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Summary

Some properties of the risk set of a decision problem with n-action,
m-sample and 2-parameter are considered. It is shown that the num-
ber of vertices of the risk set is equal to mn—(t,+t;), and that the
number of essentially nonrandomized decision rules (defined in Section
1) in the minimal complete class is equal to m(n—1)+1—t,, where ¢,
and ¢, are defined in Section 2. Also, a procedure is given for getting
all nonrandomized decision rules in the minimal complete class.

1. Introduction

Let L(6, a) be the loss incurred by an action ¢ when the param-
eter value is 4. Let f(x|6) be the probability distribution of a sample
2 when the parameter value is 4.

We consider the following situation (Decision problem A): let 6=
{0, 6;}, X=A{=y, ---, x,}, and A={ay, -+, a,}, be the parameter, the
sample and the action spaces, respectively. We assume

f(x]6)>0, for xe X, and 0 €06,
( 1 ) L(al’ (14)<L(01, a2)< et <L(01v an) ’ and
L(0:, a;)> L(6y, az)> -+ - > L(6,, a,) .

To avoid any reduction of the problem, we further assume that
the action a, with 1<i<n satisfies the condition

L(0,, a:)—L(0y, @:_y) | L(6s, Qsyy)—L(65, 1) <1.

(2) L(6y, as)—L(6y, @;) L(6y, a;)—L(0, a;_,)

Let D be the set of all nonrandomized decision rules, the mapping
from the sample space X to the action space 4. Each deD can be
expressed in the coordinate form as
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d=(a, a, -+, a,)
where
a;,=d(x,) , k=1,2, .-, m.

Let 9 be the set of all convex linear combinations ¢ of nonran-
domized decision rules:

t
J=1

where d; ¢ D, r,=0 and Zt‘, m;=1. We call 4 a randomized decision rule.
j=1
The risks of d € D and 8 € @ are defined by

R(6, d)=F, L(0, d(®))=3 L0, d(@)f (:/0)
and,
R, 8)= jz R0, d,)

respectively.

We say that 8 is better than ¢’ if R(6, 3)<R(4, 8') for all €6
with an exact inequality holding for at least one 4. Decision rules 4
and d' are said to be equivalent if R(6, 3)=R(0, ¢’) for all #€ 8. A non-
randomized decision rule d is said to be essentially nonrandomized if no
randomized decision rule is equivalent to d. A rule 8 is said to be
admissible if no rule is better than 4. A subclass C of 9 is said to
be complete, if for any given rule ¢ not in C, there exists a rule in
C that is better than 8. A complete class C, is said to be minimal
complete if no proper subclass of C, is complete.

In the following section, we investigate the properties of the risk
set S of Problem A. In this decision problem, the risk set is a convex
polygon and its vertices correspond to essentially nonrandomized deci-
sion rules. We shall give in Theorem 1, a procedure for obtaining
all nonrandomized decision rules in C,. Secondly, using Theorem 1 we
give the number N, of essentially nonrandomized decision rules in C,
(Theorem 2) and the number Nj of vertices of the risk set S (Theorem 3).

2. The main result

We write 4(d,d’) to mean the slope of the line connecting the
two risk points (R(6,, d), R(6;, d)) and (R(6,, d'), R(6, d")):

~_ R0, &)—R(0, d)
4, )= g0 &—R6. 2
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The following lemma will be needed later.

LEMMA 1. Let d* be a mnonrandomized admissible decision rule.
Let D~(d*) be the set of all monrandomized decision rules d such that

(3) R(6,, d)< R(8;, d*) .
If D~(d*)#¢ and if a decision rule d** satisfies
(4) 4(a*, d**)=_ I\gg.(}g'){d(d*, d},

then d** is admaissible.

PROOF. The assertion is a direct consequence of the very defini-
tion of d**.

For a nonrandomized decision rule d=(a;,a,, -+, a;), let d'=
(@y, +++,a;) € D'(d) be the nonrandomized decision rule such that

+1 for only one k (¢,=<n—1) and
=
* T for other k.

THEOREM 1. In the Problem A suppose that a monrandomized deci-
ston rule d* is admissible, then the momrandomized decision rule d**
such that

A(d*, d**)= max {4(d*, d")}
d’eD’'(d*)
18 also admissible.

ProOOF. We are to show that
Max {4(d*, d’)}— Max {A(d* d)}.

reD'(d%)

Putting d*(x,)=a;, and d(xy)=a; .., k=1,2,---,n, we have for d¢
D~(d*),

R(6,, d)— R(6,, d*)
4@, d)= " R0, -0, D

{L(ﬂz, d(@,))— L(0;, d¥(2))} f (2] 0,)
kZ_J {L(61, d* () — LA, d())} S (2 61)

3

2 {L(OZ’ aik+ak)_L(021 aik)} f(xk!02)
L0y 04) — LB, @)} (@116

On the other hand if A(d*, d) attains its maximum at d=d** e D'(d*)
then we have for some &/,

nMs ]
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2@+, 4wy = Bl P — R0y, &%)
R(6,, d%)— R(0;, d*%)

_ {L(6,, as,,+1)— L(O:, aftk:)}f(xk’|02) .
{L(0,; a;,,)—L(0y, @y, 1)} f(2::]01)
But the condition (2) implies that

L(6,, aik,+1)"L(02y aik:)
L(6,, azk,)_L(ﬁu a«:k,+1)

is less than or larger than

L(@,, Qiyopap) — LA(Or; @1),)
L(al’ aikl)—L(ol! aik/'l-akl)

according as ,<0 or a,,>1. Then, we have

A(d*, d**)= max {4(d*, d)},
deD™(d%)

by using the inequality* that if y,, ¥/, 2; and 2, are positive numbers
such

_zig_gﬁ for q,—__—]_’ e, m,
Yi Y

4
ﬁi—§ﬁ‘- for +=1, .-+, m,
Yi Y

and if Zn}yi<§ y!, then
i=1 i=1

é zt—i P4
in=l i;—;l é_z_lg_ .
Sy—>y Y

.
1
-
.
I
-

(Put  y={L(8,, a;)—L(6,, a;_.)} f(x]6y) ,

* Since

3 5 2,
) 2i F-4]

‘Zié = and —=1—,

Ve 3y 2 vl
i=1 i=1

it follows that
— 3 A
D Q

where

Lal

n n m m
=Yk 2, 2i—2k ), yt+zk§1yi—yki)3 z}.

i=1 i=1 =1
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2= {L(ﬁzy a{—a)_L(027 a't)} f(xlﬁz) ’
y'={L(0,, a))— L(0s, @:1.)} f(x]6,) and
#'={L(0s, ay1.)—L(0s a,)} f(x]0;) where a>0.)

The desired equality follows from D'(d*)c D-(d*) and we conclude from
Lemma 1 that d** is admissible.

3. Some properties of the risk set

In this section we investigate some properties of the risk set using
Theorem 1. A decision rule 8, is said to be unfavorable if there exists
no decision rule é € @ such that

R, 3,)<R(0, 3) for all 6eé@
and
R(8, 8,)< R(8, 3) for at least one 6 €f.

Let C, be the set of all unfavorable decision rules and let N;, N, and
N, be the numbers of essentially nonrandomized decision rules in Ci,
C,, and &, respectively.

Write

Vi, 3, k)= {L(0;, a))—L(6;, a,)} f(]65) .
T {L(6y, a;)— L(0, a;)} f (x| 0,)

THEOREM 2. Let t, and t, be mumbers of quardruplet (v,7,k, k')
and doublet (k, k') which satisfy

(5) Ve, 1, k)=r@, 1, k')
and
(6) rQ, n, k)y=>Q,n, k)

where 1=, V'<n—1 and 15k, K'<m.
In Problem A, the condition (2) implies
(a) Ny=m(n—1)+1-t,
(b) N,=m+1—t, and
(¢) Ny=mn—(t,+1).

ProOOF. (a) Since S is bounded from below and closed from be-
low, the minimal complete class exists and it consists exactly of all
the admissible rules (See [1], p. 56 and p. 69). We first show that if
the condition
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(7) 7,1, k)#P(, 1, k)

for 1<14,7<n—1 and 1<k, k'<m is satisfied, then N,=m(n—1)+1.
Let dy, be a rule for which d (z;)=a, for all 7, then it is easy to
see that d, is admissible. We use the notation » (hat) to show a rule

is admissible. By Theorem 1 any rule d ¢ D’(oio) which satisfies

4(d,, d)= max {4(d,, d)}
deD'(dy)

is admissible. Starting from d,, we can find a sequence {cii} 1=0,1,
-++, m(n—1) of admissible decision rules as follows. There exists ex-

actly one rule d in D’((fo) which satisfies (7). We denote it by d,.
Similarly, if (it is given, we can find an admissible rule (im which satisfies
(8) 4(d,, diy)= max {4(d,, d)}

deD'(dy)

in D’(ci,). Since D’((im(,,_p)=¢ where d,._n(x)=a, for all i, we have
N, =zm(n—1)+1. Let us suppose that there existed another admissible

rule d* besides d], cee, cim(n_1>. Then we can take out some dAi and tim
from among dAi, R (im(,,_,, which satisfies
(9) R(6,, d)<R(6;, d¥)<R(0,, d.,,) .

Since oi,, dAH, and d* are admissible we have
(10) R(6,, d;)> R(8,, d*)> R(0,, dy.1) -
Using (9) and (10), we get
4(d,, d*) = 4(d,, d;,) -
This contradicts (8). Hence under the condition (7), N,=m(n—1)+1.

If some quardruplet (i, ', k, k') satisfies (5), then there exist rules d,,
(i,H and J,J,z, say, which satisfy

A

(11) (dr! d‘\r+1)=(dAr+17 cir+2) .
In fact, since

R(0s, d,..)—R(6:, d.)

R(6,, d.)~R(6,, d,.,)

_ AL(8y, (@)= L(0s, d, (@)} £ (w:]05)
(L(6, do())— LB, dryo(w))} £ (] 0r)

=P, 1, k)

A(dAr! dAr+l) =

and
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A(dr+1v dr+2)=7(i'! 1, k’) ’

we get (11). It is easy to see that if d,, tir+1, d,,; satisfy (11), then
ci,“ can be expressed as a convex linear combination of (i, and ti,+2.

Hence J,H can not be an essentially nonrandomized rule. Therefore if
t, quardruplets (¢, 7/, k, k') satisfied (5), we get Ny=m(n—1)+1—t,.

(b) Consider the new problem (Decision problem B) with L'(6,, a,)=
—L(0:, ar), L'(6, a)=—L(6;, ar), f'(x,10,)=f(x,|0,) and f'(x,0:)=f (x,]6,).
By the definition of C, and C,, a rule in C; of Problem A is a rule in
C, of Problem B. Since in Problem B

L'(6,, a;)—L'(6y, a;,) . L'(6;, ay.))—L'(0: a,) >1,

for =2, -+, n—1
L'(6,, @) —L'(6y, @) L'(6:, a)—L'(0s, @;_,)

by Theorem 4 in [2], all rules which call for a;, (=2, --:,n—1) are
not admissible. Therefore Problem B reduces to a 2-action problem.
Thus as in (a) we have N,=m(2—1)+1—¢t,=m+1—1t, provided that ¢,
doubles (k, k') satisfied (6).

(¢) It is easy to see that N;=N;+N;—2=mn—(t,+1,).

Example. Consider the following problem with L(6, @) and f(x|0)
given by table 1 and 2, respectively.

a as as Xy X2 X3 Xy
01 0 1 4 6, 10.40 0.30 0.20 0.10
fs 5 3 2 6, | 0.20 0.15 0.40 0.25
Table 1: L(9, a) Table 2: f(x|0)
Since
L(ol, az)—‘L(al, aq) R L(02, ag)—L(02, (13) =l<1
L0y, a;)—L(6y, a;) L(0y, a)—L(0;, a;) 6
and

7@, 2, 1)=1, F@1,22=1, r@,23)=4, F(,24)=5,

1 1 2 5

V ’ ,1'_—'_—: ’ 72=—1 72’3y3=—'1 7293’4:‘-—"!

23 D=5, 723, 2=, I )=3 ¥ =%
by Theorem 2, N,=4x2+1-2=7, N,=4+1-1=4 and N,=12—-3=9

and is also shown in Fig. 1. Furthermore by Theorem 1, we can get
the following 11 nonrandomized rules in C; (See Fig. 2),
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>

3k=(a1y @y, Gy Q)
df=(ay, a;, a;, ay)
¥ =(ay, ay, a3, ay)

>

s = (g, ay, @, @y)

>

(
((l1, @yy Az, az)

4
A= (0, @, Gy, 05)
¢i;“=(a2, @y, Ay, Ay)
¥ =(ay, as, a3, 05)
‘ia =(as, Gy, a3, @)
(io =(a,, a3, a3, @)
iﬁ)=(aa» g, Ay, Ay)

where * denote the rule is essentially nonrandomized rule.
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do*= (a4, ay, ay, ay)

4(ds d) /1 /14&5 .......................................................

(ay, ay, ay, a;)  (ay, ay, ay, a;) (ay, ay, ay, a;) l d,*=(ay, ay, ay, ﬂ‘
A(d)* d) oereeenrerenennn ) I YeeTiees 45 5/Grereernnnnneeransninnntesiesinnns
(ay, ay, ay, a;)  (ay, ay, ay, az) I dy'=(ay, a1, a, az)J (ay, ay, ay, a3)
A(d;, ) serereeeeeee et 1o TTonnns 150 2/3 §/Beceectrrarintiieriacnenteeciosiniinstaisstasirenane
rA (%@I dy=(ay, az a3, a3) l (ay, ﬂlvbasv as) (a1, a1, a3, a3)
A(dgy d) wevvee 1 ffereeLoves 2/37 5/6\ .................................................. 4(3* d
.............................................................. 1/6\2/3\5/6\ (dJ*, d)
(a3, a1, @z a3) ) |(as, ay, a3, a2) (a1, a3, g, a3)(ay, az, az a3) (ay, ag, @y, a3)
(a2, ay, a, a3)
A(dg*, d)eeeeeneernnnnens 1/6-++:1/6-+.% 2/3es e B /B e e et
(a3, @ az a2) (a3 a3, az a5) (a3 ay ay, a3) I d¢*=(ay, ay, ay, a3) I
(¥, d) swevrensressenesssmnieenn e b 1/67 1/6enenes 2/3uveeerriierire s
(a3, ay, ay, az) (ap, a3, a3, a3) I d7*=(ay, 0y, as, aa)J
B, d) eeereenemneriniiii s 1/67 e 1/6eresveeereressessissnnssissssosisssessnns
[ d5=(as, a, 3, a3) | [ dy=(az, as, a3, a5) |
A(ds, d) rereeereneee et 1/6reerereneensnees 1/Gwererornrersnneeencriniiniiieiiiiinnneeeen
I alt)z (a3, as, a3, “3)]
Fig. 2
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CORRECTIONS TO
“SOME PROPERTIES OF THE RISK SET IN MULTIPLE
DECISION PROBLEMS”

MASAKATSU MURAKAMI

In the above titled paper (this Annals Vol. 35, No. 2, A, (1983),
pp. 175-183), the following corrections should be made:

On page 179, line 15 from the bottom

o (L(6y a)—L(0y )} f(ze]6)
P 3 =10, a)—L(@, a)} f(ws]0:)

{L(03, a;)— L(0;, a4, 4)} f (2] 65) .
{L(0y, @iy ;)—L(0;, a))} f (] 6,)

= V1, 5, k)=

On page 179, in (6)

“m” should be “n—1".
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