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Summary

Let (X,Y) follow a bivariate normal distribution, Ny(¢, p2, ai, a3, p).
In this paper, we have considered the problems of testing hypotheses
Hy: p,=0, Hy: py=p, and Hy: p=0 on the basis of an unbalanced data
set-up consisting of =, paired observations, n, additional observations
on X only and n, additional observations on Y only. Some new tests
are proposed.

1. Introduction

Let us consider a situation where we want to infer about the
characteristics of two variables, say X and Y. In many practical cases
observing both X and Y may be expensive, time-consuming, or simply
impossible because both may not be available simultaneously. On the
other hand, we may have sample units providing information on X
alone or Y alone. We would then observe both X and Y on some units
and then X alone and/or Y alone on some other units. This kind of
data set is often designated as incomplete or unbalanced.

Recently quite a bit of work has been done on some estimation
and testing problems under an incomplete data set-up. The basic as-
sumption is that X, Y follow a bivariate normal distribution Ny(sx,, sz,
a!, ai, p). Suppose we have m, paired observations (X,, Y;), :=1,2,---,
n;, n, additional observations on X alone, X;, i=n,+1,---, #,+n,, and
n, additional observations on Y alone, Y, i=n,+n,+1,---, ny+n;+n,.
In this paper we consider the following problems of testing hypotheses:

Hy: p;=0, Hy:p=p, and Hy:p=0
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under the cases (a) »,>0, 7,>0, ny=0 and (b) 7,>0, 7,>0, n;>0.

The problem H, under case (a) has been discussed in the papers
by Khatri, Bhargava and Shah [5], Little [8], Tamhane [15] and most
recently by Sarkar [13]. Usually the test is based on some studentized
version of the maximum likelihood estimate (also known as the regres-
sion estimate) of p,. The test is not similar and the distribution of
the resultant test statistic is very complicated. The test proposed by
Sarkar is, of course, exact and similar and is based on an idea in
Scheffé [14]. In Section 2 we put forward a few more solutions to this
problem. Applying Wijsman’s D-method (Wijsman [16]), a variety of
similar eritical regions are obtained in Subsection 2.1. When p is known,
a locally optimum test of H, can be obtained (Subsection 2.2).

The problem H,, under case (a) has been treated by Mehta and
Gurland [9], [10], Morrison [11], Lin [7], Naik [12] and Little [8]. None
of these tests is however exact similar. We propose an exact similar
test in Section 3 by using a method similar to the one used by Scheffé
[14] and Sarkar [13] for other problems.

For H,, Eaton and Kariya [3] derive the locally most powerful
invariant (LMPI) test under (a). For this problem, practical statisti-
cians, however, often use a statistic which is based on the sample cor-
relation coefficient obtained after predicting the missing Y-values from
the observed values. In Section 4, we judge the merit of this test
relative to a slight modification of the LMPI test and the usual corre-
lation test which ignores the additional observations on X.

In Section 5, we deal with all of the above-mentioned problems
under data set-up (b). We propose some similar tests for H, and H,.
The second problem was considered by Bhoj [2]. The third problem
has been considered by Eaton and Kariya [3], who derive the LMPI
test by using Wijsman’s representation theorem (Wijsman [17]). In
Subsection 5.3, this is derived directly using an explicit expression of
a maximal invariant statistic. A modification of this statistic which
has a convenient distribution when the samples are moderately large
is proposed.

2. Tests for H, in case (a)

2.1. Construction of a class of similar regions wusing D-method of
Wijsman
For the testing problem under consideration, we see that the un-
derlying sufficient statistic, although belongs to a family of regular
exponential densities, is not complete when H, holds. Hence, we can
use Wijsman’s D-method (Wijsman [16]) for the construction of a class
of similar regions.
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Let T=(T\,---, T,) denote a sufficient statistic for the parameter
@ in a given problem and let the density of T under the null hypoth-
esis H): 0 € o with respect to the m-dimensional Lebesgue measure be
of the form

@.1.1) Do(8)=c(8) exp <— i si(o)ti>h(t),

where s, -, s, are real-valued functions of 6. Then p,(¢#) is regular
if h(t) is bounded away from 0 on a closed m-dimensional cube C. We
note that such a C can always be found in the problem under consid-
eration. Under the incompleteness of the data, the fact that the suf-
ficient statistic is not complete when H, holds is revealed by some para-
metric relations connecting the s’s in its distribution under H,. Let
these relations be put into the form P(s,,---, s,)=0, where P is a poly-
nomial of degree d. Choose G(t), a function of ¢, such that G(#) pos-
sesses all partial derivatives of dth order in the interior of C, vanishes
outside C and has all partial derivatives of (d—1) order continuous on
the boundary of C. Then denoting by D the differential operator D=
P(o/oty,- - -, 0/0t,), Wijsman suggested using ¢(¢)=a+ DG(t)/h(t) as a size
a similar test of non-Neyman structure. Of course, here G has to be
chosen suitably (subject to the restrictions mentioned above) to ensure
that

(2.1.2) —a<DG@)/Mt)<l—a  for all £.

Coming back to the problem of testing Hy: p,=0, we note that
the joint density of the sufficient statistics under H, can be put in the
exponential form (2.1.1) with

! ! n !
t1:izlx¥, tzzzlxi, tS"_-ZEyzy tlzzlxtyi’
= 1= 1= 1=

ny n4+ 7y 71479
L=>1Y:, ts=2 x;, t‘l:Z Z;,

i=1 i=ny+1 i=n;+1
8=1/20i(1—p"),  &=—pmld(1—p"), 8=1/20(1—p",
8= —plao(1—p’), 8s=ppula1o(1—p%) , ss=1/2q7,
§= —fll/af ’

h(t) = (ts—t3/m2) "2~V (8, — 3 1,) (B — 5[ m1) — (B — Lot )T 72
C={t: ts=tin,, ti=ti/ny, ti=ti/n,, (8—t3/ny) (L —tim,) = (8 —tots/m,)?} .

Also, there exist three parametric relations of degree 2 in the problem
given by Pi(8)=8,8—8:8=0, Py(8)=8,8,—28;8,=0, Py(s)=52+45,8;—48,8,=
0. It is possible to construct a similar region of non-Neyman struc-
ture using any one of these relations. Quite generally, we can choose
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G(t) as

e(ts—t3/ma)2[(t, —t3/my) (bs—t3/my) — (L4 —tats /0]
(2.1.3) Gt)= X exp (—ayt,— ast;— agls) , for teC

0, otherwise ,

where v, v;, @y, a5, @; and ¢ are constants to be suitably selected so that
G(t) possesses the desirable properties ((2.1.2) among others). The
motivation behind the choice of G(#) in the form (2.1.3) is that for «,,
a3, @,>0, G(t) will be bounded for all ¢ C; for large v,, v,>0, G(¢) will
be smooth inside C and also over the boundary of C and finally for
sufficiently small ¢, G(#) will satisfy (2.1.2).

Working with P,, we note that

(2.1.4) DG(#)=c[2tw,{asd;1d27 —vy(t—t3m,) 7 4327} [,
— v {2t5(t,—tots/ ) [y — 28t — 3/ 1) [}
X {ved i1 td2 " —agd ™1 432} ] exp (—eayt; —agts—agts)

where we have written
4,=(t,—t3ny) (G —tafmy) — (G —tats/m,)* d,=t;—ti[n, .

Hence, choosing v;=(n;—1)/2 and v,=(n,—1)/2 (note that the differen-
tiability properties of G(#) are satisfied in this case), we get

c[2tv, {4, — vi(ts—tim)} [ne+ vy {2ty(ts— £2/m,)/m,
DG(#) _ —2ty(ts—tots/Mi) [} {ve—asds}]

(2.1-5) h(t) X exp (—a1t1—dsta—aet6) y for teC

0, otherwise .

Finally, for any a,, a3, @;>>0, we choose ¢ appropriately so that DG(t)/
h(t) satisfies (2.1.2). It is clear that a variety of similar regions can
be constructed using the other relations P,, P; and combinations of P,
P, and P..

Thus, although we point out the feasibility of Wijsman’s D-method
to construct a similar region of non-Neyman structure, this cannot be
recommended for practical use because of two reasons. One is the ob-
vious criticism of its always being a randomized test. A second point
is that such a test is likely to be biased. Our calculations with ¢(f)=
a+DG(t)/Mt) where DG(t)/h(t) is defined by (2.1.5) show that for p=0
and g,=0 the local power of ¢(f) is less than « at least in one direction.

2.2. A locally optimum test when p is known
In this subsection we derive the LMPI test for H, when p is known.
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Without any loss of generality we can state the problem in canon-
ical form as follows:

Given Y™ ~N(g,c2), X~N(p,cod), V@ P¢~N(,I,_,&23),
V{2~ N(0, oil,,1), p'=(p1, p2), where Y, X,V and V; are mutually
independent, ) stands for Kronecker product, 3 denotes the bivariate
variance-covariance matrix and ¢, ¢, are constants, we want to test
Hy: p;=0 against H,;: g, #0. Clearly

— = o — )47y
Y'=(X, Yl)zzl (X;, Y)/n,, X—’:Xz:i 2+ Xi/n, ,
i= =n1 1
c=1/n, , a=1/n,,
(2.2.1) s s _ _
2 X -X1MX.—-X1
V'v=(Pu 12) — [ i _1][ i _1]
& s)=alyowlly e

402 —_
V/Vi=8k= 3 (Xi—X))'.
i=n‘+l
To derive an LMPI test, note that the problem under consideration
remains invariant under the transformation

(2.2.2) Y—>AY+a ’ X—>A11X+a1 ’ V'—’ VA’ ’ "l_-’.VIIAll ’

where A=<‘%“ £22> is a 2X2 non-singular matrix and a=<%‘) with

—oo<La<oo. If G denotes the associated group, it follows clearly that
v(dA, da))=da,((dAy/| Ay ) (@Ax[| Ax])) is a left-invariant measure on G.
Moreover, the differential dY dX dV dV, is relatively invariant with
multiplier

1A, a)=|Ay "2 Ayt

Hence, from Andersson [1] (for details see Eaton and Kariya [3]) we
get that the ratio of the density of a maximal invariant statistic T
under the alternative to null is given by

|, €A, @)Z17, o1x(A, ap(dA, da)
(2.2.3) r(T)=—28 :
|, F(4, @)Z11=0, x(4, @)(dA, da)

where Z=(Y, X, V, V), (4, a)Z=(AY+a, AyX+a, VA, VAy), »*=pilc}
and f(-) stands for the joint density of Y, X, ¥V and V, under the para-
metrization p,=0, p,=7, oy=0,=1.

Evaluating »,(7T) and using Ferguson [4], the LMPI test statistic
T, can be written as

Rl e 7 el et = 7 -1,-1 2
2.2.4 T=S S [ g et B—F  cTlelp ]
( ) 1 . Uy VA, ¢ te'(1—pY) Uy VA, ¢c'te'(l—p)

—o0
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X (1—p?) exp (—%(um;—2puluzAs/~/A—1A2))
X Iul |nx+n2-3 | uz lnl—tdulduz
+S°° S“’ exp (—%(uf+u§—2pulu2Aa/~/—AlAz)>

X |wy [P 28w Mt dus
where
A=8Su+SH1—p") +c e (1—p") (@ —To)'/ (¢ + 7' (1— ")
(2.2.5)  Ay=Sp+clc '+ )A—p)F (e + e (1—pY)
Ay=Sp+c'er (1 —pY)7(@ — T (™' + e (1—p%) -

Although the above integrals can be evaluated (Krishnaiah, Hagis and
Steinberg [6]), the resulting expressions involve infinite sums unless
both n,+7n,—3 and n,—2 are even integers. We consider below this
special case, assuming n,—2=2r and m,+n,—3=2s. Writing p=pA,/
VA,4;, it follows that T, has the expression

L o=

I'(s+5+1+1/2) c e+
X ((1 ’72)/2)s+j+1+1/2]+ A2< ——l_l_c—l(l p2)>( P)
" (2r4+2\ oy (r+1—35+1/2) I'(s+35+1/2)
<205 ey ((1—52>/2)’+f+”2]
o G(E—T) er'(cT' e 2r+1
2 VA A, {c-*+c;1(1—p2)}2( )L o<2r 2j>
I'(r—j+1/2) s F(S+j+1+1/2)]}
12y (A—=p?)[2)+i+e
;[ r (2"')—21 I'(r—j+1/2) I'(s+5+1/2) ]
L \2j @y (@—ph2)rrel”

X

The difficulty and hence the limitation in the use of the above test
statistic, though locally optimum, is evident. We provide below upper
100a% points of the null distribution of T for a=.1, .05, .025, .01, and
(my, mp)=(10, 10), (10, 15), (10, 20), (10, 25), (15, 15), (15, 20), p=0.1(.1)0.9.
This table will help the practising statisticians to carry out the above
test. To construct the table, 100 values of the statistic 7, have been
generated under the model N(0,0,1,1, p) (because of invariance) and
the upper 100a% points have been recorded.
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Table 2.1. Percentage points of T} for some values of n;, 72, p and a

\p“ .1 05  .025  .010 \;< .1 .05  .025  .010
n1=10, ny=10 n1=10, ny=15
.1[1.02700 1.93600 4.01174 7.90551 .1|0.91235 1.95202 3.54507 8.88342
.2 | 1.66065 3.42223 7.53221 19.96181 .2 | 1.77873 3.36245 7.22839 32.42370
.3|1.89769 3.18038 6.90620 15.67333 .3|1.78275 3.78613 7.63553 18.15987
.4 |1.87179 3.38779 5.38235 15.52086 .4|1.93024 3.83829 7.20407 13.92252
.5 | 1.96051 3.24655 5.58057 10.55522 .5 | 1.71697 2.71018 6.04062 24.43401
.6 |1.62903 2.60713 3.83758 7.66135 .6|1.80934 2.74452 3.79504 8.91943
.7 |1.76184 2.43650 3.10068 7.59353 .7 | 1.55137 2.08636 2.89156 4.89674
.8 |1.56079 2.12274 2.71521 3.97028 .8 | 1.42361 1.93422 2.27513 2.91562
.9 [1.35136 1.79262 2.16924 2.74861 .9 | 1.31436 1.72435 2.04381 2.72910

n1=10, 7n:=20 n1=10, ny=25
0.92333 1.56364 2.57478 5.58530 .93528 1.59186 2.63251 4.91956
1.50072 3.09225 5.59342 22.79338 .48509 2.94104 4.22787 10.98097
1.97239 3.74365 6.94326 29.35041 .94747 3.93975 10.44636 28.39296
2.26504 4.39513 11.66648 30.50430 .98073 3.97174 7.45803 18.58330
1.94876 3.37522 5.64184 11.60773 .98823 3.43432 4.99242 13.01333
1.88433 2.71943 4.57048 8.02634 .68342 2.39340 3.54960 6.16087
1.48671 2.03268 2.81866 3.48648 .46880 2.02406 2.73085 4.20848
1.53299 2.04144 2.50352 2.99973 .46617 1.92087 2.32321 2.89250
1.39636 1.92005 2.27580 2.93128 .41725 1.89358 2.22982 2.73891

©WNe M A W N
© PN Mo W
b e e e e e e O

n1=15, n.=15 n1=15, n:=20
1.13451 2.41008 5.28146 13.78828 1.43010 2.48732 4.83984 14.53893
1.87126 3.64782 6.99666 20.00294 1.84581 3.79643 7.47429 17.29544
2.03030 3.80588 8.39736 22.38998 2.15803 4.94392 10.18466 59.54926
1.81273 2.91778 5.29046 13.05786 1.86201 3.20983 5.99182 11.88610
1.79297 2.92426 5.02641 9.03013 1.81686 2.60587 3.74264 7.81223
1.60150 2.20349 2.51541 3.79257 1.54500 2.00971 2.72556 3.49335
1.46881 1.97798 2.38057 3.10399 1.49422 1.98493 2.72988 3.79701
1.44568 1.88822 2.40460 2.98079 1.38425 1.71862 2.12434 2.51977
1.34815 1.77130 2.15666 2.45741 1.27930 1.72909 2.06311 2.54026

©wNe G e WD

R - N B T O

3. Testing H, in case (a)

Here our purpose is to propose a test for H, which is exact and
similar. For this we introduce Scheffé-type variables (Scheffé [14]) as
in Sarkar [13]. Assuming n,<m,, we define

(3.1) Xi*:zX,+(1—z)jz’c,,X,,l+,, i=1,2,+,m,,
=1
for some constant 2 in such a way that (X* Y)), 1=1,2,-..,m, are

independently and identically distributed (i.i.d.) as bivariate normal
with the mean vector (g;, #;) and with a minimum possible dispersion
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matrix. The purpose is achieved by taking C=((c;;)): n,Xn, a solution
of C1=1 and CC'=(n,/n,)I, (see Sarkar [13]). The constant 2 is chosen
from a rough guess about the true regression of Y on X.

Now, (X*,Y), i=1,2,---,m, are i.i.d. as Ny(gy, g, (A24n,(1—2)n,)
a2, a2, pA(A4+-n,(1—2)}/n;)"2. The test we propose for H, is the usual
paired t-test under this reduced set-up. Thus, when the alternative is
H;: p,+#p,, we reject H, at the level of significance a if

o1
(3.2) Ty = — 1333 (U= > Py
where u,=x¥—y,, 1=1,2,---, m,.

We see that under any alternative the distribution of 7T; is non-
central F,,_, with the non-centrality parameter d=n,(y— w){[A*+
ny(1—2)}ny)e} +ai—2200,0,} !. The power function of this test is known
to be monotonically increasing with 8. Hence, at a specified alterna-
tive the optimum choice of A for which the denominator in 4 is mini-
mum is 2,=(n,+mpB)/(n,+n,), where f=pas;/o,. In practice, however, B
is unknown. So 2, cannot be used. Comparing 8 with the non-central-
ity parameter of the paired ¢-test which ignores the additional n, ob-
servations on X, we find that ours is better than the latter if

[224n,(1— 2)In;)ot — 22010, < 0} —2pay0; ,
whatever be (¢?, 6%, p). The inequality can be expressed as follows:
1<2< 28— (L —nym)} (L4+nymg)  if B>1
and
{28—(1—m/n)}/ (1 +m/my)<2<1  if B<1.

Hence, a rough knowledge about B in terms of its bounds will
enable us to choose A appropriately. Thus if p is known to be <0,
we can choose any 1 € [0, 1).

4. Testing Hy; in case (a)

The locally most powerful invariant (LMPI) test for such a problem
in the multivariate set-up was derived by Eaton and Kariya [3]. From
their result, we see that the LMPI test for our problem is based on
the statistic

(4.1) 7’}=sz/§11822—le/(’”/1—1)Su

where S;,=Syu+Sk+nmy(X,— X,)*/(n,+n,). For the sake of convenience,
however, we may omit the second term in (4.1) which is small (in
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probability) for large sample sizes.

Another test using the predicted Y-values (missing) is obtained as
follows. This is based on the square 7 of the correlation coefficient
r, obtained from the paired values

(Xtr Yi) ’ 7'=1r 2” cy Ny, (Xu Yz*) ’ ’&.—'_—’ﬂ1+1,' M) n1+'n2 )

with Y*=Y,+b,(X,—X,) and b, =3S,/S, is the sample regression coef-
ficient of Y on X. It is easy to see that

(4.2) ”'§=b§n§11/(szz.1+bgu§u) ’
where S; =8,—b3,.Sy.

It is interesting to compare the test based on 7; with those based

on r¥*=8%/S,Sn, the approximate version of 7%, and 7%, the square of
the correlation coefficient obtained by ignoring the additional observa-
tions. The distributions of 7}, 7} and 7} under any alternative p* are
the following.

Density of r¥:

- i\ T(m—1)f2+im ) (n—1)2+3)
@s HESC-v( >r«n1 DT A2+ = )T (n—=2)2)

XS L — )Pl Fy(— §, maf25 (m—2)/2; 1) ,

where 1=p*/(1—p%, n=n,+mn, and

> I'(a+)I b+ (c) a
il b5 o )= R @I ® ot 4

Density of 73:
(4.4)

iO’L‘jO( 1)j< )
I'(n—1)2+9)I'(n—1)/2+1—H)(n—1)/2+ )] (n,/2+ 21— )
I'(n—1)/2)' (124 7—5)((ny—1)[2+ ) (1, —2)/2)[ (02 + 20— J)
X PAHI ] — )M Fy(0y—1)[24+ 15—, Mof25 m[2+20—7 5 1) .

Density of 73:

By L 1 i —e/—
4.5 __2 _ j< > =] — )M =Dt
@5 ZaRCV e e )
From the above expressions of the densities, we can easily find out
the slopes of the power functions of the above three tests at 2=0 (i.e.,
p=0). We also make the comparison of the power functions at some
alternatives through simulation. The details appear in Tables 3 (a), (b).
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Table 3(a). Slope of tests r¥?, 7} 7}

a=.05 a=.025 a=.01

n1=10 n1=15 n1=20 ﬂ1=10 n1=15 n1=20 n1=10 n1=15 n1=20
nz=10 n2=15 n2=20 nz=10 nz=15 n2=20 n2=10 nz=15 nz=20

r¥?  .6762 1.1221 1.5689 .4429  .7408 1.0397 .2293  .3885  .5487
r; .6329 1.1733 1.7309 .3469 .6734 1.0170 .1480 .3044  .4740
i .8099 1.3825 1.9955 .4783  .8376 1.1989 .2241  .4056  .5896

Table 3(b). Simulated powers of tests 7}?, 7}, 7} (=10, n,=30)

a=.05 a=.025 a=.010

r? i ] e i 3 e i s

0.0500 0.0517 0.522 0.0516 0.0253 0.0256 0.0257 0.0098 0.0116 0.0117
0.1000 0.0558 0.0590 0.0584 0.0296 0.0304 0.0293 0.0110 0.0136 0.0143
0.2000 0.0758 0.0868 0.0876 0.0391 0.0485 0.0477 0.0145 0.0244 0.0212
0.3000 0.1152 0.1314 0.1331 0.0590 0.0802 0.0807 0.0227 0.0443 0.0400
0.3500 0.1422 0.1649 0.1714 0.0769 0.1008 0.1025 0.0291 0.0564 0.0542
0.4000 0.1753 0.2008 0.2161 0.0992 0.1273 0.1347 0.0384 0.0725 0.0743
0.4500 0.2182 0.2459 0.2700 0.1266 0.1607 0.1764 0.0512 0.0925 0.0983
0.5000 0.2712 0.2964 0.3306 0.1639 0.1988 0.2267 0.0705 0.1180 9.1334

5. Testing Hy, H, and H, in case (b)

5.1. Testing HM

For this testing problem, we propose a similar test. We assume
that »,<n,. Then, using a method as in Sarkar [13] we can derive a
similar test from the paired data and the additional data on X. Another
similar test (Student’s t-test) can be provided by using only the addi-
tional data on Y. These two similar tests are independent. Hence,
by combining them suitably, we have a similar test utilizing all the
available observations.

5.2. Testing Hy

We use the method as in Sarkar [13] to provide an exact similar
test for this problem. We assume that n,<n,, n,<n;. Define new
variables

XF=1,Xi—(1-2) Zz.‘x Cglj)Xnﬁj
j=1
(5.2.1)
3
Yi* = IZY;L - (1 - 22) E c%)Yn1+n2+k ’

where the matrices C,=((c{?)) and C,=((c?)) satisfy Cl,=1,, C.Ci=
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(m/n)L,, Cl,=1,, C.Ci=(nyny)I, and the constants 2, and A, are to
be specified later. Clearly, (X*, Y*), i=1,2,---, n, are i.i.d. as Ny(g,
2 [+ =2y n)al, [+ (1 — 2.)ny/ns]al, pA AL 23+ (1 — )y ma] 2 [25+(1
— )"y ng] 7). Hence, for testing Hy: py=p, against Hy: pu#ps, We
propose the statistic

(5.2.2) T4=’n1(n1—1)ﬁ2/S,i ’

where w,=X*—Y#* u=-L Siu, and S2=3 (,—%@). Under Hy, T\~
n; i=t i=1

F, .-, and under any alternative T,~F,, .(3), where 8, =mn,(p;— p2)*
([ 41— 21y /n,)ad 4+ [224+ (1 — A5)'my/n]oi — 24, 4;0010,} . Comparing d; with
3y =ny(pt1— p2)}/(0+ 03 —2pa,a,), the non-centrality parameter of the opti-
mum test which ignores the additional data on both X and Y, we find
that ours is better whenever

(5.2.3) [1—2a—(1—2)m/ns]+[1— B — (1= &) mi/m] /01 >2(1 — 4, 4,)B -

So, a rough knowledge about the ratio of the variances and the re-
gression coefficient can help us in the selection of appropriate 2, and
2;. Thus, for example, if p is known to be negative, any 2, 4, such
that 0<1,, ,<1 will be appropriate.

5.3. Testing Hy

As mentioned in the introduction, we provide a direct proof of a
result of Eaton and Kariya [3]. Note that the problem of testing Hy:
p=0 against Hj;: p#0 remains invariant under the group of transfor-
mations

X, —a+bX,, Xn1+j'—'a+bXn1+j ’
(5.3.1)
Y,—c¢+dY,, Ynl+n2+k_)c+dYnl+n2+k ’

i=1,2,---,’n1, j=1y2:""n2; k:1y21"'1n8y
—o<a, b, e,d<oo, b-d+0.

The underlying minimal sufficient statistic is (X, Y1, S, Sy, SP, X,
S®, Y, S®), where X;, ¥;, Si;, and X, were defined in (2.2.1), SP=S,,,

— 1 na n3 —
Sg)ESﬁ, S%)ESZZ, Y2=—’h—kZIY,,l+,,z+k and Sg):kz:i (Yn1+nz+k—Y2)2' Then,
g k= =

we have the following proposition whose proof is omitted.

PROPOSITION. A maximal invariant in the space of the minimal
sufficient statistic under the group of transformations induced by (5.3.1)
is

(5.3.2) (&, &, 5, u, v, w(ty), wts), w(ts)) ,
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where
Li=vnm/(n+mn,) (X1 —Xz)/\' S, =+ nlna/(n1+na)(Y1 Yz)/ S%,
t=S1/vSuS: , (2)/S§}) ’ ’U=S§§)/S§;) ,

and, for any ¢, w(t)=+1 or —1 according as ¢t>0 or <0.
The density fi(:) of (8, &3, £, u, v, w(ty), w(ts), w(ts)) at (x, y, 2, u, v, w) is
(5.3.3) fg( -)=const. (xyz)—l/Z(l _ z)(nl—l)/Zu(‘nl—l)/Z,U(nz—l)/2

© (oo 1
-1/2 (1
xSo So ¢ {< 1-6 Y1 1— 620 +u>su

——;—(11—0+ +v>S§?}

< 6’ ( vZ | cwvT /Y )21S§i) (ny+ng+25=3)/2
i= 2y 1—c*
X S g2 =972 SO S

where 0=p% c=vnm,/(n,+ny)(n,+n;). From the above density, the
LMPI test is obtained as that based on the statistic

5.3.4 S+ MMM -X)(¥.— SxS3
( ) [ B (n1+n2)(n1+ns)( ¥ ):|/
Sﬂ)_*_ nlnzns(Xl XZ) n+n;—1 S;kl
— S <n1+n3)}/ (utm—1)
S+ nna3(Y1—Y3) Ny +my—1)SE
{ (n1+n2)(n1+ns)z}/( ' r—1)
where S}=SP+SP+nmny(X,— X)}/(n,4+n;), Sk=SP+SP+nmy(Y,— Y)Y
(ny+m).

The distribution of the statistic in (5.3.4) is extremely hard to ob-
tain in small samples. In large samples, when n,/n,—z, and n,/n;— 7,
for some 0=7%, 7, <oo, an approximate version of the LMPI test is
based on the statistic r**=8S},/S,,S;. The density of r**, under H,, is
obtained as the following:

(5.3.5)

I'(ni+mn,—1)/2)I'((ny+7n3—1)/2) (1*E) V(L — pRE)nptngtng=r2
I'(1/2)I((n—1)/2)I((ny+ 72+ 1 —2)/2)
X o By (]2, ]2 5 (Mg Mg +m5—2)[25 1 — 1) .
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