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1. Introduction and summary

Let (R", B") be the Borel measurable space of the n-dimensional
Euclidean space and let a parameter space @ be an open set of the k-
dimensional Euclidean space R* with k<n. We consider a family of
probability measures on B, II={P,; 0 € ®}, which are dominated by
a o-finite measure g on B". That is, P,<p for all 6. We denote
the Radon-Nikodym derivative of P, with respect to g by

(1.1) dPjdp=f(z;0), 0€86.

For an observation X having the distribution P,, let T=T(X) be an
estimator of ¢ which is a measurable function from R" to & (C R*), and
consider the factorization of the likelihood function

1.2) F(X; 6)=9(T; O)MX; 6]T)

which is proposed in Section 3. The main result of this paper is that
this factorization induces a decomposition of the Fisher information as
follows :

(1.3) I0)=L,(0)+1,(6) .

Such a decomposition plays an important role in the theory of statis-
tical estimation; see, for instance, Edwards [2], Barndorff-Nielsen [1],
and Shimizu [7].

In Section 2, we introduce some notions of differentiability of the
square root of the likelihood function and the likelihood ratio func-
tion in the line of LeCam [5]. In Section 3, we propose a factoriza-
tion of the likelihood function of the observation into the marginal and
conditional likelihood functions, and state several properties related to
the factorization. Section 4 is devoted to a study of differentiations
of the marginal and conditional likelihood functions. Our main aim is
to show that their differentiability is inherited from that of the likeli-
hood function of the observation. We utilize the results related to
conditioning devised in Loéve [6], especially the concept of the relative
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conditional expectation.

2. Differentiations of the square root of the likelihood function
and the likelihood ratio function

We consider the square root of the likelihood function and the
likelihood ratio function defined by

(2.1) #O)=r"H(X; 0)
and
(2.2) X(r)=¢(0+7)/$(0)—1=f"Y(X; 6+7)/fVH(X; 6)—1,

for r e R*,

respectively. The L,-norm of ¢ is equal to 1:

(2.9 901 = {{ ¢0)utaz)} =1

Hajek and Sidak [3] point out that the function X,(r) has additional
advantages than the log likelihood ratio function, log {f(X; 6+7)/f(X;
#)}, since X,(r) has always finite variance and is not troubled with the
circumstance of whether probability density functions have the com-
mon support or not. But it is necessary to take into consideration the
following quantity which evaluates the difference of their supports:

2.4) {(z‘)=g f(@; 0+0)uds), say,

{x; f (x;0)=0}

:S 1=yl @)} f(@; 0+7)p(dw) ,

where 3/ is the indicator function of the support of f(x;8), S/(6)=
{z; f(z; 0)>0} (say).

We define f(x;8) to be differentiable at # in mean with respect
to p if there exists an absolutely integrable vector-valued function

F(x; 6) called the derivative of f(x;6) such that

(2.5) lim Tl— S |F(; 0-+1)— fF(z; 0)— F(x; 6)-7| p(dz)=0.

i ||

We define that ¢(6) is differentiable at 6 in quadratic mean with re-
spect to p if there exists a square integrable vector-valued function
#(0) called the derivative of ¢ such that

(2.6) lim [|6(0 +7)—¢(0) — $(0) -z |/



DECOMPOSITION OF THE FISHER INFORMATION 153

—-hm—{SIgb(ﬁ—i-r) #(0)—d(6) -t Pu(da)] =0 .

=0 |7
Further, we say that X, is differentiable at § in mean or in quadratic
mean with respect to P, if there exists a random vector X(ﬂ) called
the derivative of X, such that X(0) is absolutely integrable and
2.7 11m——— E,| X(t)—X(8)-r|=0

i T

or such that X() is square integrable and

(2.8) hm—I-—I{E L | X(r)— X(8)- P} 2=

|z]|—0
respectively. Of course, X, is differentiable in mean with the common
derivative if it is so in quadratic mean.

The following lemma is called “ L,-convergence theorem” (see Loéve
[6], p. 165).

LEMMA 2.1. Let {X,};; and X be wn an L,-space. Then,
(i) |IX.,—X],—0 as n— oo,
if and only if
(ii) X,—X in probability as n— oo and

| Xall.— 1 X ]|, as n— oo.

The following theorem and its corollary are rearrangements of
several results due to LeCam [5], the proofs of which we give for the
present paper to be self-contained.

THEOREM 2.1. (i) X, s differentiable in quadratic mean at 0 if
#(0) 1s differentiable in quadratic mean at 6.
(ii) The converse is also true if the following condition is assumed :

(2.9) Lsie)=0.

T
PrOOF. For 2>0 and r € R* with |r|=1, we have

(2.10)  [[{$(0+22)—$(O)}/2—(0) |

=E,| X,(27)[A—X(0)- P+ |1 —x {0+ 27)[A—(6) - <},
where we set
(2.11) X(@)=40)/p(0) or  $O)=X(O)0) .

(i) is an immediate consequence of (2.10) with X(6)=¢(6)/(6). Further,
we have from (2.10) that
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(2.12) lim <=6/ (40) =l 1= x))$(0)-< "
and hence that
(2.13) lim L 87(ar)=0 .
-0 A
Now, we shall show (ii). Letting $(6)=X(6)¢(6), we have A=)
#(0)=0. Hence (2.10) becomes

(2.14) (6 + 27)— $(6)} 21— (0) - I
=E,;| X{(27)[2—X(0) - ['+ B8] (A7)/2* .

This and (2.9) lead to the conclusion of (ii).

COROLLARY 2.1. If X, is differentiable in quadratic mean at 6 and
the condition (2.13) holds, then

(2.15) E,X(6)=0.

PrOOF. Let 2>0 and 7€ R* with |r|=1. By Lemma 2.1, it fol-
lows from (2.1)-(2.3), (2.8) and (2.13) that

(2.16) —2E,{X(6) -t} =lim —2 E, {X,(ir)/4}
-0
=lim [|g(6 -+ 3)— $(0) /2
=lim {E,| X,(a7)["/2+ 8/ (27)/2} =0 .
A—0
THEOREM 2.2. If X, is differentiable in quadratic mean at 0 and

the condition (2.13) holds, then f(x; 0) is differentiable in mean at 6
with the derivative

(2.17) f(z; 0)=2X(0)f(x; 0) .
~ Proor. It is obvious that f(x;#) is absolutely integrable since
X(6) is so with respect to P,, For 2>0 and r with |z|=1, it follows
from (2.2) and (2.17) that

| 1 @; 04100 F@; O} —2X(0)- (e 0)| (o)

=E, {X,(27)[2¥2+2X(A7)[2—2X(0)- |+ B} (A7)/
<E,|X,(27)[2P2+2 E,| X(a7)]a— X (6)- !+ B (a7)/2 .

Therefore, by Lemma 2.1 we see from (2.8) and (2.13) that the last
three terms tend to zero as 12—0. Hence, the proof is complete.

COROLLARY 2.2. If ¢(0) is differentiable in quadratic mean at 6,
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then f(x;0) is differentiable in mean at 0 with the derivative
(2.18) S(z; 0)=24(0)¢(0) .

Remarks. (a) By Lemma 2.1, it is easy to see that

(2.19) | f@; Oyutdz)=0

if f(x; @) is differentiable in mean at 4.
(b) According to LeCam [5], the condition (2.9) implies that {P;*} and
{Pr.. =} are contiguous.

3. Factorization of likelihood function

We refer to Chapter VIII of Loéve [6] for the properties of con-
ditioning mentioned in this section. From the fact that P,<p with
dP,Jdp=f(X; 6), we see that the same domination holds between the
measures on (R*, B*) induced by an estimator of 8, T=T(X): P/ <p".
We denote the Radom-Nikodym derivative of P with respect to p”
by

(3.1) dP7lduT=g(t; 0), 0¢€0O,

which we may regard as the marginal likelihood function of T. For
the support of g(T'(x); 9),

S,(0)={x; 9(T(x); 6)>0}, say,
it holds that S,(6) ¢ T-(B*) and

@2 PSoN=|  faioudn=|_ oT@:0)udn=0.

[ g

The following theorem is an immediate consequence of (3.2).

THEOREM 3.1. Set

f(x; 0)/g(t;0), if T(x)=t and g(t; 6)>0,

3.3) Mhx;0|t)=4 1, if T(x)=t and g(t; 6)=0, and
0, otherwise .

Then, it holds:

(3.4) f(X; 0)=9(T; O)X; 0|T) , a.s. [P)].

We call this the factorization of the likelihood function of obser-
vation, f(X; @), into the marginal likelihood function of an estimator
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T=T(X), g(T; 0), and the conditional likelihood function of X given
T, MX;0|T).

On the other hand, since P, is a probability measure on (R*, B,
it is known that there exists a regular conditional probability of P,
given T(X)=t, Py-|t), satisfying

P(ANT-(B)={ P.(Alty(t; 0)u7(@t)

={. {1, paaziv}act; opmar,

for all Ae®B" and all Be®B*. More generally, it follows that for an
integrable function u(x)v(T(x))

(3.5) E,{w(X)W(T(X))} = S w(@)(T(x))f(x; 0)p(dx)
=S {S w(@) Py(dz| t)} w(t)a(t; )p7(dt) -

We put the sense of (3.5) down symbolically as

(3.6) S(@; 0)p(dx)=g(t;0)p" (dt) Py (dz|?) .

Then, comparing (3.4) with (3.6), we could identify
h(z; 0|t) and  P,(dz|t)/p(dx) ,

in many regular cases. But we note that (3.6) means only (8.5) while
(3.4) itself makes sense. It is well-known that, if 7(X) is a sufficient
statistic for II={P,; 0 €0}, there exists the conditional probability
kernel h(x|t), which is independent of parameter #, so that the factor-
ization theorem holds.

Now, similarly as in (2.1) and (2.2) we consider the square roots
of the marginal and conditional likelihood functions and their likelihood
ratio functions defined by

(3.7 $(O)=g'"(T;0), CO)=h"*X;0|T),

and
Yi(2)=¢(0+7)/¢p(6)—1=g"(T; 0+1)/g"(T; 6)-1,
Zf7)=C(0+7)/L(0)—1=h""(X; 0+|T)/A(X; 6|T)—-1,

(3.8)

for 6 and 0+ € ®, respectively. Then, we have:

LEMMA 3.1.

(3.9) E,| Xi(z)—Yi(z) = Z(r) = Y () Zi(7)|=0 .
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ProOF. It follows from (3.3) and (3.4) that
E,|(X(z)+1)—(Yi(r)+1)(Z(7)+1)]|
B0+ )p(0) p(d)=0 .

S{O(T(z);v+r)=0)
This is the conclusion of this lemma.
We use the “relative conditional expectation” of an integrable

function u(x) given T'(x)=t with respect to a o-finite measure g, E, (u|t),
such that E, (u|t) is B*-measurable and satisfies

(3.10) | w@)u(an)= B, (lour@t)=( B,@T@)uds) .

We could also refer to Loéve [6] above, or go back to Halmos and
Savage [4], for the concept of the relative conditional expectation.

LEMMA 3.2. (i) ¢(T;0)=E.[f(X;0)|T], a.s. [¢"].
(ii) More generally, for an integrable function u(x),

@.11)  E[wX)|T1e(T; 0)=E,[wX)f(X;0)[T], as. [p7].

ProoF. It follows from the definitions of conditional and relative
conditional expectations according to P, and pu, respectively, that

E, (w(X)} =§ E,[u(X)|tlg(t; 0)u"(dt)
=| B, [uX)f (X 01 TIw7 @)

This means (3.11).

It is easy to see from (3.3) and Lemma 3.2 that A(x; 6|t) behaves
as a conditional probability density function: that is h(z; 6|¢t)=0 and

(3.12) E,[MX;0[t)|t1=1 a.s. [p7].

Further, we have the following relations which play useful and essen-
tial roles in the present paper:

LEMMA 3.3.
(i) E,{X(2)}=—g(0+7)—¢(0)I*/2= — {E,| X7) [+ B (2)}/2.
(ii) E{Y(2)} =—¢p(0+7)—(O)|[)2=—{E, | Y(z)!+Bi(r)}/2,
where Bi(r) is defined in the same way as in (2.4) taking g(t; 6) in place
of f(z;0).
(iii) E,[Z(z)|T1=—E,[I00+7)—CO)|T]/2

=—{E,[1Z(x)}|IT1+ E,[1—xo(X)WX; 0+<|T)|T]}/2,

where y; is the indicator function of the support of h(x; 0|T).



158 NOBUO INAGAKI

ProOOF. (i) is immediately proved from (2.1)-(2.4) and (ii) is sim-
ilarly done. It follows from (3.11) that

(3.13) E,[Z(z)|T1=E,[WWYX; 0+ |T)h"*(X; 0|T)—1|T] .
This and (3.12) lead to the conclusion of (iii).

Hereafter, we show that g(T'; ) and, consequently, (X 6|T) also
inherit from f(X;6) such properties as (2.9) and (2.16).

THEOREM 3.2. Suppose

(3.14) lim B, {X()}=|=0 ,

then it holds that

(3.15) lim E, {Y,()}/|z|=0,

and

(3.16) lim B, {(Yo(z)+1) B, [Z(2)IT]}/|=|=0 .

PROOF. We see from (3.9) and by Lemma 3.3 that
EAX (o) Ir|=E {Yo()Y|o|+ B {(Yo(r)+1) B, [Z/(2)| T1}| =] ,

each term of which is non-positive, and hence we conclude that the
convergence to zero of the term on the left-hand side implies the same
fact of each term on the right-hand side.

COROLLARY 3.1. Suppose the same assumption as in Theorem 3.2 and

(3.17) EEE’AY’(TMTKOO .
Then, we have

(3.18) lim E,|Yo(r)Z(7)|/||=0,
and hence,

(3.19) lhg E,{Z(z)}/|z|=0 .

PrROOF. Let A>0 and |z|=1. By (iii) of Lemma 3.3, it holds that

E)|Z(at)HAs —2 E,{Z(47)})2
<2 E,|Y,(20)|A—2 E,{(Y/(47)+1) E,[Z(47)|TT}/2 ,

and therefore that
(3.20) im E,|Z,(27)}/2<2 im E,|Y,(A7)|/2< o0 .
=0 a0
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Since
E,|Y (A7) Zy( A7) |[AS{E, | Y (A7) 2V {E,| Z[ A7) A},

(3.18) is proved by (ii) of Lemma 8.3, (3.15) and (3.20). This and (3.16)
lead to (3.19). The proof is complete.

THEOREM 3.3. (i) The condition (2.9) for f(X;0) produces the
same condition for g(T; 0):

(3.21) Ihlm Bi(o)|=[=0 .
(ii) Suppose
(3.22) |liIFE,lzX}(r)F/Irlz<o° ,

then the condition (2.9) produces the similar one for WX; 0|T):
(3.23) lim E, {E, [(1—7(X)h(X; 0+7|T)ITN}/|<f=0.
Thus, it holds in these situations that

lim {2 E, (X,(2))+ Eo| X(2)[}| =0,
(3.24) Lim {2 E,(Y(r)+E|Y()[Y|z[=0, and

lim {2 E, (Z(2))+ Eo| Z() FH<[F=0.

ProOF. (i) Since P,{g(T(X); 0)=0}=0, it is sufficient for (3.21)
to show that, for A ¢ B" with P,(A4)=0,

(3.25) lim Py, (A)/|z[=0 .

Recalling that S,(0) is the support of f(x;6), we easily see

0=P,()= _ f(&;0)u(dz)
VORFIO)
and therefore, we have

pANS/(0)]=0.

Thus, we have

P ()= f(@;0+0u(de)+

AnSy Anss

, Fl@ 0+ <Bl () -

Consequently, this and (2.9) imply (3.25) and hence (3.21).
(ii) Set

(3.26) Bi(r)=E,[(1—(X)X; 0+<|T)|T] .
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It follows from (2.9), (3.3) and (3.11) that

(3.27) Eor  AB Mo =Ep. (1 —15(X)}Y| [
SEo (13 (X)YI<P=B{(c)]|<[—0
as |t|—0.

Since 0= 8%(7)<1, it holds that
(3.28) |Buv. (B} — By Bl
| 6(0+0)—0@)(9(0+7)+ 9B @) 1P
B P+ (B Y B, (BOW e+ B (B -
Since (2.9) and (3.22) imply
m [— B X0} FI=Tm E| Xe) < <o ,

(3.14) holds. Further, by using (3.21) and similarly as the proof of
Theorem 3.2 we see that

|1fi|_glo E,|Y, (o)) r|2=|1—ril—lz—}) [—Eo {(Yo(r)}|[]
é}:@ [—EAXy()} 1< o0

and hence, that (3.17) holds. Then, by (iii) of Lemma 3.3 and Corol-
lary 3.1 we have

(3.29) F‘EE& {B()HI=|=0 .
Thus, we obtain (3.23) from (3.21), (3.22) and (3.27)-(3.29).

4. Differentiability of the marginal and conditional likelihood
functions and decomposition of Fisher information

In this section we show that the marginal likelihood function of
an estimator T, ¢(T; @), and the conditional likelihood function of X
given T, h(X; 6|T) inherit differentiabilities with respect to 6 from
the likelihood function of observation X, f(X;#), while we show in
the previous section that the formers inherit some other regularity
conditions from the last.

THEOREM 4.1. If f(x; 0) is differentiable in mean at 6 (see (2.5)),
then g(t; 0) is also differentiable in mean at 0:

4.1) lim S lg(t; 0+7)—g(t; 6)—i(t; 0) |7 (dt)f|z]=0

with the derivative
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(4.2) §(T; 0)=E,[f(X; 0)|T] .

PrROOF. Let 2>0, |r|=1 and §(T;60)=E.,[f(X;6)|T]. It follows
from (2.5) and (i) of Lemma 3.2 that

[ Hott: 0+ 20)—g(t; O3 —gtt; 0)-<l(@)
=[ 1B, [A(X; 0.+ 30)— £(X; 02— F(X; 0)-7IT=1) 7 (dt)

<1 0-+a0)— £ 02— F(X; -2 i) >0,
as 1—0.

This is the conclusion of the theorem.

Similarly as in (2.9), it is obvious that
| att: o)ur@n=0..

THEOREM 4.2. If X, is differentiable in quadratic mean at 0 (see
(2.8)) and if the condition (2.13) holds, then not only X, but also Y, and
Z, are differentiable in mean at 0, letting derivatives be defined by

(4.3) Y(0)=E,[X(0)|T], say,

and

(4.4) Z(0)=X(0)—E,[X(0)IT], say,
=X(6)-Y(),

respectively.

ProoF. 1°. Let 2>0 and |r|=1. Since differentiability in quad-
ratic mean implies differentiability in mean with the same derivative,
it is obvious that X, is differentiable in mean:

(4.5) lim E,| X,(¢)/2— X(6)-7|=0 .

2°. Theorem 2.2 states that under the same condition as in the present
theorem f(x;6) is differentiable in mean with the derivative f(X;6)

=2X(0)f(X;0). Therefore, by Theorem 4.1 it follows from (8.11) and
(4.3) that ¢(T'; 0) is differentiable in mean with the derivative

(4.6) o(T; 6)=2Y(0)g(T; 6) .
We see from (3.7), (3.8) and (4.6) that
4.7 E,|Yz)[2=Y(0)-7|
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=[ 160+ 109(0)—g(t; 0012~ itt; 0)- <121 (@)
<2 | 1ot 0+ 20)—g(t; O}/ 2—i(t: )<l w7(dt)
+ 2190+ 5) = p(0) 1.

It follows from Corollary 2.1 and (2.16) that the condition (3.14) in
Theorem 3.2 holds and hence, from (ii) of Lemma 3.3 and (3.15) that
the last term in (4.7) converges to zero as 2—0. This and the differ-
entiability of g(T'; 6) conclude that of Y, in mean:

(4.8) lim E,|Y,(it)/2—=Y(0)-z|=0 .
A0

3°. By Lemma 2.1 and (4.8), it holds that

(4.9) lim E,|Y,(7)|/A=E,|Y(8)-t|<co .

Therefore, by Corollary 3.1 we have that (3.18) holds. It follows from
(3.9), (4.3) and (4.4) that

(4.10) E, |[{X,(4)|2—X(6) -} — {Y,(22)[2= Y (6) 7}
—{Z(a7)[2—Z(0) -7} + Yi(A2) Z(27)[2]=0 .
Thus, we have that
E,| Z(z)|A—Z(0)- |
<E,| X,(27)[2—X(0)- 7|+ E,| Y(2z)]A— Y(0)- 7|+ E, | Y,(2t) Z(27)||A—0
as 1—0,

considering (3.18), (4.5) and (4.8). This concludes the differentiability
of Z, in mean. Therefore, the proof of the present theorem is complete.

THEOREM 4.3. If X, is differentiable in quadratic mean at 6 and if
the condition (2.9) holds, then Y, and Z, are also differentiable in quad-

ratic mean at 0 with the same derivative as in Theorem 4.2, respectively.

Proor. 1°. Let 2>0 and |z|=1. It follows from (2.8) and by
Lemma 2.1 that

(4.11) lim E,| X,(At) /22 =E,| X(0)- < o ,
A0

and hence that (3.23) and (3.24) hold. The condition (2.9) implies (2.18)
and hence the conclusion of Theorem 4.2 holds.
2°. It follows from (4.3), (4.4) and (4.11) that

(4.12) E,|X(0)-tP=E,|Y(0) -t '+ E,|Z(6)- <} .
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By Lemma 2.1 and Theorem 4.2, we have that
X,(at))2—> X (0)-7 ,

(4.13) Y/ (iz)]A—>Y(0)-r, and
Z,(a7)]A—Z(8)-T

in probability as 1—0, respectively. Thus, by Fatou’s Lemma we have
that

lim E,|Y,(c)[/*2E,|Y(0)-<F,  and
19 lim E,|Z,(A0)F/# 2 E,| Z(0) <} .
In the same way, we have from (iii) of Lemma 3.3 that
(4.15)  2lim E, {(Y,(27)+1)(—Z(7))}/2*
2 E, {lim (Yi(27) +1) E, [| Z(a=) T}/ 2’} 2E,|Z(0) f.
Now, it follows from (3.9) similarly as in (4.10) that
E{— X{20)Y ¥ =E, { —Y(20)} '+ E, {(Yo(27) + 1) (— Z(22))}/ 2*
which together with (3.24), (4.11), (4.12) and (4.15) implies that
(4.16) Eﬁo E,|Y{(a7)P[2*=2 ErOHE, {— Y (22)}/2
=2lim K, {— X,(22)}/ '~ 2 lim E, {(Y(27)+1)(—Z,(2=))}/2*
<E,|Y(0) .
Therefore, it follows from (4.14) and (4.16) that
(4.17) lim B, | Y(4z)P/ 2= E,| Y(6) -]
and consequently, that
(4.18) 2lim E, {(Yo(a0)+ 1)(= ZAo)) i =E,| Z(6) - <.

We conclude from (4.13), (4.17) and Lemma 2.1 that Y, is differentiable
in quadratic mean:

(4.19) lim E, | Y,(4c)/2—= Y (0)- <=0 .
3°. Since

2 E,{— X (a0)}/2*
=2 B, (- Y, (2 )} 2*+2 E, { — Z,(27)}| '~ 2 E, {Y (A7) Z,(a7)} 2%,

we have from (3.24) and (4.11) that
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lim E,| Y(47)— Z(ar) PIA2=E,| X(6)- <] .
Similarly as (4.12), it is easy to see that

E,|Y(6)-t—Z(0)-cf=E,| X(6)- !
and hence that
(4.20) 1115]1 E,|Y,(At)—Z A7)} R =E,|Y(6)-t—Z(6) - <.
From (4.13), we see
(4.21) | Y(at)— Z22)||A— | Y (8) -t — Z(6)- 7| .
Thus, by Lemma 2.1 it holds from (4.20) and (4.21) that
(4.22) lim E,|(Y A7) —Z(27))[2— (Y (68) - = — Z(6)-7)}=0 .
(4.19) and (4.22) lead to the differentiability in quadratic mean of Z,:
lim E,|Z(iz)[2—Z(0)-[=0 .

The proof of the theorem is complete.

In the same situation as Theorem 4.3, considering (4.13), we define
the Fisher information metrices of f(X; 6), g(T; 6) and KX; 4|T) by

I,(6)=4E, {X(0)X(0)'} ,
(4.23) I(6)=4E,{Y(6)Y(6)}, and
L(6)=4E,{Z(6)Z(6)} ,

respectively, which are confirmed by the facts of (2.17) and (4.6). Then,
from (4.12) we obtain the main result (1.3):

THEOREM 4.4. The Fisher imformation matric of the likelihood
Sunction of observation is decomposed into those of the marginal and
conditional likelihood functions:

I0)=1,0)+5(6) .

Acknowledgement

The author is grateful to Professor Okamoto, M. for helpful sug-
gestions which improved the presentation of the manusecript. The au-
thor also wishes to express his gratitude to the referee for his useful
comments and kind suggestions.

OSAKA UNIVERSITY



(1]
[2]
(3]
[4]
[5]

[6]
[7]

DECOMPOSITION OF THE FISHER INFORMATION 165

REFERENCES

Barndorff-Nielsen, O. (1978). Information and Exponential Families, John Wiley &
Sons, Chichester.

Edwards, A. W.F. (1972). Likelihood, Cambridge University Press, Cambridge.
Hijek, J. and Sidak, Z. (1967). Theory of Rank Tests, Academic Press, New York.
Halmos, P. R. and Savage, L. J. (1949). Application of the Radon-Nikodym theorem
to the theory of sufficient statistic, Ann. Math. Statist., 20, 225-241.

LeCam, L. (1970). On the assumptions used to prove asymptotic normality of maxi-
mum likelihood estimates, Ann. Math. Statist., 41, 802-828.

Loéve, M. (1978). Probability Theory 1, 11, 4th ed., Springer-Verlag, New York.
Shimizu, R. (1976). Central Limit Theorems (in Japanese), Kyoiku Shuppan, Tokyo.



