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Summary

Let X be a random variable from the one-parameter exponential
family with the probability element A(6) exp (dx)dm(x) for which an
ambiguous prior information is available to the effect that ¢ is likely
to be larger than or equal to a known constant. The information is
represented by a fuzzy set with the membership function yx(6). Then
it is shown that X +Sm x'(0)8(6) exp (0X)d(i/gw x(6)8(0) exp (6 X)do is

an admissible estimator for E,(X) under the quadratic loss function.

1. Introduction

Let X be a random sample from the one-parameter exponential
family with the probability element A(#) exp (6x)dm(x), where 6 € 2=
(—o0, ). We consider the estimation for A(f)=E,(X) on the basis of
X under the quadratic loss function. Karlin [4] gave a sufficient con-
dition for yX with a constant y to be an admissible estimator for h(6).
Katz [5] showed that if the parameter space £ is truncated so that 6 is

known to be =a for a fixed a, then X+ 5(a) exp (aX) / Sw B(0) exp (6X)do

is admissible for A(6).

In this paper we suppose that the parameter space is loosely trun-
cated so that ¢ is likely to be =a for a fixed a. This ambiguous
information may be represented by a membership function x(-), follow-
ing the theory of fuzzy sets by Zadeh [6]. The membership function
x(-) is a generalization of the characteristic function of an ordinary
set, mapping the parameter space £ into the interval [0, 1]. Specifi-
cally, x(6) is one for # being sufficiently larger than a, is zero for
6 being sufficiently smaller than a and satisfies 0<y(f)<1 near a.
The value of y(0) indicates the grade for each point # to belong to
the fuzzy set ‘60 is likely to be =a.” Then we shall show that
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X +Sm x'(0)8(0) exp (60X )dﬂ/ Sw 1(0)B(0) exp (X )d0 is an admissible esti-
mator for h(f), extending the estimators by Karlin [4] and Katz [5].
We note that our estimator is a special case of a generalized Bayes
estimator. Some proofs of admissibility for such a general problem
have been given (e.g. See Farrel [2], Theorem 3.1). In particular, since
elements of a exponential family are absolutely continuous each other,
the assumption of Theorem 2.1 (Zidek [7]) is satisfied and the admissi-
bility of a estimator is implied by its almost admissibility. And suffi-
cient conditions for the almost admissibility were given by James and
Stein [3] (Theorem 3.1) and Zidek [7] (Theorem 2.2). But generally
these conditions are difficult to check. In this paper we can prove the
admissibility of our estimator comparatively simply using a property
of a membership function.

2. Results

In this section we give some assumptions, the main theorem and
some remarks, leaving the proof of the theorem to the next section.

ASSUMPTION 1. #(0) is differentiable.

AssUMPTION 2. There exists a positive number M (—M=Zax<M)
such that y(0)=0 for each §<—M and y(#)=1 for each 6=M.

Since if x(0) is not differentiable x(6) can be smoothed without a
significant influence to the result, Assumption 1 is not too severe. And
Assumption 2 is quite reasonable as we stated in Section 1. Further-
more we consider the exponential family which satisfies the following
assumptions.

AssumpTION 3. For each x, B(6) exp (dx) >0 as 8 — +oo.

Next we define

A@={"_xp0)exp0mds,  B)=|"_7()86) exp (92)d0,

and give another assumption.

ASSUMPTION 4. There exist m-integrable functions f and g such
that for each ¢>0 and for each «,

[B(x)A(x—1[0)— B(x—1/0) A(x)*/[A (%) A(x —1/o)] < f () ,
and

| B(2)A(x—1/0) A(x)| < g(x) -
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From above assumptions, we obtain the next theorem.

THEOREM. If Assumptions 1-4 are satisfied, then
(1) dX)=X+|"_ 100 exp 0X)d0/|"_2(0)p(6) exp (0X)dt
=X+ B(X)/A(X)
18 an admissible estimator for h(0) under the quadratic loss function.

Remark 1. Since the sum of n random variables from an ex-
ponential family is sufficient and also belongs to an exponential family,
there is no loss of generality in restricting ourselves to a single random
variable.

Remark 2. Define u=inf {6; y(6)>0}. Since k() is an increasing
function of 6 and d(X) is the limit of d,(X )=Sw h(0)x(6)B(0) exp (O(X —

1/o))d0/gl 2(0)8(6) exp (0(X —1/))d6 as o— oo (see Section 3), the in-

equality d.(X)=h(u) implies that d(X)=h(u). Therefore we can state
that X, which is the maximal likelihood estimator for A(f) in the no-
restriction case, is modified by the second term of the right-hand-side
in (1) with our ambiguous information.

Remark 3. (i) When there is no restriction on the parameter
space 2, we take the characteristic function of 2=(—o0, ) as y(-).
Then the second term of the right-hand-side in (1) vanishes and we
obtain d(X)=X, which is an admissible estimator of A(f) by Karlin [4].

(ii) When the parameter space £ is truncated to [a, oo) exactly
as in Katz’ formulation [5], we take the characteristic function of [a, o)
as 7(-) and consider y'(-) as a 3-function which has total mass at a.

Then (1) becomes d(X)=X+p5(a)exp (aX )/ Sw B(6) exp (6X)dd#, which is
Katz’ admissible estimator for h(#). Therefore our estimator (1) for
h(6) is an extension of both Karlin’s and Katz’ estimators.

Example. Let X follow the normal distribution N(4,1). Since
mMo)=E, (X)=0,

A0 =X+{"_7(0) exp (—(X-0y/2)d0{"_1(0) exp (—(X—0y/2)d8

is an admissible estimator for # when we have an ambiguous restric-
tion on the parameter space.
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3. Proof of the theorem

In this section we shall state some lemmas and then give a proof
of the main theorem.

LEMMmA 1.

(2) h6)=E, (X)=—p'(8)/8(6) ,

and h'(0) is the variance of X. Therefore h(f) is an increasing func-
tion of 0.

LEMMA 2. If we take as a priori distribution

9.0)=cy(0) exp (—0/o), —00<Lli<L oo,
where ¢>0 and c=1/8°_°m 1(8) exp (—0/0)d0, then
(3) o exp (—M[o)<1/c=o exp (M/o)

and the Bayes estimator for h(6) with respect to g, is given by
(4)  d@={_mon@p0) exp (OX—1/o)dt

[”_108(0) exp (0 X1/t
=X—1jo+("_2(0)80) exp (0(X—1/0)s |
[~ 20)6(0) exp (0(X—1/o)do0
=X—-1/o+B(X—-1/0)]A(X—1/0) .
Proor. Using Assumption 2, we obtain S: exp (—0/a)di=1/c<

Sm exp (—0/o)dd, from which (3) follows. The second equality in (4)
-M

is obtained by integration by parts and Assumption 3 after using (2).
Note that d, converges to d(X)=X+B(X)/A(X) as ¢ — oo.

LEMMA 3. The risk functions of the estimators d, and d are given
respectively by
R(0, d,)=E, [d.(X)—h0O))
=h'(6)+1/6*+2 E, [XB(X—1/s)| A(X—1/0)]
—2h(6) E, [B(X—1/0)] A(X—1/0)]
+E, [B(X—1/s)A(X—1/o)}*
—(2/0) E, [B(X—1/0)/ A(X—1[0)] ,
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and

R(9, d)=R'(0)+2 E, [XB(X)/A(X)]
—2h(6) E, [B(X)/A(X)]+E, [B(X)/A(X)].

The Bayes risks of d, and d with respect to g, are given respectively by
(5) (g d)=|"_ RO, dex(0) exo (~0/o)ds
- S: 1/(6)cx(6) exp (—6/o)d0-+1/q*

—c| Ba—1/0)] Az —1/o)dm(z)
and
(6) (0., d)=|"_R(O)ex(6) exp (~0/o)d0

—2 S B(z)B(@—1/o)] A(x)dm()

+(2e/o) | B@)A@—1/o)/ A(w)im()

+e S B(@)A(z—1/0)] AXw)dm(z) .

The proof of this lemma is straightforward.

ProorF oF THE THEOREM. Now we shall show that d(X)= X+ B(X)/
A(X) is admissible. The method of the proof is due to Blyth [1].
Suppose that d is not admissible. Then there exists an estimator d*
such that

(7) R(0,d*)<R(0, d) for all ¢,
and
R(6,, d¥)< R(6,, d) for at least one 4,.

We may assume that 6, is an interior point of the support of x(-).
For we can interpret that § with x(4)=0 is not realizable. Since R(f, d*)
is continuous in #, there exist some positive number ¢ and some in-
terval (4, 8) which is included in the interior points of the support of
¥(+) such that for each 6 € (4, 8),

(8) R(0, d¥)< R(8, d)—c¢ .
It suffices to show that for sufficiently large o(>0),
(9) [(9., ) —1(g., d¥))/[r(g., d)—7(g., d.)]>1,
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since this implies 7(g,, d*)<r(g,, d,) (the denominator of (8) is clearly
nonnegative), contradicting the fact that d, is a Bayes estimator with
respect to g,.

Now, by (5) and (6) the denominator of (9) is written as

10) (g, d)—r(g., d,)
=—2 S B(2)B(x—1/0)| A(z)dm(z)

+(2/0) | B@)A@—1/o)] Al)imiz)
+¢ | B(@)A@—1/o)/ Axx)im(z)
+e S BY(%—1/0)| A(@—1/o)dm(z)—1/*
=c | [B@)A(w—1/0)—~ Ba—1/o) A A(@) Alw—1/o)ldm(z)
+(20l0) | B@)A(@—1/o)] AmMdm(w)~1/o".

On the other hand by integrating (7) by g, and by taking (8) into
account, the numerator of (9) becomes

(11) (9., d)— (g, d¥)>ec g 4(0) exp (—6Jo)if=cK ,

where K is a positive constant. Then from (10) and (11) it follows that

12) [~(g., d)—r(g., d)/[r(g,, d)—7(g., d.)]
>K / [S [B(x)A(z —1/0)— Bz —1/0) A(@)} /[ A%@) A(z — 1/o)ldm()

+(2)0) S B(w)A(x—l/a)/A(x)dm(oc)—-1/(ca2)] .

The first term and the second term of the denominator of the right-
hand-side in (12) converges to zero by Assumption 4 and Lebesgue
dominated convergence theorem, whereas the third term converges to
zero by (8). Therefore the relation (9) holds for sufficiently large o.
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