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Summary

Let X,,.=X,,<---=<X,., be the order statistics based on a sample
from an absolutely continuous distribution F. It is proved that the
uniform distribution on the interval [0, a] is characterized by the prop-
erty that X;,—X,, and X, , are identically distributed.

Let X,,---, X, be i.i.d. random variables from a distribution F, with
the corresponding order statistics denoted by X,,<-.--=<X,.. If F is
the uniform distribution on the interval [0, a], >0, the spacings X, .
—Xim k=1,---,m—1, are all identically distributed as X;,. The con-
verse is true under various regularity conditions ([6], [4], [6]), thus
characterizing the uniform distribution. The problem first arose in the
context of characterizing the exponential distribution and using it to
test the composite hypothesis of exponential distribution with unspeci-
fied scale parameter ([6]), and was later extended to goodness of fit
test for the normal distribution ([1], [2], [3]). For a discussion of how
these results are related to the characterization of the uniform distri-
bution, see [5] (Section 3). The main result of [5] is their Theorem 2:
If for some n, X;,—X; . and X, , are identically distributed, if the sup-
port of F'is a finite interval, and if its density is continuous with finite
limits at the end points of the supporting interval, then F'is uniform.
In this note we present a refinement of the above theorem. Here we
are able to dispense with the conditions of finite support and the con-
tinuity of the density.

THEOREM. Uniform distribution ts the only absolutely continuous
distribution whose X, ,— X, ., and X, are identically distributed.

PROOF. Let F=1—F. Identical distribution of X;, and X,.,—X,.
means

(1) Fr@)=n| Fri@tydF@), =20,
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Differentiating the above, with f being any version of the density of
F, we get

(2) Fr@)f@=m—1) | Fat+fE+nfody

for x=0 a.e. Lebesgue. Let 2 be the set of x values satisfying (2).
According to Lemma 1 of [5], the support of F' is an interval of the

form [0, a], where @ may be infinite. From (2) it follows that for each
zefR and 0=x<a,

(3) f@={" f.w .
where

G.(y)=1— [E}%)l’l]"“

is a probability distribution function on [0, a—=], and is strictly in-
creasing therein ([56], Lemma 1). Let

c=essinf f(x) .
0szr<a

Our plan is to show the finiteness of a (Lemmas 1 and 2), then the
constancy of f over [0, a].

LEMMA 1. There exists ¢>0 and >0 such that f(x)=e for all
xeR and 0<x<4.

PrOOF. Suppose not. Then there exists in £ a sequence z,, @,,- - -
—0 such that f(z,)—0. Abbreviating G, by G., we see that as k—

0, G,—G,=1—F!. Put
A ={x: f(x)=2}, Ai>0.

Then from (3) we have

(1) fa)= rwiewz|  fedcwzi|, dw .

Letting k— oo in (4), we get

0=1 S dGyy) ,
AQ)

or, A(2) has G,measure zero for each 2>0. Since G, dominates F, A(2)
also has F-measure zero, A>0. Namely, f=0 a.e. F, which is impos-
sible.

LEMMA 2. a<oo.
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PROOF. Suppose a=oco. Then there exists a sequence {x,;} of posi-
tive numbers such that xz, € 2, x,— o0 and f(x,)—0. Again letting G,
be defined by G., we can assume without loss of generality that G,
converges weakly to a monotone function, G,, say, such that Gy(x)=0
for <0 and Gy(c0)<1. It follows from (1)

Fay=n| [ FEt0 [Targ)=n| 0-GoMrw .

Letting k— oo, we obtain
0=lim Fz)=n | (1-G()F @)

which implies Gyx)=1 a.e. F. But as F is strictly monotone ([5],
Lemma 1) and G, is also monotone, Gy(x)=1 for all z>>0. On the other
hand, by Lemma 1, there exist ¢>0 and 4>0 such that f(x)=e¢ for
all x € 2N(0, 8). Thus by (3), using the above 2’s we have

(5) f@)=\ racwz| radcwze | i) .
Letting k— oo in (5), we arrive at a contradiction: 0=e.

PROOF OF THE THEOREM (Continued). Let x€ 2, a/2<x<a. By
(3), f(x) is an average of f values over [0, a—x], a subinterval of [0,
a/2]. This implies that

f (x)gffi inf f(t)zess inf f(?) ,

0st=a/2
and hence

ess inf f (t)=eos§ti§nf f@) (=e¢).

0stsa/2

Let {x.} be a sequence in £2N[0, a/2], converging to, say z (<a/2), with
f(x))—c. For each ¢>0 put

B=B(e)={x: f(x)>c+e},
and notice
@)=\, @G+, rwc.wzets | dGw) .
Taking limit k— oo again, we get
cZcte Sm dG.(y) .

Thus B(e) has G,-measure zero for each ¢>0. But G,(y)=1—[F(z+v)/
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F(2)]*" concentrates on the interval [0, a—z], and dominates the shifted-
F. Thus

dF(y)=0.

S(B(a)+z)n(z,a)

This means that the set {z: f(x—z)>c+e, >z} has F-measure zero
for each >0, or,

f(x)=c, 0<x<a—z a.e. F.

Now, for each z in (a—2z)N %, since f(x) is an average of f values over
(0, a—x), a subinterval of (0, a—z), and since f is constant a.e. there,
it follows that f is also constant (=c) a.e. over (a—z,a). Hence f=c
a.e. over the entire interval (0, a).
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