)+B(dH(u|)—pBdu), where 3, denotes the Dirac measure at the
origin (see Daley and Vere Jones [5], p. 323).

THEOREM 3. Assume that A™ has a mon-trivial a.c. component for
some n. Then, if A has a finite second moment, N satisfies the assump-
tion im Theorem 1. Furthermore, if A has a finite fourth moment, N
satisfies the assumption in Theorem 2.

Proor. If A has a finite second moment, then, by a theorem of
Smith (see Stone [13]), we have Sw |dH(u)—pdu|<oo. Accordingly, dC(w)
0

is totally finite. Thus N has a bounded continuous spectral density.
Now we prove the condition (6) introduced in the Section 8. For
this purpose, it suffies to show that

(8) 33 var (E (Ni(k)| 90)*< o0

for any 4>0. For brevity, we put 6=1. Denote the conditional dis-
tribution function of &, given ¢_, by dAj(u|é_;). Then we have

(9)  IE@(, k+1117—
<[ 1B @0 ke 11ig=u, 6 ) ldAule)

+{, B WG bt 1)e=u, £.)+8ldAulE)

Note that E (N(k, k+1]|&=u, é_)=H(k—u, k—u—+1] for 0<u<k, and
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sup E (N(k, k+1]|&=mu, 5_1)§§1§? H(u, u+1]<oo. Then, from (9), we

can deduce

(10) var (E (Ni(k)| Th))* < var (e(27'k)+C, P (§>27'k | £_,)
<e(27'k)+C, P (£,>27'k)2,

where ¢(27'k)= sup |H(u, u+1]—8|, and C, is a positive constant. Using

u22"'k
a theorem of Stone [13], we have ¢(27'k)<C,k™? and moreover, noting
that &+¢&_, has the distribution function gudA(w), we have P (§,>27'k)
<Cik®, where C, and C; are positive constants. Then (8) follows from
(10) immediately.
Next we show that N is purely nondeterministic. We put Jl_.=
tDR Jl,. By the martingale convergence theorem and the fact (8), we

have
var (E (N(k3, (k+1)3]| T_..)) =lim var (E (N(k3, (k+1)3]|70-..))
=lim var (E (N((k+mn)3, (k+n+1)3]| k)
=0.

Thus, E (N(kd, (k+1)]|J1_.,) is a constant a.s. for any ke Z and 3>0.
Then we can easily show that E (N(B)|Jl_.) is a constant a.s. for any
bounded Borel set B. Thus N is purely nondeterministic.

Finally we prove that N is mixing, a fortiori, weakly mixing. As
is easily seen, for this purpose, it is sufficient to show that

1) lim B[P (M(?) € S|Tl)—P (M(2) € S)|=0 ,

for any subset S on Z" and for M(t)=(N(B,+t), N(B;+t),- -+, N(B,+t)),
where B, (j=1, 2,---,n) are any bounded Borel sets contained in (0, o0),
and B,+t={u+t; u€ B,}. Denote the distribution function of &, by
A,. For any t>0, we have

12 [Pz~ P @0 € Sla=widlc|

<P ($o>2_1tlf—1) ’

and

19 |Par®es)-| PM© €Sia=udam|sP E>2).
Now, a renewal theorem shows that lim P (M(t) € S|£,=0) exists (see

Feller [6], p. 379). We denote this limit by p. Then, noting that
P (M) e S|¢éy=u)=P (M(t—u) € S|£,=0) for 0<u<t and using (12) and
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(13), we can deduce

|P (M(2) € S|Tl)—P (M(2) € S)|
= S;zl_Igth (M(s) € S|§0=0)—p|+2(P (§>27'|£_)+P (§>277)) .

Hence (11) follows immediately. Thus we complete the proof of the
theorem.

Remark 2. Suppose that A is a uniform distribution on an inter-
val (d—e, d+¢), where d and e are constants such that d>¢>0. Then,
even if ¢ is arbitrarily small, that is, N is nearly a deterministic point
process with interval length d, N satisfies the assumptions in Theorem
3. Another interesting point process which satisfies these assumptions
is a Poisson process.
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