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Summary

Noninformative prior distributions for Bayesian inference, for ex-
ample, Jeffreys’ priors, are much useful for the so-called “objective
Bayesian inference” and make it possible to develop a method more
powerful and flexible than traditional methods. In this paper a non-
informative prior distribution, which is different from usual Jeffreys’
priors, is introduced for Bayesian inference of multinomial distribution’s
parameters, using the assumption of the prior independence of the
transformed parameters and the approximate data-translated likelihood
function, and a short theoretical consideration for the inference based
on the prior is attempted.

1. Introduction

Consider the sample (N;)%;! distributed by multinomial distribution,
M(N; (0.)55)), i.e.,

PN 0 =N ([T M) TT o,

where N and N'’s are positive and nonnegative integers, respectively,
K K-1

and satisfy N=31N,, and (8)5 € 452 :{(01.){‘;116]0, 1[5, ?”Kl}
i=1 =1

and 1=§‘, 0;; (6.)5!' is unknown but fixed and K is greater than 1.
i=1

For Bayesian inference of the unknown but fixed parameters, s,
based on the data, N’s, a noninformative prior, for example, Jeffreys’

K
prior, i.e., P((0,)5")=c ] 6;'% must be introduced. But the objective
i=1

Bayesian inference like Box and Tiao [1], is based on H.P.D. (Highest
Posterior Density) regions, especially, standardized H.P.D. regions, i.e.,
H.P.D. regions on the transformed parameters defining the approximate
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data-translated likelihood function. Therefore, for the objective Bay-
esian inference, it is reasonable to consider the transformation of ¢’s
defining the approximate data-translated likelihood function in some
sense. The inference of 6’s should be accomplished based on the trans-
formed parameters. In the one-dimensional case, i.e., K=2, the trans-
formation of ¢ is directly obtained from the Jeffreys’ prior, i.e., the trans-

formation is t=£ Arcsin+/ 8. The prior induced from this transforma-

T

tion, i.e., the prior induced by p(t)=1, is identical with the Jeffreys’
prior. But in the multidimensional case the relation between the two
kinds of priors is not clear because the transformed parameters on
which the locally uniform prior is introduced are not uniquely deter-
mined. In the following sections the transformed parameters having
the locally uniform prior are defined in some reasonable manner and
the Bayesian inference based on the transformation is considered.

2. Llikelihood and prior

From the definition of the model in Section 1 the likelihood funec-
tion of (0,)%' € 4%~V ig

(2.1) U0 (NS 1‘)OCTT o7 .

Consider the transformations of 6=(6,)%'€ 4¥™ to s=(s;)i '€
I€-9:=10, 1[¥! and t=(t,)5;' € [¥7V,

K- J
(2.2) ]:[ .:g j=1,.--,K—1,
2.3) t,=2 Arcsin(vWs;), i=1,---,K—1.

b9
The transformation, (2.2), is equivalent to ,=(1—s;_,) Igﬂ Iﬁ' ii‘,l

i i+1 . = = =

8:=0, i=1, -+-,K—1, and s.=<za)/(za>, i=1, -+, K—1, and the
Jacobians of (2.2) and (2.3) are easily obtained as det %=j:[ sil=
Kﬁ(é 0¢>, and det g%=n"x"’<lﬁlv s,(l—s,)>—l with the convention-
j=2\i=1

al rule, Z =0 and '['[ =1, for a>b. Therefore, if the locally uniform

prior is 1ntroduced on telIX®"P je., if pt)=1, te IV, then the fol-
lowing priors are readily obtained :

(2.4) p(s)-_—_n—m-v'ji(s,(1—sj))-1/2,
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(2.5) p(o):ﬁ—cx-l)@i 01)—1/2(1}@:(}1} 0t>>—1/z

i=1

-1

K—1
=<7TK_1\/0102' . '01(-1(1— § 0i> (0:,+0,)(0,+0,+605)- - (0,464 - - - +0K—I)> ,

where s € I~V and 0 € 4577,
The locally uniform prior on ¢ is derived from the assumption of

prior independence of the parameters, s, =1, ---, K—1, i.e.,
K-1

(2.6) p(s)=TI »(s:) » se &b,
i=1

and this assumption, (2.6), have the reasonable Bayesian interpretation
such that the prior knowledge of (s;)%;' is vague enough in comparison
with the information included in the hkehhood function of (s;)X;' and
the prior knowledge of each s; is almost invariant even if all other s’s
are specified. Because, if (2.6) is employed, then the likelihood of each
8;, given other s’s, is transformed into the approximate data-translated
likelihood on t; by (2.8), therefore, it is reasonable to introduce the
locally uniform prior on each ¢, and, from (2.3) and (2.6), the locally
uniform prior on t is obtained.

3. Posterior distributions

For the evaluation of the posteriors of ¢ ete. consider the integral,

(%) S((@)5; ax; (r)Es): =
S(x :)dﬂﬂﬂ"i—l (1 Ea)"x"l.l_(l_l}(

i=1

e

-1
01)” ,

where all ¢’s and y’s are positive real numbers. Using the transfor-
mation, (2.2), the value of (*) is obtained as

(2

1

3.1) S(@)5'; ex; (1)) = nB(z a3 i j+1,a,+1)

where B(a,b) is a beta function, represented by gamma functions as

B(a, b)=I'(a)['(b)/'(@+b). From p(0)=<det %>_1 the posterior of ¢
is readily obtained because p(t|N’s)=p(f|N’s)-det a((e)) ocl(0|N’s) p(6)-
det ?)((z)) =Il(0|N’s), and the normalizing constant is evaluated by the

0(6) _ k-1 T (< v
formula, (3.1), and det —-= 20 =r <];[6 U(tgl 0,)) , therefore
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(3.2) PEIN'S)=z*".C(N’s)- [ 87,  teIw,
i=1
where
yeret. 1>K—l. l°<-1_>K_l>
C(N’s) '_S<<N‘+? i Ner i (1))
K-1 j
=TT B(z N+L, N,+1+l).
j=t  \i=1 2 2

Similarly the posteriors of # and s are obtained:

K K-1/ 7§ -1/2
(3.3) p(ﬁ]N’s)=C(N’s)TT0§"t"/2-]T<Z‘,0,> . fedxD
i=1 J

=2 \i=1

(3.4)  p(s|N’s)=C(N’s) ﬁ og%—w.'jﬁ‘(

=2

i 1/2
01> , se &b,
=1

1

And remark:

(85)  PEIN'S)= ] Pt N'9)

K-1 z",Nt
=rE-L.C(N’8)- ] 8= '+ (1—s,)Vi+1, t € [E-D
j=1

J

4. H.P.D. region, inference, and test

For the construction of the standardized H.P.D. region, i.e., the
H.P.D. region on t e I, which is represented by 6’s terms under the
transformations, (2.2) and (2.8), consider the modal value and the ratios

of the posterior of ¢. The modal value of p(t|N’s), £, is readily obtained
from (3.2) because ¢ is the transformed value of § which is maximiz-
ing the likelihood of 4, i.e., éi=Ni/N, 1=1, -+, K, and the (1—a) H.
P.D. region on t={t € I¢-Y; p(t]N’s)/p(le’s)>r(a)}, where P (p(t|N’s)/
p(i]N’s)>r(a)lN’s)=1—oe. Under the transformations, (2.2) and (2.3)
(assuming N;>0, i=1, ..., K),

(4.1) R:=R(6)= ﬁ ovi /f—‘[ o
=p(t|N’s)/p(IN’s), 64",

therefore the value, (), satisfies P (R>7(e)|N’s)=1—a. The moments
of R, E(R'|N’s), where v is any real number greater than —1, are
evaluated to approximate 7(a); using (3.1), (8.3), and (4.1),

(4.2) E(R|N’s)
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SA(K_D d0 p(8| N’s)- R

\- S<<(”+1)M+ 1)%:: (v+1)NK+_;.; (l)"")

=<Jlj é{"a) 2 — _ 2 /i=2
S B )
K AR k-1 B((V+1)<é M)‘l‘—;—, (v-{—l)NjH_}_%_)
om0 |
;II . B(?];M-l—%’ Nj+1+-%->
v>-—1,

and, using duplication formula of gamma function, I'(22)=2%"'z"12I"(z)-
1
rle+g)
2+ 5
1 1
(4.3) B<(»+1)a+§,(v+1)b+—2->

_ =T+ D)l +1)b) 2, b>0.
PRSI+ D0 (A DT+ Db+ T

From (4.2), (4.3), and Stirling’s formula with remainder term (see
Whittaker and Watson [2], pp. 251-252) the following formulas are ob-
tained :

(4.4) E(R|N’s)=(1+y) &-vr2
Xe""(z%_ ((L4+») "> —1)-Cot-RUM; N, 65 ),
y>-—1,

where R(M; N, 6; v) is the remainder term such that if (N,)5'~M(N;
) for some fixed ¥ € 4%V, then there exists a constant, C(M; 6%)
(depending only on M and 6®), satisfying

(%) Ilvim sup N“‘“isl,up |IR(M; N, 6; v)|<C(M; 6°), almost surely,
-0 v|S1-8
for any fixed positive integer, M, and any 8¢]0, 1], and the »th de-

rivative of R(M; N, é; v) with respect to v has the same property, (),
as R(M; N, 4 v) has for any positive integer, ». (In (4.4) put

. (=1H)"'B,
™ 2m(2m—1)

+(@e-env_g) j1<é é‘) —(2m—l)_1> .N-@m-b m=1,---, M,

. ((2—(2711.—1) —1) i ét—(zm—l)
i=1
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where B’s are Bernoulli numbers defined as

Bm 2m
emi” )

And, using (4.4), the cumulant generating function of S:=S(0):=—
log B is obtained:

(v/(e"—1))+2/2—1= 2‘.( -t

(45) K(&; S):=log E (exp (¢-S)|N’s)=log E (R-*| N’s)
=§=;; %-27-1-@—1)!-(1{—1)

r

2 ']j 2m—1+j)>

(r—DI(K—1)
g 11
+R(M; N, §; 25),5e] 2,2[.

x<1+ é

Therefore the rth cumulant of S=—2log R, K,(S), is given as
4.6) K(S)=2"'(r—1)I-(K-1)
X (14+2((r—D1-(K—1)* 31 o T @m—1+9))
+(I:])(M ; N, é) , r=any positive integer,

where

§=0

B N, é)::d%:—R(M; N, 6; —2-8)
Especially, when M =1,

@) E(S)=2(r—1)-(K—1)-(1—r-d(N; §)+E (1; N, 6),

where

A J a\-1
d(N; B):=(12-(K—1)- Ny~ (z‘,o 143 2(; ,) +2>.
Using K,(1—d(N; 6))-7%_)=2""1-(r—1)!-(K—1)-(1—d(N; ) and the
property of the remainder term in (4.4), we have
(4.8) K(S)=K.((1—d(N; 0))yk_)+F(r; N, §),

where F(r; N, 0) is the remainder term such that if (N,)5'~M(N; 6%)
for some fixed 0® € 4*-V, then there exists a constant, C(r 0*) (de-
pending only on 7 and 0‘*’), satisfying

lim sup N2. F(r; N, (5)§C('r; %),
N—roo
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almost surely, for any positive integer r. (From the definition of 6,:=
N,;/N, d(N; 5) €10, 1[ is clear, therefore the right hand of (4.8) is well-
defined.)

From (4.5) the distribution of S(6)= —2-log R(8) (of course, “ poste-
rior ) converges yk_;, almost surely. Therefore y%_,(a) satisfying P (yk-:
<yk-1(@))=1—a gives the approximate value —2:log r(a; N, 5), where
P (S<—2-log r(a; N, é)lN ’s)=1—a. But more precise approximation is
given by (4.8), i.e.,

(4.9) —2.log 7(a; N, 6)=(1—d(N; 6))pk-.(a) -

Therefore, using (4.9), the approximate (1—a«) H.P.D. region on ¢ trans-
formed into @ is obtained as

(4.10) {6 € 4%; S(O)<(1—d(N; é))xig_l(a)} )

and, consequently, the Bayesian inference of @ is accomplished by the
approximate (1—a) Bayesian region induced from the approximate (1—a)
H.P.D. region on ¢, (4.10). And, from (4.9) and (4.10), the Bayes test
of the hypothesis, =0, for a specified 9 € 4%~V is readily obtained,
i.e., “If (—2-log R(6))/(1—d(N; é))<x}{_l(a), then ‘0=0" is accepted,
and if (—2-log R(6®))/(1—d(N; é))gxig_l(a), then ‘=0’ is rejected,”
because P (S(0)<S(6®)|N’s)<(=)1—a is equivalent to S(H®)<(=)—2-
log r(a; N, 5), respectively.

The inference of marginal parameters of 4 based on the marginal
posterior distributions given by (3.5) is accomplished by the similar
argument and so is omitted.

5. Concluding remarks

It should be remarked that the prior, (2.5), is dependent on the
ordering of 6’s. Hence, for practice, the ordering must be specified
from the statistical sense of 6’s in each problem. But the Bayes test
for # based on the standardized H.P.D. regions is precisely numerically
equivalent to the usual likelihood ratio test for any ordering of 6’s
(See Section 4).

The generalizations of the prior, (2.5), and the posterior, (3.3), are
readily obtained by the application of the integral, (*). This general-
ized prior is inevitably induced from the beta distribution on each s,
i.e., the natural conjugate prior of s;, given other s’s.
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