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Summary

The aim of this paper is to give a method for obtaining a charac-
terization of the exponential distribution, which is based on a study of
convolution-type equations and on a subsequent selection of positive
solutions of these equations. The method is illustrated by two char-
acterizations of exponential distribution through the integrated lack of
memory property and relevation type equation. It is proved that each
of the equations

* F(x+2) 7
So S f@de=F@), 2>0

and

S:F‘(z——x)f(x)dxzsz %f(m)dw , z2>0,

where F(z)=1—F(x), F(x) is a distribution function and f(x) is a prob-
ability density function, has solutions only of the form

F(x)=exp(—2iz), x>0 (1>0).

1. Introduction

Let X be a positive random variable with a nondegenerate distri-
bution function (d.f.) F'(x), which has the sense of a d.f. of failures
of a technical device. Thus

P{X<x}=F(x)

is the probability of failure of this device until the moment of time .
Put

F(x)=1—F(x) .
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The value

P{Xzotz|Xza)=LE+2D (>0
F(z)
is the probability of failure of the device during the time from the
moment x4z up to infinity provided that there were no failures until
the moment of time x. The well-known property of lack of memory
means that

P{Xzzx+z| Xz} =P {X =z}
or, equivalently,

Fa+2) _py .
F(=)
If we assume that « is the value of a random variable with the den-

sity function f(x) (f(x)=0 for £<0), then the integrated lack of memory
property has the form

(1) S“Mf(x)dmﬁ(z) . 220.
°© F(z)

Equation (1) was studied in the papers by Ahsanullah [1], [2] un-
der a rather restrictive assumption that F(x) possesses a monotone
hazard rate. Under this assumption it was proved that if F(x) satisfies
equation (1), then it is the d.f. of the exponential law. Grosswald and
Kotz [3] studied equation (1) under somewhat different regularity as-
sumptions. However the assumptions of [3] are, nevertheless, rather
restrictive and, besides, there is considered only the case when f(x) is
the density function of F'(z).

Here we give a method of proof of characterization theorems which
allows to study equation (1) without the assumption that f(x) is a den-
sity function at all. In particular, we may make no assumption on the
positiveness of the function f(x). Besides, our regularity assumptions
are different from those of [3].

In the papers by Grosswald, Kotz and Johnson [4] and Grosswald
and Kotz [3] a related relevation type equation

2

So Fe—2) f(x)dx:S F (;) f@)d

¢ F(x)

was considered (for the interpretation of this equation in terms of re-
liability theory see [4]). They show that the only solutions of this
equation (under a priori assumption of analyticity) are d.f.’s of the
exponential law. In the present paper we get rid of a priori analyticity
assumption, replacing it by weaker regularity assumptions.
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2. Results

THEOREM 1. Let a d.f. F(x) (F(x)=0 for x<0) satisfy equation
(1). Assume that for some p=0

F@)=e*"¢(x) ,

where the function ¢(x) satisfies the following conditions :
(i) f@)/o(x)<Me = for some positive constants M and a;
(ii) the relation f(x)/p(x) is differentiable and

' |-& (s@eton| da<oo

(the positiveness of the fumction f(x) is mot assumed). Then ¢(x) for
x>0 is a solution of some ordinary linear differential equation with
constant coefficients.

THEOREM 2. If, in addition to the assumptions of Theorem 1
f@zo  and | f@s=1,
0

then F(x) is a d.f. of the exponential law, i.e. F(x)=1—e* for x>0
(A>0) and F(x)=0 for x=0.

COROLLARY. Let a differentiable d.f. F(x) satisfy equation (1) in
which f(x)=F'(x). Assume that

F@)=erp(x)  (020),

and ¢(x) is such that
(i) the second derivative ¢''(x) exists and also

|¢' ()] (x)| < Me™**

for some positive constants M and a,
(i) ("L (@ola)|erds<oo .
ol dx

Then F(x) is a function of the expomential distribution.

Consider now the relevation type equation.

THEOREM 3. Let a d.f. F(x) be differentiable and such that F(+0)
=1, F(2)>0, F'(2)<0 for all 2>0, F'(+0)<0 and suppose that the
function f(x) is continuous, strictly positive and Sm f(x)dx=1. Then

0
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the only solutions of the equation
) Fe-o) f@do=| (FQIF@)f @z, 220

are of the form

F(z)=1—e"*, 2=0 (1>0).

3. Proofs

The method of proofs of Theorems 1 and 2 is based on the esti-
mation of the number of linear independent solutions of some convolu-
tion-type equation on a semi-axis together with subsequent elimination
of those solutions which do not have the probability meaning.

Let us make in equation (1) the change of the variable F(x)=
e p(x). We get

(2) S: Sf(x) 90(;"(;;‘_)2) dr=q(2) .

Suppose that ¢(z) is some solution of equation (2). We fix it and
denote

R(@)=f(@)/¢(x) .

Consider the equation
(3) 0)=\ R@ga+adz, >0

with respect to an unknown function g. It is clear that g(z)=¢(z) satis-
fies this equation. Besides, by virtue of the conditions of Theorem 1
the function R(x) is differentiable and |R'(x)| is integrable. Therefore
if we write equation (3) in an equivalent form

(4) g(Z)=S: R(y—2)9(y)dy, 2>0,

differentiate both sides of (4) with respect to z and use integration by
parts, we see that g(z) is differentiable and

g'(z)= S: R(y—2)g'(yydy, 2>0.

Hence, if the function g(2) satisfies equation (8), then g(z) is differen-
tiable and its derivative g¢'(z) also satisfies equation (8). Thus, g(2) is
an infinitely differentiable function (for z>0) and also all of its deriv-
atives satisfy (3).
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Put
K(t)= S“’ L @) gy |
o ¢(2)

By virtue of the conditions of Theorem 1 K(t) is analytical in a band
which contains the real axis. Therefore a representation

1 _ e

1=K 1] (=g,

(5) Ki(t) ,

where ¢, 7, are real numbers, 3, and o, are positive integers, K,(t)#0
for t € (— oo, o0) and

(6) %=-%[arg Ky(t)]7< oo

is valid. Then (see Gahov and Chersky [5], Ch. III, §9, 10.3) equation
(8) has no more than m=%—n (if X>n) linear independent solutions
(if ¥<m, equation (3) does not possess non-trivial solutions, but in our
case it is impossible since (1) and, hence, (3) have the exponential solu-
tion). Since g¢(z), ¢'(2),- -+, g9¥(2),- -+, are solutions of equation (3), the
functions ¢(2), ¢'(2),- - -, 9™(2) must be linearly dependent, i.e. there are

m
real constants a,, a;,---, a,, > a:>0, such that
=0

(7) a9 ™(2)+a, g™ (2)+ - - - +a,9(z)=0

for all 2>0. Thus, g(z) is a solution of a linear differential equation
of the order <m with constant coefficients. Since g(z)=¢(z) is also a
solution of equation (3), ¢(2) satisfies equation (7). Theorem 1 is proved.

ProorF OF THEOREM 2. We have from Theorem 1:
(8) F—'(z)=j§_}=1 ¢;pi(z)e”%",

where A,=p—p, and p,’s are the roots (in general, complex ones) of a
characteristic equation

ap"+a, "+ 4a,=0,

¢,’s are constants and p,(z) are polynomials of z. In addition we can
assume that in (8) all ¢;#0, the numbers 2, are different and are or-
dered with respect to the increase of their real parts, i.e. Re ;=<Re 2,
<...<Re1,, and also Re 2,>0 (otherwise, the real function F(z) can-
not be non-increasing from 1 to 0).
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Let

R(z)=f(2)/F(x) .
Then (1) implies

(9) S” Ri(@)Fa+2)do=F(2) .
Substituting (8) in equation (9) we get
(10) ﬁ] ¢, p,(z)e“ﬂ:ji c;e s S: R(2)p,(x+2)e *dw .

Since Sm Ri(x)p,(x+2)e "dx is a polynomial of z, whose degree is not
0

higher than the degree of p,(2) and the functions 2’ exp (—2,2) are line-
arly independent for different I and j it follows from (10) that for any
j =1,..-,m,

(11) P,(R)= S: R\(x)p,(x+2)e~""dx
(we take advantage of that ¢;#0, j=1,---, m). Let
p,(2)= é a2 (@, #0) .
If we substitute this expression in (11) we get
(12) ﬁ‘, 0,2 = lz’ S" R(@aa+2yevds ,  j=1,+-,m.

Setting equal the coefficients at 2% in the left-hand side and the right-
hand side of (12) we obtain

(13) Sm R(x)e #dx=1, j=1,--+,m.
0

If at least one of the numbers [;>0, then equating in (12) the coeffi-
cients at 247!, we find that

(14) S: Ry(x)we-'rdz=0 .

Return now to representation (8). Since F(z) is a real function,

each complex 1, has a complex-conjugate 2,,=2,, We can assume that
the indexing is such that j’ differs from j by one. Show that there
is at least one real number among the 1,’s with a minimal real part
Re 2;=Re 2,. Assuming the contrary, we have for some k=1 that 2,=

Ez, 13=-Z_4,"', 22;,_1:-2—2“ Relj=Re21, j'——-l,"', 2k, and Rel,)ReZl fOI‘
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.7>2k- Put 21=51+i7]jv j=1""y 2k (7]2]—l=—7]2])r 77]:#0! j'__l!"': 2k.
Then relation (8) implies

(15) F)=| ; [5,(2) €08 7y;_z+,(2) sin ms,_i2]

m
+ 2 cjpj(z)e-(lj—el)z} e—elz
1

J=2%+

(here 7, and P, are some polynomials). Since e~%~*—0 as z—o0 (5>

2k), the sum i ¢; p,(2)e” %% becomes arbitrarily small for sufficiently
J=2k+1

large z. On the other hand, it is easy to see that the sum of values
in square brackets is with alternating signs. Hence, the whole ex-
pression in the right-hand side of (15) is with alternating signs, which

contradicts the positiveness of F(z). So we can assume that 2, is a
real number and 1,>0.
Now we see from relation (13) that

(16) |, R@)rdo=1.
If Re 2,>2, for some j, then

‘ S:’ Ri(x)e-dx ‘ < S"’ Ry(z)e-®idp < S” Ry(z)e-dz=1.
However, the last relation is in contradiction with (13). Thus,

Re 1,=1,, Jj=1,-c,m.

If there are complex numbers among the 4,’s, i.e. for at least one j,
A;=2+17n,, 7,#0, then by virtue of (13)

1= Sm R\(x)e *dx= Sm R,(x)e~"* cos (n,x)dx+1 Sw Ry(x)e~"" sin (y,x)dx .
0 0 1]
The latter is possible only if
S” Ri(@)e cos (n,x)dz =1, S” Ri(@)e~4* sin (5,2)dz =0 .
[} []

Since R,(x)>0, the first of those equalities under »,#0 is in contradic-
tion with the relation

S“ Ry(x)ehdz=1 .
0
Thus, 2,=4, for j=1,.--, m.

If among the polynomials p,(z) in (8) there is at least one polyno-
mial of a positive degree, then (14) implies
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Sm R(x)xe *dx=0 .
0

However, the latter is impossible by virtue of positiveness of the inte-
grand function.
Hence, according to what has been said, relation (8) implies

F(x)=Ce =,
By virtue of normalization F(0)=1, we get
F(x)=e"",

i.e. F(x) is a function of the exponential distribution.

Pass now to the proof of Theorem 3. The method of its proof is
based on the ideas of the theory of positive operators, i.e. the opera-
tors which leave invariant some cone in a Banach space. Namely, the
following lemma will be necessary.

LEMMA. Let K be a linear operator which operates in the space
Cla, b] of continuous functions given on a finite interval [a, b]. Assume
that

(Ké&)(x)=0, z € [a, b]
Jor any monmegative function &€ Cla, b] and, in addition, the condition
(KE)(20)=0

implies £&(x)=0 for x €la, z,). Then to each eigen-value of K operator
corresponds mo more than one (to within a constant factor) strictly posi-
tive on [a, b] eigen-function.

PrROOF. Assume the contrary and let &, and &, be two strictly posi-
tive eigen-functions of K operator, corresponding to the eigen-value
2, i.e.

J(Eo:)-fo and JC&:ZEl .

Choose the number a so that the function &,=¢,—a¢, is non-negative
and vanishes at least in one point ¢, of the interval [a, b] (obviously,
it can be done). Then

Jcez—:JC(fo—d&)'—'2(50"“51):252 ’

i.e. & is a non-negative eigen-function of X operator. Since &(t,)=0,
then (A&)(t)=0 and, by virtue of the property of X operator, &)
=0 for x¢[a,t]. Clearly, there is a number g such that the function
§,=§,—p&; is non-negative and vanishes at some point ¢,>¢, from the
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interval [a, b]. Then
K¢ s =A4&;s

and according to the property of A operator we have &(x)=0 for x ¢
[a, t]. It means that &(x)=p&(x) for « € [a, t,]. However, &(x)=0 for
x € [a, t]cCla, t,], i.e. &(x)=0 for x€[a,t,]. The latter contradicts the
strict positiveness of the function &. The Lemma is proved.

Begin now the proof of Theorem 3. Fix arbitrarily a number T >
0 and consider the equation

17 So Flz—2) f(x)dz= So —%dx F(2)

for z€[0, T]. Let F(x) be some solution of equation (17) which satis-
fies the conditions of Theorem 3. Fix it and consider the equation

(18) |, Se—a)f (@)s=92)S() ,
z€[0, T], where
J@ 4
#a= o
Consider a linear operator K given in the space C[a, b] by the relations
(K8 ()= el S E(z—2x)f(x)dx for 0<2T,

(KE)(0)=E(0)F(+0) .

Clearly, the operator X, introduced like this, satisfies the conditions
of Lemma 1. Therefore X has no more than one (to within a con-
stant factor) strictly positive eigen-function which satisfies the relation

Ks=s,
i.e. for a fixed function F(x) equation (18) has no more than one (to

within a constant factor) strictly positive and continuous on [0, T'] solu-

tion. Since S(z)=F(z) is the solution of equation (18), then all of its
solutions with alternating signs are of the form

S()=1F(z), z¢l0,T],

where 1 is a constant.
If we differentiate both sides of (17) with respect to z, it is easy

to see that the function F"(z) also satisfies equation (18). Since F'(2)
<0 (by virtue of the assumption of Theorem 2) we have, according to
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what has been said,
Fl(2)=—aF(k), z¢€]0,T]

for some 2>0. Integrating this equation and making use of arbitrari-
ness of the number 7 >0 we obtain

F@)=e*, 220.
Theorem 3 is proved.

Note that the assertions similar to Theorem 2 can be obtained by
means of methods of papers [6], [7].
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