SOME PROPERTIES OF THE RISK SET IN

MASAKATSU MURAKAMI

(Received Mar. 22, 1979; revised May 30, 1983)

Summary

Some properties of the risk set of a decision problem with n-action, m-sample and 2-parameter are considered. It is shown that the number of vertices of the risk set is equal to $mn-(t_1+t_2)$, and that the number of essentially nonrandomized decision rules (defined in Section 1) in the minimal complete class is equal to $m(n-1)+1-t_1$, where t_1 and t_2 are defined in Section 2. Also, a procedure is given for getting all nonrandomized decision rules in the minimal complete class.

1. Introduction

Let $L(\theta, a)$ be the loss incurred by an action a when the parameter value is θ . Let $f(x|\theta)$ be the probability distribution of a sample x when the parameter value is θ .

We consider the following situation (Decision problem A): let $\Theta = \{\theta_1, \theta_2\}$, $\mathcal{X} = \{x_1, \dots, x_m\}$, and $\mathcal{A} = \{a_1, \dots, a_n\}$, be the parameter, the sample and the action spaces, respectively. We assume

$$f(x|\theta) > 0$$
, for $x \in \mathcal{X}$, and $\theta \in \Theta$,
$$L(\theta_1, a_1) < L(\theta_1, a_2) < \cdots < L(\theta_1, a_n)$$
, and
$$L(\theta_2, a_1) > L(\theta_2, a_2) > \cdots > L(\theta_2, a_n)$$
.

To avoid any reduction of the problem, we further assume that the action a_i with 1 < i < n satisfies the condition

$$\frac{L(\theta_{1}, a_{i}) - L(\theta_{1}, a_{i-1})}{L(\theta_{1}, a_{i+1}) - L(\theta_{1}, a_{i})} \cdot \frac{L(\theta_{2}, a_{i+1}) - L(\theta_{2}, a_{i})}{L(\theta_{2}, a_{i}) - L(\theta_{2}, a_{i-1})} < 1.$$

Let D be the set of all nonrandomized decision rules, the mapping from the sample space \mathcal{X} to the action space \mathcal{A} . Each $d \in D$ can be expressed in the coordinate form as

$$d = (a_{i_1}, a_{i_2}, \dots, a_{i_m})$$

where

$$a_{i_{\nu}}=d(x_{\nu}), \qquad k=1, 2, \cdots, m.$$

Let $\mathcal D$ be the set of all convex linear combinations δ of nonrandomized decision rules:

$$\delta = \sum_{i=1}^{t} \pi_i d_i$$

where $d_j \in D$, $\pi_j \ge 0$ and $\sum_{j=1}^t \pi_j = 1$. We call δ a randomized decision rule. The risks of $d \in D$ and $\delta \in \mathcal{D}$ are defined by

$$R(\theta, d) = E_{\theta} L(\theta, d(x)) = \sum_{k=1}^{m} L(\theta, d(x_k)) f(x_k | \theta)$$

and,

$$R(\theta, \delta) = \sum_{j=1}^{t} \pi_{j} R(\theta, d_{j})$$

respectively.

We say that δ is better than δ' if $R(\theta, \delta) \leq R(\theta, \delta')$ for all $\theta \in \Theta$ with an exact inequality holding for at least one θ . Decision rules δ and δ' are said to be equivalent if $R(\theta, \delta) = R(\theta, \delta')$ for all $\theta \in \Theta$. A nonrandomized decision rule d is said to be essentially nonrandomized if no randomized decision rule is equivalent to d. A rule δ is said to be admissible if no rule is better than δ . A subclass C of D is said to be complete, if for any given rule δ not in C, there exists a rule in C that is better than δ . A complete class C_1 is said to be minimal complete if no proper subclass of C_1 is complete.

In the following section, we investigate the properties of the risk set S of Problem A. In this decision problem, the risk set is a convex polygon and its vertices correspond to essentially nonrandomized decision rules. We shall give in Theorem 1, a procedure for obtaining all nonrandomized decision rules in C_1 . Secondly, using Theorem 1 we give the number N_1 of essentially nonrandomized decision rules in C_1 (Theorem 2) and the number N_3 of vertices of the risk set S (Theorem 3).

2. The main result

We write $\Delta(d, d')$ to mean the slope of the line connecting the two risk points $(R(\theta_1, d), R(\theta_2, d))$ and $(R(\theta_1, d'), R(\theta_2, d'))$:

$$\Delta(d, d') = \frac{R(\theta_2, d') - R(\theta_2, d)}{R(\theta_1, d) - R(\theta_1, d')}.$$

The following lemma will be needed later.

LEMMA 1. Let d^* be a nonrandomized admissible decision rule. Let $D^-(d^*)$ be the set of all nonrandomized decision rules d such that

$$R(\theta_2, d) < R(\theta_2, d^*).$$

If $D^-(d^*) \neq \phi$ and if a decision rule d^{**} satisfies

(4)
$$\Delta(d^*, d^{**}) = \max_{d \in D^{-}(d^*)} \{\Delta(d^*, d)\},$$

then d** is admissible.

PROOF. The assertion is a direct consequence of the very definition of d^{**} .

For a nonrandomized decision rule $d = (a_{i_1}, a_{i_2}, \dots, a_{i_m})$, let $d' = (a_{i_1}, \dots, a_{i_n}) \in D'(d)$ be the nonrandomized decision rule such that

$$i_k' = \left\{ egin{array}{ll} i_k + 1 & ext{ for only one } k \ (i_k' \leq n-1) \ ext{and} \\ i_k & ext{ for other } k. \end{array}
ight.$$

Theorem 1. In the Problem A suppose that a nonrandomized decision rule d^* is admissible, then the nonrandomized decision rule d^{**} such that

$$\Delta(d^*, d^{**}) = \max_{d' \in \mathcal{D}'(d^*)} \{\Delta(d^*, d')\}$$

is also admissible.

Proof. We are to show that

$$\max_{d' \in D'(d^*)} \{ \varDelta(d^*, d') \} = \max_{d \in D^-(d^*)} \{ \varDelta(d^*, d) \} \; .$$

Putting $d^*(x_k)=a_{i_k}$ and $d(x_k)=a_{i_k+a_k}$, $k=1, 2, \dots, n$, we have for $d \in D^-(d^*)$,

$$\begin{split} \varDelta(d^*,d) &= \frac{R(\theta_2,d) - R(\theta_2,d^*)}{R(\theta_1,d^*) - R(\theta_1,d)} \\ &= \frac{\sum\limits_{k=1}^{m} \left\{ L(\theta_2,d(x_k)) - L(\theta_2,d^*(x_k)) \right\} f(x_k|\theta_2)}{\sum\limits_{k=1}^{m} \left\{ L(\theta_1,d^*(x_k)) - L(\theta_1,d(x_k)) \right\} f(x_k|\theta_1)} \\ &= \frac{\sum\limits_{k=1}^{m} \left\{ L(\theta_2,a_{i_k+a_k}) - L(\theta_2,a_{i_k}) \right\} f(x_k|\theta_2)}{\sum\limits_{k=1}^{m} \left\{ L(\theta_1,a_{i_k}) - L(\theta_1,a_{i_k+a_k}) \right\} f(x_k|\theta_1)} \;. \end{split}$$

On the other hand if $\Delta(d^*, d)$ attains its maximum at $d=d^{**} \in D'(d^*)$ then we have for some k',

$$\begin{split} \varDelta(d^*,d^{**}) &= \frac{R(\theta_2,d^{**}) - R(\theta_2,d^*)}{R(\theta_1,d^*) - R(\theta_1,d^{**})} \\ &= \frac{\{L(\theta_2,a_{i_{k'}+1}) - L(\theta_2,a_{i_{k'}})\}\,f(x_{k'}|\theta_2)}{\{L(\theta_1,a_{i_{k'}}) - L(\theta_1,a_{i_{k'}+1})\}\,f(x_{k'}|\theta_1)} \; \cdot \end{split}$$

But the condition (2) implies that

$$\frac{L(\theta_2, a_{i_{k'}+1}) - L(\theta_2, a_{i_{k'}})}{L(\theta_1, a_{i_{k'}}) - L(\theta_1, a_{i_{k'}+1})}$$

is less than or larger than

$$\frac{L(\theta_2, a_{i_k, +a_k}) - L(\theta_2, a_{i_k})}{L(\theta_1, a_{i_k}) - L(\theta_1, a_{i_k, +a_k})}$$

according as $\alpha_k < 0$ or $\alpha_{k'} > 1$. Then, we have

$$\Delta(d^*, d^{**}) \ge \max_{d \in D^-(d^*)} \{\Delta(d^*, d)\},$$

by using the inequality* that if y_i , y_i' , z_i and z_i' are positive numbers such

$$\frac{z_i}{y_i} \ge \frac{z_k}{y_k}$$
 for $i=1, \dots, n$,

$$\frac{z_i'}{u_i'} \leq \frac{z_k}{u_k} \quad \text{for } i=1, \dots, m,$$

and if $\sum_{i=1}^{n} y_i < \sum_{i=1}^{m} y'_i$, then

$$\frac{\sum\limits_{i=1}^n z_i - \sum\limits_{i=1}^m z_i'}{\sum\limits_{i=1}^n y_i - \sum\limits_{i=1}^m y_i'} \leq \frac{z_k}{y_k}.$$

(Put
$$y = \{L(\theta_1, a_i) - L(\theta_1, a_{i-\alpha})\} f(x|\theta_1)$$
,

$$\frac{z_k}{y_k} \le \frac{\sum\limits_{i=1}^n z_i}{\sum\limits_{i=1}^n y_i} \quad \text{and} \quad \frac{z_k}{y_k} \ge \frac{\sum\limits_{i=1}^m z_i'}{\sum\limits_{i=1}^m y_i'},$$

it follows that

$$\frac{\sum_{i=1}^{n} z_{i} - \sum_{i=1}^{m} z'_{i}}{\sum_{i=1}^{n} y_{i} - \sum_{i=1}^{m} y'_{i}} - \frac{z_{k}}{y_{k}} = \frac{Q}{\left(\sum_{i=1}^{n} y_{i} - \sum_{i=1}^{m} y'_{i}\right) y_{k}} < 0,$$

where

$$Q = y_k \sum_{i=1}^n z_i - z_k \sum_{i=1}^n y_i + z_k \sum_{i=1}^m y_i' - y_k \sum_{i=1}^m z_i'$$
.

^{*)} Since

$$\begin{split} z &= \{L(\theta_2, \, a_{i-\alpha}) - L(\theta_2, \, a_i)\} \, f(x|\theta_2) \;, \\ y' &= \{L(\theta_1, \, a_i) - L(\theta_1, \, a_{i+\alpha})\} \, f(x|\theta_1) \quad \text{and} \\ z' &= \{L(\theta_2, \, a_{i+\alpha}) - L(\theta_2, \, a_i)\} \, f(x|\theta_2) \quad \text{where } \alpha > 0 \;. \;) \end{split}$$

The desired equality follows from $D'(d^*) \subset D^-(d^*)$ and we conclude from Lemma 1 that d^{**} is admissible.

3. Some properties of the risk set

In this section we investigate some properties of the risk set using Theorem 1. A decision rule δ_0 is said to be *unfavorable* if there exists no decision rule $\delta \in \mathcal{D}$ such that

$$R(\theta, \delta_0) \leq R(\theta, \delta)$$
 for all $\theta \in \Theta$

and

$$R(\theta, \delta_0) < R(\theta, \delta)$$
 for at least one $\theta \in \Theta$.

Let C_2 be the set of all unfavorable decision rules and let N_1 , N_2 and N_3 be the numbers of essentially nonrandomized decision rules in C_1 , C_2 , and S, respectively.

Write

$$V(i,j,k) = \frac{\{L(\theta_2, a_i) - L(\theta_2, a_j)\} f(x_k | \theta_2)}{\{L(\theta_1, a_i) - L(\theta_1, a_i)\} f(x_k | \theta_1)}.$$

THEOREM 2. Let t_1 and t_2 be numbers of quardruplet (i, i', k, k') and doublet (k, k') which satisfy

$$(5) \qquad \qquad V(i,1,k) = V(i',1,k')$$

and

(6)
$$V(1, n, k) = V(1, n, k')$$

where $1 \le i, i' \le n-1$ and $1 \le k, k' \le m$.

In Problem A, the condition (2) implies

- (a) $N_1 = m(n-1)+1-t_1$
- (b) $N_2 = m + 1 t_2$ and
- (c) $N_3 = mn (t_1 + t_2)$.

PROOF. (a) Since S is bounded from below and closed from below, the minimal complete class exists and it consists exactly of all the admissible rules (See [1], p. 56 and p. 69). We first show that if the condition

$$(7) V(i,1,k) \neq V(i',1,k')$$

for $1 \le i, i' \le n-1$ and $1 \le k, k' \le m$ is satisfied, then $N_1 = m(n-1)+1$.

Let d_0 be a rule for which $d_0(x_i)=a_1$ for all i, then it is easy to see that d_0 is admissible. We use the notation \cdot (hat) to show a rule is admissible. By Theorem 1 any rule $d \in D'(\hat{d}_0)$ which satisfies

$$\Delta(\hat{d}_0, d) = \max_{d \in D'(d_0)} \{\Delta(\hat{d}_0, d)\}$$

is admissible. Starting from \hat{d}_0 , we can find a sequence $\{\hat{d}_i\}$ $i=0,1,\cdots,m(n-1)$ of admissible decision rules as follows. There exists exactly one rule d in $D'(\hat{d}_0)$ which satisfies (7). We denote it by \hat{d}_1 . Similarly, if \hat{d}_i is given, we can find an admissible rule \hat{d}_{i+1} which satisfies

(8)
$$\Delta(\hat{d}_{i}, \hat{d}_{i+1}) = \max_{d \in D'(\hat{d}_{i})} \{\Delta(\hat{d}_{i}, d)\}$$

in $D'(\hat{d}_i)$. Since $D'(\hat{d}_{m(n-1)}) = \phi$ where $\hat{d}_{m(n-1)}(x_i) = a_n$ for all i, we have $N_1 \ge m(n-1)+1$. Let us suppose that there existed another admissible rule \hat{d}^* besides $\hat{d}_0, \dots, \hat{d}_{m(n-1)}$. Then we can take out some \hat{d}_i and \hat{d}_{i+1} from among $\hat{d}_1, \dots, \hat{d}_{m(n-1)}$ which satisfies

(9)
$$R(\theta_1, \hat{d}_i) < R(\theta_1, \hat{d}^*) < R(\theta_1, \hat{d}_{i+1})$$
.

Since \hat{d}_i , \hat{d}_{i+1} and \hat{d}^* are admissible we have

(10)
$$R(\theta_2, \hat{d}_i) > R(\theta_2, \hat{d}^*) > R(\theta_2, \hat{d}_{i+1})$$
.

Using (9) and (10), we get

$$\Delta(\hat{d}_i, \hat{d}^*) \geq \Delta(\hat{d}_i, \hat{d}_{i+1})$$
.

This contradicts (8). Hence under the condition (7), $N_i = m(n-1)+1$. If some quardruplet (i, i', k, k') satisfies (5), then there exist rules \hat{d}_r , \hat{d}_{r+1} and \hat{d}_{r+2} , say, which satisfy

(11)
$$(\hat{d}_r, \hat{d}_{r+1}) = (\hat{d}_{r+1}, \hat{d}_{r+2}).$$

In fact, since

$$\begin{split} \varDelta(\hat{d}_{r},\,\hat{d}_{r+1}) &= \frac{R(\theta_{2},\,\hat{d}_{r+1}) - R(\theta_{2},\,\hat{d}_{r})}{R(\theta_{1},\,\hat{d}_{r}) - R(\theta_{1},\,\hat{d}_{r+1})} \\ &= \frac{\{L(\theta_{2},\,\hat{d}_{r+1}(x_{k})) - L(\theta_{2},\,\hat{d}_{r}(x_{k}))\}\,f(x_{k}|\,\theta_{2})}{\{L(\theta_{1},\,\hat{d}_{r}(x_{k})) - L(\theta_{1},\,\hat{d}_{r+1}(x_{k}))\}\,f(x_{k}|\,\theta_{1})} \\ &= \digamma(i,\,1,\,k) \end{split}$$

and

$$\Delta(\hat{d}_{r+1}, \hat{d}_{r+2}) = V(i', 1, k')$$

we get (11). It is easy to see that if \hat{d}_r , \hat{d}_{r+1} , \hat{d}_{r+2} satisfy (11), then \hat{d}_{r+1} can be expressed as a convex linear combination of \hat{d}_r and \hat{d}_{r+2} . Hence \hat{d}_{r+1} can not be an essentially nonrandomized rule. Therefore if t_1 quardruplets (i, i', k, k') satisfied (5), we get $N_1 = m(n-1) + 1 - t_1$.

(b) Consider the new problem (Decision problem B) with $L'(\theta_1, a_k) = -L(\theta_2, a_k)$, $L'(\theta_2, a_k) = -L(\theta_1, a_k)$, $f'(x_j|\theta_1) = f(x_j|\theta_2)$ and $f'(x_j|\theta_2) = f(x_j|\theta_1)$. By the definition of C_1 and C_2 , a rule in C_1 of Problem A is a rule in C_2 of Problem B. Since in Problem B

$$\frac{L'(\theta_1, a_i) - L'(\theta_1, a_{i-1})}{L'(\theta_1, a_{i+1}) - L'(\theta_1, a_i)} \cdot \frac{L'(\theta_2, a_{i+1}) - L'(\theta_2, a_i)}{L'(\theta_2, a_i) - L'(\theta_2, a_{i-1})} > 1, \quad \text{for } i = 2, \dots, n-1$$

by Theorem 4 in [2], all rules which call for a_i $(i=2, \dots, n-1)$ are not admissible. Therefore Problem B reduces to a 2-action problem. Thus as in (a) we have $N_2=m(2-1)+1-t_2=m+1-t_2$ provided that t_2 doubles (k, k') satisfied (6).

(c) It is easy to see that $N_3 = N_1 + N_2 - 2 = mn - (t_1 + t_2)$.

Example. Consider the following problem with $L(\theta, a)$ and $f(x|\theta)$ given by table 1 and 2, respectively.

	a_1	a_2	a_3		x_1	x_2	x_3	x_4	
θ_1	0	1	4	θ_1					
θ_2	5	1 3	2	$ heta_2$	0.40	0.15	0.40	0.25	
Table 1: $L(\theta, a)$					Table 2: $f(x \theta)$				

Since

$$\frac{L(\theta_1, a_2) - L(\theta_1, a_1)}{L(\theta_1, a_3) - L(\theta_1, a_2)} \cdot \frac{L(\theta_2, a_2) - L(\theta_2, a_3)}{L(\theta_2, a_1) - L(\theta_2, a_2)} = \frac{1}{6} < 1$$

and

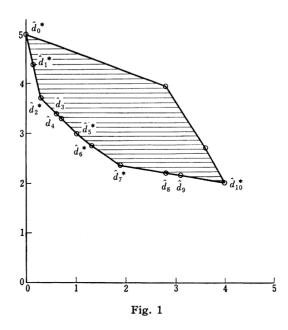
$$V(1, 2, 1) = 1, \quad V(1, 2, 2) = 1, \quad V(1, 2, 3) = 4, \quad V(1, 2, 4) = 5,$$

$$V(2, 3, 1) = \frac{1}{6}, \quad V(2, 3, 2) = \frac{1}{6}, \quad V(2, 3, 3) = \frac{2}{3}, \quad V(2, 3, 4) = \frac{5}{6},$$

by Theorem 2, $N_1=4\times2+1-2=7$, $N_2=4+1-1=4$ and $N_3=12-3=9$ and is also shown in Fig. 1. Furthermore by Theorem 1, we can get the following 11 nonrandomized rules in C_1 (See Fig. 2),

$$\begin{aligned}
\hat{d}_0^* &= (a_1, a_1, a_1, a_1) \\
\hat{d}_1^* &= (a_1, a_1, a_1, a_2) \\
\hat{d}_2^* &= (a_1, a_1, a_2, a_2) \\
\hat{d}_3^* &= (a_2, a_1, a_2, a_2) \\
\hat{d}_4^* &= (a_1, a_2, a_2, a_2) \\
\hat{d}_5^* &= (a_2, a_2, a_2, a_2) \\
\hat{d}_6^* &= (a_2, a_2, a_2, a_3) \\
\hat{d}_7^* &= (a_2, a_2, a_3, a_3) \\
\hat{d}_8^* &= (a_3, a_2, a_3, a_3) \\
\hat{d}_9^* &= (a_2, a_3, a_3, a_3) \\
\hat{d}_{10}^* &= (a_3, a_3, a_3, a_3)
\end{aligned}$$

where * denote the rule is essentially nonrandomized rule.



Acknowledgement

The author wishes to thank the referees for their helpful comments in revising the paper.

THE INSTITUTE OF STATISTICAL MATHEMATICS

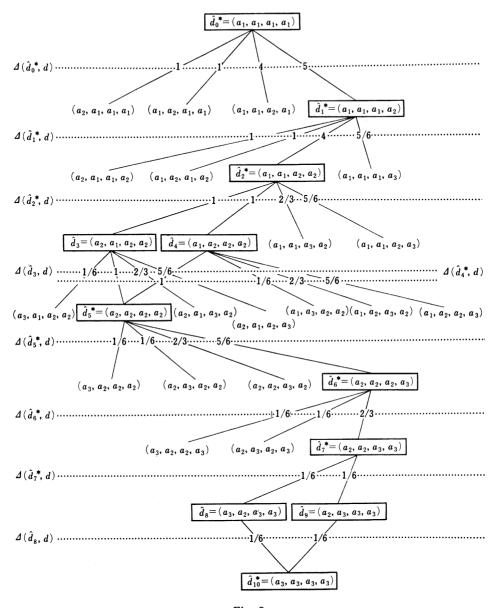


Fig. 2

REFERENCES

- [1] Ferguson, T. S. (1967). Mathematical Statistics: A Decision Theoretic Approach, Academic Press, New York.
- [2] Murakami, M. (1976). On the reduction to a complete class in multiple decision problems, Ann. Inst. Statist. Math., 28, A, 145-165.

CORRECTIONS TO

"SOME PROPERTIES OF THE RISK SET IN MULTIPLE DECISION PROBLEMS"

MASAKATSU MURAKAMI

In the above titled paper (this Annals Vol. 35, No. 2, A, (1983), pp. 175-183), the following corrections should be made:

On page 179, line 15 from the bottom

$$\begin{split} & \mathit{V}(i,\,j,\,k) \! = \! \frac{\{L(\theta_{\scriptscriptstyle 2},\,a_{\scriptscriptstyle i}) \! - \! L(\theta_{\scriptscriptstyle 2},\,a_{\scriptscriptstyle j})\} f(x_{\scriptscriptstyle k} \! \mid \theta_{\scriptscriptstyle 2})}{\{L(\theta_{\scriptscriptstyle 1},\,a_{\scriptscriptstyle j}) \! - \! L(\theta_{\scriptscriptstyle 1},\,a_{\scriptscriptstyle i})\} f(x_{\scriptscriptstyle k} \! \mid \theta_{\scriptscriptstyle 1})} \\ & \Longrightarrow \mathit{V}(i,\,j,\,k) \! = \! \frac{\{L(\theta_{\scriptscriptstyle 2},\,a_{\scriptscriptstyle i}) \! - \! L(\theta_{\scriptscriptstyle 2},\,a_{\scriptscriptstyle i+j})\} f(x_{\scriptscriptstyle k} \! \mid \theta_{\scriptscriptstyle 2})}{\{L(\theta_{\scriptscriptstyle 1},\,a_{\scriptscriptstyle i+j}) \! - \! L(\theta_{\scriptscriptstyle 1},\,a_{\scriptscriptstyle i})\} f(x_{\scriptscriptstyle k} \! \mid \theta_{\scriptscriptstyle 1})} \; . \end{split}$$

On page 179, in (6)

"
$$n$$
" should be " $n-1$ ".

THE INSTITUTE OF STATISTICAL MATHEMATICS