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ON AN APPROXIMATION FOR A MULTI-STAGE DECISION PROBLEM
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Summary

An approximation procedure based on conditional expectation and
minimization operations is considered for a multi-stage decision problem
from mathematical view point. This approximation procedure is appli-
cable to adaptive decision processes, i.e., decision processes including
unknown parameters.

1. Introduction
Consider the model,
(11 z=Ax+Bu;+q;, =0, ---, N—1,

where N is a positive integer, all A’s and B’s are (n, n)- and (n, r)-
known constant real valued matrices, respectively, xz, and ¢’s are m-
dimensional real valued random vectors on some probability space, (W,
F, P), and each u; is a function of (x,)i., which may depend on the
selection of (u,)iz}. Each x;, u, and g, are called the state, the deci-
sion, and the plant noise at the ith stage, respectively. It is assumed
that each z, is accurately observed at the ith stage, =0, .-+, N—1,
z, and all ¢’s have finite variance matrices and the probability distri-
bution of (&, (¢)¥=Y), P(x, (g)¥=), is independent of the choice of ().
The loss function is defined as

1.2) J:=é W,

where W, is the loss function of the decision at the (¢—1)th stage,
which depends only on (x;, u;_,), written as W,=W(x,, w,_y). It is well-
known that the multi-stage decision problem of finding %’s which mini-
mize the expected loss, E (J|x,), under the given distribution, P, (gi¥=),
is solved by the backward induction or by the DP-algorithm, i.e., by
the functional equation,
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(1.3) r¥=min {E (W,+r¥.|2"Y); u,_, € R}

=E (Wt+7’;k+x|xi—1)lui_l=u’§_l ’
where «‘~':=(,)iz; and ¢=1, ---, N and 7y,,;:=0. The minimization in
(1.3) is carried out for any given «‘~' and u'*:=(u,)iz}, u™':=0, and
u¥, is one of the values which minimize the conditional expected loss,
(1.4) 1o =B (W+rk e,

where 7, depends on 2! and the choice of '"%. For applications of
(1.3) see, for example, Aoki [1], Chapter I-Chapter III, or for concise
exposition, see, for example, Suzuki [4], Chapter 6 (In general the
sequence of the symbols, (2,)i-,, is written 2%, i.e., 2:=(2,)i=,, and put
z71:=0.).

Consider any random variable, 4, defined on (W, F, P), such that
Piz, 1,0 is independent of the choice of »”~' and the functional equation,

(1.5)  r¥=min{r,; wi€RY=ri0lu_ =3, ,» =1+, N,
where 7y.1,,:=0 and
(1.6) 74,0:=E (W 4718100, )

(uf,, is one of the values which minimize (1.6).)

Remark that if =0, then (1.5) is identical with (1.3) in the sense of
“almost surely ”. M. Aoki considers the approximation of (1.3) by the
expectations of (1.5), using the posterior distributions of #, under some
assumptions, the range of ¢ is a finite set, the plant noises, given 6,
are independent, etc. (see Aoki [1], pp. 224-241). In the following dis-
cussions the approximation method is extended to the case such that
6 is arbitrary and the plant noises, given 6, may be dependent. The
approximation error is estimated by some procedure. In some special
cases the procedure becomes rather simple.

Unless otherwise stated, all vectors and matrices are real valued
and (a, b)y:=a'Mb, |la|:=(a, a)u V (2, y|2):=E (xy'|2)—E (x|2) E (y[2),
V (x]|2):=V (x, x|2), where a, b and M are vectors and a matrix, re-
spectively, and z, ¥ and z are random vectors and a random variable,
respectively. Any generalized inverse of a matrix, M, is written M~.
For elementary properties of generalized inverses see, for example, Iri
and Kan [2], Chapter 8, or Rao [3], Chapter I.

2. Approximation and error estimation
Consider the quantities,

(2.1) 7¥i=min{E (y,,|2*"); u.., € B’} and
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(2.2) 7¥:=E(rkla*"), 1=1,---, N+1.

These quantities are the approximations of ¥ and the errors of these
approximations are defined as

(2.3) dy:=r¥—7%F,
(2.4) dy;=r¥—-7¥, i=1,.--,N+1,
and the difference between (2.1) and (2.2) is defined by
(2.5) orii=r¥—7¥, i=1,..-, N+1.
It is clear from the definitions that (2.3), (2.4) and (2.5) are non-nega-
tive and
(2.6) dy;=y¥—¥=dy,—dy,, i=1,---,N+1.
For estimation of 4y,, =1, ---, N+1, the assumption (2.7) is used:

(2.7 E (37,|x"**) is independent of the choice of the decisions,
(w,)Yztss, for all k=0, ---,4—1, and for each =1, ---,
N+1.

Under the assumption (2.7) the following proposition (2.8) and the
formula, (2.9), are obtained:

(2.8) E (47, x"*¥) is independent of the choice of the decisions,
(w,)¥=t,, for all k=0, ---,i—1, and for each ¢=1, .-,
N+1,

and
(2.9) dy;=07+E (drp|2)
=an+E< S ar,w-l), for each i=1, .-, N+1.
J=i+1
(2.8) and (2.9) are established by the backward induction as the fol-
lowing :

For i=N+1 (2.8) and (2.9) are clear because 7y.;=0
and 7y41,,=0.

For general case assume that (2.8) and (2.9) are true for
all =541, ..., N+1, for any fixed j=<N.

Then

r¥=min E (W,+7f,|2’ ) =min E (W, + 7.+ d7;ula’™)
Uj—1 Uj—1
=min {E (Wj+7;k+1,a]xj_l)+E (ATj+1|xj_l)}

Uj—1
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=77 +E 4y ule’™),
therefore, using (2.6),
dy,=dy,—8y,=E (d7,u|2’Y), i.e.,
dy;=387,+E (d7,ul2’™) .

Therefore, from the assumption (2.7) and the induction’s assumption
(2.8) and (2.9) are established for i=j.
(In the above discussion the well-known formula,

E (E (210, »)|y)=E (x|y),

where y and 6 are random variables on (W, F, P) and « is a random
vector on (W, F, P), is used freely.)

3. Quadratic loss function
Consider the special case,
Bl Wi=Wiao =Nzl +llweilb,_,, =1, -, N,

where V, and P,_, are known constant real valued symmetric nonnega-
tive definite (n, n) and (7, r) matrices, respectively. Then the functional
equation (1.5) is solved by the backward induction as the following:

For ¢=N from (1.5) and (1.6)

(3.2) rro=lUy1—UF1olls,_ 780,

where

(3.3) U100 =—Sy_ 1By V(Ay_s&y-1+Mu_1,0) »
(3.4) Sy-1:=Py_1+By_,VyBy_,,

(3.5) My-1,0: =K (qy-1|0, 277,

(3.6) rhe=Av_@y_stMy_solls,_ +tr (VaZn_10),
(3.7) Jw-1:=Vy—VyBy (Py_1+ By VyBy_1) By Vy,
(3.8) Sy 0:=V(gy_4|0, ¥ ).

(Remark that Jy_, is symmetric nonnegative definite.)
For general case assume that
(3.9 Too= U —wE olls,_ +7¥0,

where
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uk,i= —S,B}., t(i)(At—lxt—l+m(i 114)9 y
r¥e=IA@ +mE0Ns, R,
Si_1:=P¢_1+B£—1 Vvi(i)Bi—l )
Jioi=VO—-V®B, S .Bi_, Ve,

and V is symmetric nonnegative definite (therefore J;_, is symmetric
nonnegative definite) and E (m{33|0, ') and E (R,,|6, ''7*) are in-
dependent of the choice of the decisions, (u;; j=i—1—k), for all k=
0, -, 1.

Then

(3.10) Ti-1,6= “ut—z“u;k—z,a“":s'i_z'l'T;k—u )
where
u;k—z,a:'—'—sz Bl VET (Ao o +m{SY),

Si2:=Piy+Bi_, V5B,
V&=V +AlL Ay,
MmN =M+ (VETD) Al om0
m§_, . =E (m{3h|0, x7%),
¥ L= Ai®i s+ mD|5 i_2+Rt—1,a ’
120 = V&P — VB, ,SL,BLLVED,
Ry yo:=|| mgi——lfg—z,a”?ﬁi‘ln +tr (VEPE L)
+E (R, |0, %) +tr (Jio1 28280
JEP =g =i A (VE) Al
Zi00:=V(q:i-4|0, 277,
IER0:=V(Ai_ Qi +mi3Y, mTh|0, z?),

and J,_, and J¢V are symmetric nonnegative definite and E (m{3%|d,
2"%) and E (R,_,,|0, '~*"*) are independent of the choice of the deci-
sions, (u,; j=1—2—k), for all k=0, ..., 2—1.

(Put ryi1,:=0, mi}:=0, Ry,10:=0, V§Y:=0, Jy:=0.)

Especially if =0, then the functional equation, (1.3), is solved re-
cursively by (3.9) and (3.10).
From (3.9) and (3.10) we have

8.11) uk ,=E (u¥,,|='?)
=—8.Bl_.\ V(A 21 +E (m{zh|= ), i

1, ..., N,
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and, from (2.5), we have

(3.12) 07:=E (|ufo—E (i, o Y[5,_ o)
=E (m{55—E (mi35]e )5, o)
=tr (Ci_; V (m{h| ), 4=1,..-, N,

where
(3.13) Ct_l = Vt(i)Bi_lsi—qBé-l Vi(i) .

Therefore, using (2.9) and (3.12), the error estimation of the approxi-
mation, (2.2), is accomplished because P, -1, is independent of the
choice of the decisions, ¥,

Consider the special case; ¢’s, given 0, are independently identical-
ly distributed random variables, g;|6~N,(4, %), i=0, ---, N—1, 6 ~N,(0,,
), and (¢¥%, #) and =z, are stochastically independent. 3 and 3, are
positive definite, each B,_, is equal to the unit matrix of order =, 1=
1,:--,N, and P,_,=0, 9=1,-.-, N. Then

0!(%0, qi-l)~Nn(0(i), E(i)) ’ 7:=07 tt Yy N—l ]
where 5=+, 4=0, ..., N—1, and
Or: =2 (270, +127"ei-v) » 1=0,.--,N—-1,

where
i—-1
a(i-l):=<§‘b>/i, i1=1, ..+, N-1, and g:=0.

(Remark that (x,, ¢*~!) is uniquely determined by =z'.)

Therefore

dro=tr (VS +G-1D5)™),  i=1,.-, N,

r:f,=tr(<§:3iv,)z>, i=1,.--,N, and

%f:E(r;‘ij’“‘):tr((éV,)Z‘), i=1,+-,N.
From these results
(=1 tr (VS + 2 ) <o == tr (V,Y), i=2,---, N,
and dy,=tr (V.Y,), and

«3) St (V)SHSAD B r (V),  i=1, -, N,
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where ¢(2) and ¢(J) are minimum and maximum eigenvalues of ¥, re-
spectively. Therefore by application of these inequalities 4y;, 1=1, ---,
N, etc., are estimated, for example,

N
A~T1 — 4y, —3dr, = fz]zan
7 7 7
&3) 3 (-1 tr (V)
= N
o2) 33 tr (V)
<K -(E’k*)/N:K -<log (N—1)4C——-1 +0( 1 >>/N
=Tr\aE " 2(N—1) (N—-1) ’
N—oo,
where K, := (;(é,))z?:((::((;:)) ;; ::12,’ _',’ g)) and C is Euler’s constant,
and each V,, i=1, -.-, N, is assumed to be a non-zero matrix. In the
above special case if V;=0, i=1, ..., N—1, and V, is non-zero, then

37,=0, i=1, - -+, N—=1, dyxy=tr (Va(Z;'+(N=1)3-Y)), 3¥=tr (Vy2), 41,
=dy,=0rx.
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