AN ADMISSIBLE ESTIMATOR IN THE ONE-PARAMETER EXPONENTIAL FAMILY WITH AMBIGUOUS INFORMATION

YASUSHI NAGATA

(Received June 23, 1982; revised Sept. 30, 1982)

Summary

Let X be a random variable from the one-parameter exponential family with the probability element $\beta(\theta) \exp{(\theta x)} dm(x)$ for which an ambiguous prior information is available to the effect that θ is likely to be larger than or equal to a known constant. The information is represented by a fuzzy set with the membership function $\chi(\theta)$. Then it is shown that $X + \int_{-\infty}^{\infty} \chi'(\theta)\beta(\theta) \exp{(\theta X)} d\theta / \int_{-\infty}^{\infty} \chi(\theta)\beta(\theta) \exp{(\theta X)} d\theta$ is an admissible estimator for $E_{\theta}(X)$ under the quadratic loss function.

1. Introduction

Let X be a random sample from the one-parameter exponential family with the probability element $\beta(\theta) \exp{(\theta x)} dm(x)$, where $\theta \in \Omega = (-\infty, \infty)$. We consider the estimation for $h(\theta) = \mathbb{E}_{\theta}(X)$ on the basis of X under the quadratic loss function. Karlin [4] gave a sufficient condition for γX with a constant γ to be an admissible estimator for $h(\theta)$. Katz [5] showed that if the parameter space Ω is truncated so that θ is known to be $\geq a$ for a fixed a, then $X + \beta(a) \exp{(aX)} / \int_a^\infty \beta(\theta) \exp{(\theta X)} d\theta$ is admissible for $h(\theta)$.

In this paper we suppose that the parameter space is loosely truncated so that θ is likely to be $\geq a$ for a fixed a. This ambiguous information may be represented by a membership function $\chi(\cdot)$, following the theory of fuzzy sets by Zadeh [6]. The membership function $\chi(\cdot)$ is a generalization of the characteristic function of an ordinary set, mapping the parameter space Ω into the interval [0, 1]. Specifically, $\chi(\theta)$ is one for θ being sufficiently larger than a, is zero for θ being sufficiently smaller than a and satisfies $0 < \chi(\theta) < 1$ near a. The value of $\chi(\theta)$ indicates the grade for each point θ to belong to the fuzzy set ' θ is likely to be $\geq a$.' Then we shall show that

Key words: Admissibility; fuzzy set; membership function.

 $X + \int_{-\infty}^{\infty} \chi'(\theta)\beta(\theta) \exp(\theta X)d\theta / \int_{-\infty}^{\infty} \chi(\theta)\beta(\theta) \exp(\theta X)d\theta$ is an admissible estimator for $h(\theta)$, extending the estimators by Karlin [4] and Katz [5].

We note that our estimator is a special case of a generalized Bayes estimator. Some proofs of admissibility for such a general problem have been given (e.g. See Farrel [2], Theorem 3.1). In particular, since elements of a exponential family are absolutely continuous each other, the assumption of Theorem 2.1 (Zidek [7]) is satisfied and the admissibility of a estimator is implied by its almost admissibility. And sufficient conditions for the almost admissibility were given by James and Stein [3] (Theorem 3.1) and Zidek [7] (Theorem 2.2). But generally these conditions are difficult to check. In this paper we can prove the admissibility of our estimator comparatively simply using a property of a membership function.

2. Results

In this section we give some assumptions, the main theorem and some remarks, leaving the proof of the theorem to the next section.

ASSUMPTION 1. $\gamma(\theta)$ is differentiable.

ASSUMPTION 2. There exists a positive number M $(-M \le a \le M)$ such that $\gamma(\theta) = 0$ for each $\theta \le -M$ and $\gamma(\theta) = 1$ for each $\theta \ge M$.

Since if $\chi(\theta)$ is not differentiable $\chi(\theta)$ can be smoothed without a significant influence to the result, Assumption 1 is not too severe. And Assumption 2 is quite reasonable as we stated in Section 1. Furthermore we consider the exponential family which satisfies the following assumptions.

Assumption 3. For each x, $\beta(\theta) \exp(\theta x) \to 0$ as $\theta \to \pm \infty$.

Next we define

$$A(x) = \int_{-\infty}^{\infty} \chi(\theta) \beta(\theta) \exp{(\theta x)} d\theta$$
, $B(x) = \int_{-\infty}^{\infty} \chi'(\theta) \beta(\theta) \exp{(\theta x)} d\theta$,

and give another assumption.

ASSUMPTION 4. There exist *m*-integrable functions f and g such that for each $\sigma > 0$ and for each x,

$$[B(x)A(x-1/\sigma)-B(x-1/\sigma)A(x)]^2/[A^2(x)A(x-1/\sigma)] < f(x)$$
,

and

$$|B(x)A(x-1/\sigma)/A(x)| < g(x)$$
.

From above assumptions, we obtain the next theorem.

THEOREM. If Assumptions 1-4 are satisfied, then

(1)
$$d(X) = X + \int_{-\infty}^{\infty} \chi'(\theta) \beta(\theta) \exp(\theta X) d\theta / \int_{-\infty}^{\infty} \chi(\theta) \beta(\theta) \exp(\theta X) d\theta$$
$$= X + B(X) / A(X)$$

is an admissible estimator for $h(\theta)$ under the quadratic loss function.

Remark 1. Since the sum of n random variables from an exponential family is sufficient and also belongs to an exponential family, there is no loss of generality in restricting ourselves to a single random variable.

Remark 2. Define $u=\inf\{\theta\,;\,\chi(\theta)>0\}$. Since $h(\theta)$ is an increasing function of θ and d(X) is the limit of $d_{\sigma}(X)=\int_{-\infty}^{\infty}h(\theta)\chi(\theta)\beta(\theta)\exp\left(\theta(X-1/\sigma)\right)d\theta$ as $\sigma\to\infty$ (see Section 3), the inequality $d_{\sigma}(X)\geq h(u)$ implies that $d(X)\geq h(u)$. Therefore we can state that X, which is the maximal likelihood estimator for $h(\theta)$ in the norestriction case, is modified by the second term of the right-hand-side in (1) with our ambiguous information.

- Remark 3. (i) When there is no restriction on the parameter space Ω , we take the characteristic function of $\Omega = (-\infty, \infty)$ as $\chi(\cdot)$. Then the second term of the right-hand-side in (1) vanishes and we obtain d(X) = X, which is an admissible estimator of $h(\theta)$ by Karlin [4].
- (ii) When the parameter space Ω is truncated to $[a, \infty)$ exactly as in Katz' formulation [5], we take the characteristic function of $[a, \infty)$ as $\chi(\cdot)$ and consider $\chi'(\cdot)$ as a δ -function which has total mass at a. Then (1) becomes $d(X) = X + \beta(a) \exp(aX) / \int_a^\infty \beta(\theta) \exp(\theta X) d\theta$, which is Katz' admissible estimator for $h(\theta)$. Therefore our estimator (1) for $h(\theta)$ is an extension of both Karlin's and Katz' estimators.

Example. Let X follow the normal distribution $N(\theta, 1)$. Since $h(\theta) = \mathbb{E}_{\theta}(X) = \theta$,

$$d(X) = X + \int_{-\infty}^{\infty} \chi'(\theta) \exp\left(-(X-\theta)^2/2\right) d\theta / \int_{-\infty}^{\infty} \chi(\theta) \exp\left(-(X-\theta)^2/2\right) d\theta$$

is an admissible estimator for θ when we have an ambiguous restriction on the parameter space.

3. Proof of the theorem

In this section we shall state some lemmas and then give a proof of the main theorem.

LEMMA 1.

(2)
$$h(\theta) = \mathbf{E}_{\theta}(X) = -\beta'(\theta)/\beta(\theta),$$

and $h'(\theta)$ is the variance of X. Therefore $h(\theta)$ is an increasing function of θ .

LEMMA 2. If we take as a priori distribution

$$g_{s}(\theta) = c\chi(\theta) \exp(-\theta/\sigma), \quad -\infty < \theta < \infty,$$

where $\sigma > 0$ and $c = 1 / \int_{-\infty}^{\infty} \chi(\theta) \exp(-\theta/\sigma) d\theta$, then

(3)
$$\sigma \exp(-M/\sigma) \le 1/c \le \sigma \exp(M/\sigma)$$

and the Bayes estimator for $h(\theta)$ with respect to g, is given by

$$(4) d_{\sigma}(X) = \int_{-\infty}^{\infty} h(\theta) \chi(\theta) \beta(\theta) \exp(\theta(X - 1/\sigma)) d\theta \Big|$$

$$\int_{-\infty}^{\infty} \chi(\theta) \beta(\theta) \exp(\theta(X - 1/\sigma)) d\theta \Big|$$

$$= X - 1/\sigma + \int_{-\infty}^{\infty} \chi'(\theta) \beta(\theta) \exp(\theta(X - 1/\sigma)) d\theta \Big|$$

$$\int_{-\infty}^{\infty} \chi(\theta) \beta(\theta) \exp(\theta(X - 1/\sigma)) d\theta \Big|$$

$$= X - 1/\sigma + B(X - 1/\sigma)/A(X - 1/\sigma).$$

PROOF. Using Assumption 2, we obtain $\int_{M}^{\infty} \exp(-\theta/\sigma)d\theta \leq 1/c \leq \int_{-M}^{\infty} \exp(-\theta/\sigma)d\theta$, from which (3) follows. The second equality in (4) is obtained by integration by parts and Assumption 3 after using (2).

Note that d_{σ} converges to d(X) = X + B(X)/A(X) as $\sigma \to \infty$.

LEMMA 3. The risk functions of the estimators d, and d are given respectively by

$$\begin{split} R(\theta, d_{\sigma}) &= \mathrm{E}_{\theta} \left[d_{\sigma}(X) - h(\theta) \right]^{2} \\ &= h'(\theta) + 1/\sigma^{2} + 2 \; \mathrm{E}_{\theta} \left[XB(X - 1/\sigma) / A(X - 1/\sigma) \right] \\ &- 2h(\theta) \; \mathrm{E}_{\theta} \left[B(X - 1/\sigma) / A(X - 1/\sigma) \right] \\ &+ \mathrm{E}_{\theta} \left[B(X - 1/\sigma) / A(X - 1/\sigma) \right]^{2} \\ &- (2/\sigma) \; \mathrm{E}_{\theta} \left[B(X - 1/\sigma) / A(X - 1/\sigma) \right] \; , \end{split}$$

and.

$$R(\theta, d) = h'(\theta) + 2 \operatorname{E}_{\theta} [XB(X)/A(X)]$$

$$-2h(\theta) \operatorname{E}_{\theta} [B(X)/A(X)] + \operatorname{E}_{\theta} [B(X)/A(X)]^{2}.$$

The Bayes risks of d_a and d with respect to g_a are given respectively by

(5)
$$r(g_{\sigma}, d_{\sigma}) = \int_{-\infty}^{\infty} R(\theta, d_{\sigma}) c \chi(\theta) \exp(-\theta/\sigma) d\theta$$
$$= \int_{-\infty}^{\infty} h'(\theta) c \chi(\theta) \exp(-\theta/\sigma) d\theta + 1/\sigma^{2}$$
$$-c \int B^{2}(x-1/\sigma)/A(x-1/\sigma) dm(x) ,$$

and.

$$(6) r(g_{\sigma}, d) = \int_{-\infty}^{\infty} h'(\theta) c\chi(\theta) \exp(-\theta/\sigma) d\theta$$

$$-2c \int B(x)B(x-1/\sigma)/A(x) dm(x)$$

$$+(2c/\sigma) \int B(x)A(x-1/\sigma)/A(x) dm(x)$$

$$+c \int B^{2}(x)A(x-1/\sigma)/A^{2}(x) dm(x) .$$

The proof of this lemma is straightforward.

PROOF OF THE THEOREM. Now we shall show that d(X) = X + B(X) / A(X) is admissible. The method of the proof is due to Blyth [1]. Suppose that d is not admissible. Then there exists an estimator d^* such that

(7)
$$R(\theta, d^*) \leq R(\theta, d)$$
 for all θ ,

and

$$R(\theta_0, d^*) < R(\theta_0, d)$$
 for at least one θ_0 .

We may assume that θ_0 is an interior point of the support of $\chi(\cdot)$. For we can interpret that θ with $\chi(\theta)=0$ is not realizable. Since $R(\theta, d^*)$ is continuous in θ , there exist some positive number ε and some interval $(\underline{\theta}, \overline{\theta})$ which is included in the interior points of the support of $\chi(\cdot)$ such that for each $\theta \in (\underline{\theta}, \overline{\theta})$,

(8)
$$R(\theta, d^*) < R(\theta, d) - \varepsilon.$$

It suffices to show that for sufficiently large $\sigma(>0)$,

$$[r(g_{\sigma}, d) - r(g_{\sigma}, d^*)]/[r(g_{\sigma}, d) - r(g_{\sigma}, d_{\sigma})] > 1,$$

since this implies $r(g_{\sigma}, d^*) < r(g_{\sigma}, d_{\sigma})$ (the denominator of (8) is clearly nonnegative), contradicting the fact that d_{σ} is a Bayes estimator with respect to g_{σ} .

Now, by (5) and (6) the denominator of (9) is written as

(10)
$$r(g_{\sigma}, d) - r(g_{\sigma}, d_{\sigma})$$

 $= -2c \int B(x)B(x-1/\sigma)/A(x)dm(x)$
 $+ (2c/\sigma) \int B(x)A(x-1/\sigma)/A(x)dm(x)$
 $+ c \int B^{2}(x)A(x-1/\sigma)/A^{2}(x)dm(x)$
 $+ c \int B^{2}(x-1/\sigma)/A(x-1/\sigma)dm(x) - 1/\sigma^{2}$
 $= c \int [B(x)A(x-1/\sigma) - B(x-1/\sigma)A(x)]^{2}/[A^{2}(x)A(x-1/\sigma)]dm(x)$
 $+ (2c/\sigma) \int B(x)A(x-1/\sigma)/A(x)dm(x) - 1/\sigma^{2}$.

On the other hand by integrating (7) by g_a and by taking (8) into account, the numerator of (9) becomes

(11)
$$r(g_{\sigma}, d) - r(g_{\sigma}, d^*) > \varepsilon c \int_{\theta}^{\bar{\theta}} \chi(\theta) \exp(-\theta/\sigma) d\theta = cK,$$

where K is a positive constant. Then from (10) and (11) it follows that

(12)
$$[r(g_{\sigma}, d) - r(g_{\sigma}, d^{*})]/[r(g_{\sigma}, d) - r(g_{\sigma}, d_{\sigma})]$$

$$> K / \left[\int [B(x)A(x-1/\sigma) - B(x-1/\sigma)A(x)]^{2} / [A^{2}(x)A(x-1/\sigma)]dm(x) + (2/\sigma) \int B(x)A(x-1/\sigma)/A(x)dm(x) - 1/(c\sigma^{2}) \right].$$

The first term and the second term of the denominator of the right-hand-side in (12) converges to zero by Assumption 4 and Lebesgue dominated convergence theorem, whereas the third term converges to zero by (3). Therefore the relation (9) holds for sufficiently large σ .

OSAKA UNIVERSITY

REFERENCES

- [1] Blyth, C. R. (1951). On minimax statistical decision procedures and their admissibility, Ann. Math. Statist., 22, 22-42.
- [2] Farrel, R. H. (1966). Weak limits of sequences of Bayes procedures in estimation theory, Proc. 5th Berkeley Symp. Math. Statist. Prob., 1, 83-111.
- [3] James, W. and Stein, C. (1961). Estimation with quadratic loss, Proc. 4th Berkeley Symp. Math. Statist. Prob., 1, 361-379.

- [4] Karlin, S. (1958). Admissibility for estimation with quadratic loss, Ann. Math. Statist., 29, 406-436.
- [5] Katz, M. W. (1961). Admissible and minimax estimates of parameters in truncated spaces, Ann. Math. Statist., 32, 136-142.
- [6] Zadeh, L. A. (1965). Fuzzy sets. Inf. Control, 8, 338-353.
- [7] Zidek, J. V. (1970). Sufficient conditions for the admissibility under squared errors loss of formal Bayes estimators, *Ann. Math. Statist.*, 41, 446-456.