ACCURATE CONFIDENCE INTERVALS FOR DISTRIBUTIONS
WITH ONE PARAMETER

C. S. Withers
(Received Aug. 6, 1981; revised Feb. 18, 1982)

Summary

Let $\hat{\theta}_n$ be an estimate of a real parameter θ. Suppose that for some function $c(\cdot)$ and some random variable (r.v.) τ_n, the distribution of

$$Z_n=(c(\theta)-c(\hat{\theta}_n))/\tau_n$$

is continuous and depends only on θ and n and that the cumulants of Z_n can be expanded in the form

$$K_i(Z_n) \approx \sum_{i=r-1}^{\infty} a_r(\theta)n^{-i}.$$

Then a confidence interval for θ can be constructed with level $1-\alpha+O(n^{-j/2})$ for any given value of α and j.

1. Introduction

This paper offers ways of improving the accuracy of approximate confidence intervals (C.I.'s) for one parameter problems when the cumulants of the parameter estimate have a very commonly occurring type of asymptotic expansion.

Section 2 summarises the usual first-order approximations to C.I.'s based on an asymptotically normal estimate, and indicates the magnitude of their error. Section 3 shows how to reduce this error, and Section 4 gives some examples.

2. First-order confidence intervals

Let θ be an unknown real parameter known to lie in an interval $[a, b]$, where $-\infty \leq a < b \leq \infty$. Let $c(\cdot)$ be a one to one increasing func-

Keywords and phrase: Accurate confidence intervals, Cornish-Fisher expansions, cumulants, percentiles.
tion on \([a, b]\). Let \(\Phi, \phi\) be the distribution function and density of \(\mathcal{N}(0, 1)\). Suppose that \(\tau_n > 0\) is an r.v. bounded in probability away from 0 and \(\infty\) and that the distribution of

\[Z_n = (c(\theta) - c(\hat{\theta}_n))/\tau_n \]

depends only on \(\theta\) and \(n\). When

(1) \[Z_n \text{ is asymptotically } \mathcal{N}(0, \nu(\theta)/n), \]

then a confidence interval for \(\theta\) of level approximately \(1 - \alpha\) is

(2) \[V_{1a}(\hat{\theta}_n, x_2) \leq \theta \leq V_{1a}(\hat{\theta}_n, x_1) \]

where \(V_{1a}(\theta, x) = c^{-1}(c(\theta) + n^{-1/2}x\nu(\theta)^{1/2})\) and \(x_1, x_2\) are chosen so that

(3) \[\phi(x_1) - \phi(x_2) = 1 - \alpha. \]

For a one-sided test one chooses \(x_1 = \infty\) or \(x_2 = -\infty\), and for a two-sided test, the usual choice is

(4) \[x_1 = -x_2 = \Phi^{-1}(1 - \alpha/2). \]

The C.I. (2) has level \(1 - \alpha + e_n\), where generally speaking the error \(e_n\) has magnitude \(n^{-1/2}\) as \(n \to \infty\), unless either (4) holds—i.e. the tails are equal—or the distribution of \(Z_n\) is symmetric; in either of these events the magnitude of the error reduces to \(n^{-1}\). For more precise conditions see Withers [9].

Example 2.1. Suppose \(\hat{\theta}_n \sim \mathcal{N}(\theta, V(\theta)/n)\). Then \(c(\hat{\theta}_n) \sim \mathcal{N}(c(\theta), V_c(\theta)/n)\) where \(V_c(\theta) = c''(\theta)^2V(\theta)\). (We use \(f^{(r)}(\theta)\) to denote the \(r\)th derivative of \(f(\theta)\).) The choice \(\tau^2_n = V_c(\theta)\) implies \(\nu(\theta) = 1\). Generally \(c(\cdot)\) is chosen either

(i) for simplicity—such as \(c(\theta) = \theta\); or
(ii) to satisfy \(c(a) = -\infty, c(b) = \infty\)—so that the interval (2) contains no points outside \([a, b]\); or
(iii) so that \(V_c(\theta) = 1\)—that is \(c(\theta) = \int_0^\theta V(x)^{1/2}dx\); or
(iv) to reduce the bias or skewness of \(c(\hat{\theta}_n)\).

However none of these choices reduce the magnitude of the error of (2).

Example 2.1(a). Let \(\hat{\theta}_n\) be the sample correlation of a sample of size \(N = n\) from a bivariate normal population with correlation \(\theta\). Let \(c(\theta) = \tanh^{-1} \theta\). This choice satisfies (ii), (iii), and (iv). But since its bias is still \(O(n^{-1})\), the C.I. (2) still has error \(e_n = O(n^{-1/2})\) or \(O(n^{-1})\) if the tails are equal, the same as for the choice \(c(\theta) = \theta\), \(\tau_n = 1 - \hat{\theta}_n^2\). (The same is true with choices of \(n\) such as \(N-1\) or \(N-3\)).
Example 2.2. Let \(\{X_1, \ldots, X_n\} \) be a random sample from \(F_\theta((x-\theta)/\sigma) \) where \(F_\theta \) is a given distribution with variance 1. Choose \(c(\theta) = \theta \) and \(\hat{\theta}_n, \tau_n \) such that the distribution of \((\hat{\theta}_n-\theta)/\tau_n \) does not depend on \((\theta, \sigma) \). (This is true for a wide class of estimates \((\hat{\theta}_n, \tau_n) \).) Then in general the interval (2) has error \(O(n^{-1/2}) \) unless either the tails are equal or \(F_\theta \) is symmetric, in which case the error is \(O(n^{-1}) \).

3. Improved approximations

We now give a method for obtaining a C.I. for \(\theta \) with error \(O(n^{-1/2}) \) for any given \(j \). We replace (1) by the stronger condition that the cumulants of \(Z_n \) have expansions of the form

\[
K_r(Z_n) \approx \sum_{i=1}^{\infty} a_{r_i} n^{-i}, \quad r \geq 1, \quad a_{10} = 0
\]

where \(\{a_{r_i} = a_{r_i}(\theta)\} \) are functions of \(\theta \), and we assume that the distribution of \(Z_n \) is absolutely continuous. By Fisher and Cornish [3], (5) implies (1) with \(v(\theta) = a_{2i}(\theta) \).

The assumption (5) holds for a wide class of \((\hat{\theta}_n, \tau_n) \); see for example Withers [9] where formulas for \(\{a_{r_i}\} \) are given when \((\hat{\theta}_n, \tau_n) \) are regular functionals of the empirical distribution of a random sample of size \(n \).

Let

\[
P_n(x) = \Pr \left(n^{1/2} a_{2i}^{-1/2} Z_n \leq x \right).
\]

Upon substitution of (5) into the expansions of Cornish and Fisher, one obtains the asymptotic expansion

\[
P_n^{-1}(\Phi(x)) \approx x + \sum_{r=1}^{\infty} n^{-r/2} g_r(x)
\]

where \(g_r(x) \) is a polynomial of degree \(r+1 \) given in terms of

\[
A_{r_i} = a_{2i}^{-1/2} a_{r_i},
\]

in Appendix 1.

Set

\[
g_r(x, \theta) = \begin{cases} x, & r = 0 \\ g_r(x), & r \geq 1 \end{cases}
\]

and for a given value of \(x \), set

\[
p_i(\theta) = P_i(c(\theta)) = -\tau_i a_{2i}(\theta)^{1/2} g_{i-1}(x, \theta), \quad i \geq 1
\]
and

\[
R_{j*}(\theta) = c(\theta) + \sum_{i=1}^{j} n^{-1/2} p_i(\theta), \quad j \geq 1.
\]

Theorem 3.1. Suppose that (6) holds for \(x = x_1, x_2\) satisfying (3) and that for some \(j \geq 1\), \(R_{j*}(\theta)\) is one to one increasing in a suitably large neighbourhood of \(\hat{\theta}_n\). Then a confidence interval of level \(1 - \alpha\) with error \(O(n^{-1/2})\) is given by

\[
(8) \quad V_{jn}(\hat{\theta}_n, x_1, x_2) \leq \theta \leq V_{jn}(\hat{\theta}_n, x_1)
\]

where

\[
(9) \quad V_{jn}(\theta, x) = c^{-1}\left(c(\theta) + \sum_{i=1}^{j} n^{-1/2} q_i(\theta)\right),
\]

\[
q_i(\theta) = \tau_{i} x a_{2i}(\theta)^{1/2},
\]

\[
q_4(\theta) = \tau_{4} x a_{11}(\theta)^{1/2} g(x, \theta) + \tau_{5} x c^{(1)}(\theta)^{-1} a_{12}^{(1)}(\theta)/2,
\]

\[
q_5(\theta) = \tau_{6} a_{12}(\theta)^{1/2} g_2(x, \theta) + \tau_{7} x c^{(1)}(\theta)^{-1} \left\{ a_{21}(\theta) g(x, \theta) \right\}/\theta
\]

\[
+ \tau_{8} x c^{(2)}(\theta)^{-1} a_{22}(\theta)^{1/2} (2a_{12}^{(2)}(\theta) + a_{11}^{(1)}(\theta)^2 a_{21}^{(1)}(\theta)^{-1})/8
\]

\[- \tau_{9} x c^{(1)}(\theta)^{-1} a_{22}(\theta)^{1/2} a_{11}^{(1)}(\theta)^{-1}/4,
\]

\[
q_7(\theta) = -p(\theta) + \frac{1}{2} \sum_{i=1}^{3} \tilde{P}^{(i)} q_i(\theta) - \tilde{P}^{(2)} q_i(\theta) q_i(\theta) q_i(\theta)
\]

\[- \tilde{P}^{(3)} q_i(\theta)^3/6,
\]

and

\[
q_i(\theta) = -p(\theta) - \sum_{i=1}^{4} P^{(i)} q_i(\theta) - \tilde{P}^{(2)} q_i(\theta) q_i(\theta) q_i(\theta)
\]

\[- \tilde{P}^{(3)} q_i(\theta)^3/2 + q_i(\theta) q_i(\theta) q_i(\theta)
\]

\[- \tilde{P}^{(4)} q_i(\theta)^4/24,
\]

where \(\{\tilde{P}^{(r)} = P^{(r)}(c(\theta)), 1 \leq r \leq 4\}\) are given by

\[
\tilde{P}^{(1)} = c^{(1)}(\theta)^{-1} p^{(1)}(\theta)
\]

\[
\tilde{P}^{(2)} = c^{(1)}(\theta)^{-2} p^{(2)}(\theta) - c^{(1)}(\theta)^{-3} c^{(2)}(\theta) p^{(3)}(\theta),
\]

\[
\tilde{P}^{(3)} = c^{(1)}(\theta)^{-4} p^{(3)}(\theta) - 3 c^{(1)}(\theta)^{-4} c^{(2)}(\theta) p^{(4)}(\theta)
\]

\[+ \{3 c^{(1)}(\theta)^{-4} c^{(2)}(\theta)^2 - c^{(1)}(\theta)^{-4} c^{(3)}(\theta)\} p^{(4)}(\theta),
\]

\[
\tilde{P}^{(4)} = c^{(1)}(\theta)^{-5} p^{(4)}(\theta) - 6 c^{(1)}(\theta)^{-4} c^{(2)}(\theta) p^{(5)}(\theta)
\]

\[+ \{15 c^{(1)}(\theta)^{-4} c^{(2)}(\theta)^2 - 4 c^{(1)}(\theta)^{-4} c^{(3)}(\theta)\} p^{(3)}(\theta)
\]

\[+ \{-15 c^{(1)}(\theta)^{-4} c^{(2)}(\theta)^3 + 10 c^{(1)}(\theta)^{-4} c^{(3)}(\theta) c^{(3)}(\theta)
\]

\[\quad - c^{(1)}(\theta)^{-4} c^{(4)}(\theta)\} p^{(4)}(\theta).
\]
PROOF. By (6) with probability \(\Phi(x + O(n^{-j/3})) \), \(c(\hat{\theta}_n) \geq R_{j,n}(\theta) \), which for \(R_{j,n} \) one to one is equivalent to

\[
c(V_j, \hat{\theta}_n, x) + O_p(n^{-j/3}) \geq c(\theta),
\]

where \(q_i(\theta) = Q_i(c(\theta)) \), and \(g(x) = x + \sum_{i=1}^\infty n^{-r/2} Q_i(x) \) is the inverse of \(x(g) = g + \sum_{i=1}^\infty n^{-r/2} P_i(g) \). Now apply Appendix 2.

Note 1. For Example 2.1 for a given \(c(\cdot) \), \(\{q_i(\hat{\theta}_n)\} \) are independent of the choice of \(\tau_n \), provided \(\tau_n \) is a function of \(\hat{\theta}_n \) independent of \(n \); thus \(\{q_i\} \) are most easily computed choosing \(\tau_n = 1 \).

Note 2. If \(j = 2 \) and \(\tau_n = 1 \) or \(V_j(\hat{\theta}_n)^{1/2} \), then for Example 2.1 the interval (8) is just the same as that given by Withers [6] for

\[
Y_n(\theta) = n^{1/2}(c(\theta) - c(\hat{\theta}_n))V_c(\hat{\theta}_n)^{-1/2}.
\]

4. Some examples

Example 4.1. Returning to Example 2.1(a) we have

Case 1. \(c(\theta) = \theta \) and \(\tau_n = 1 \): then \(a_{21}(\theta) = (1 - \theta^2)^2 \) and by (4.12) of Withers [6], \(g_1(x) = \theta(x^2 - 1/2) \), \(g_2(x) = (3x - x^3)/4 + \theta^2(-5x + 4x^3)/4 \), so that

\[
q_1(\theta) = x(1 - \theta^2), \quad q_3(\theta) = -\theta(\theta - 3/4)(1/2 + x^2),
\]

and

\[
q_3(\theta) = (1 - \theta^2)(x - x^3 + \theta^2(5x + 4x^3))/4.
\]

Case 2. \(c(\theta) = \tanh^{-1} \theta \) and \(\tau_n = 1 \): then \(a_{21}(\theta) = 1 \) and by (4.13) of Withers [6], \(g_1(x) = -\theta/2 \), \(g_2(x) = (9x + x^3)/12 - \theta^2 x/4 \), so that

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(j = 1)</th>
<th>(j = 2)</th>
<th>(j = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-.9)</td>
<td>-.202</td>
<td>-.09(6)</td>
<td>-.05(3)^2</td>
</tr>
<tr>
<td>(-.5)</td>
<td>-.154</td>
<td>-.06(6)</td>
<td>-.03(2)</td>
</tr>
<tr>
<td>0</td>
<td>-.09(0)</td>
<td>-.02(8)</td>
<td>-.007</td>
</tr>
<tr>
<td>(.5)</td>
<td>-.01(7)</td>
<td>.00(9)</td>
<td>.010</td>
</tr>
<tr>
<td>(.9)</td>
<td>.043</td>
<td>-.19(2)</td>
<td>.01(4)</td>
</tr>
<tr>
<td>(\text{Case 1})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-.9)</td>
<td>-.07(1)</td>
<td>-.04(1)^a</td>
<td>-.01(5)^2</td>
</tr>
<tr>
<td>(-.5)</td>
<td>-.05(8)</td>
<td>-.03(3)</td>
<td>-.01(0)</td>
</tr>
<tr>
<td>0</td>
<td>-.04(1)</td>
<td>-.024</td>
<td>-.005</td>
</tr>
<tr>
<td>(.5)</td>
<td>-.021</td>
<td>-.017</td>
<td>-.001</td>
</tr>
<tr>
<td>(.9)</td>
<td>-.00(1)</td>
<td>-.01(5)</td>
<td>.00(2)</td>
</tr>
</tbody>
</table>

Table 1. Error in exact probability of one-sided nominally 95% confidence interval given by (8) with \(\tau_n = 1 \) for Example 2.1(a)
Table 1. (Continued)

<table>
<thead>
<tr>
<th>θ</th>
<th>$j=1$</th>
<th>$j=2$</th>
<th>$j=3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n=10$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-.9</td>
<td>-.12(8)</td>
<td>-.04(5)</td>
<td>-.01(9)</td>
</tr>
<tr>
<td>-.5</td>
<td>-.09(3)</td>
<td>-.02(7)</td>
<td>-.00(9)</td>
</tr>
<tr>
<td>0</td>
<td>-.04(5)</td>
<td>-.00(5)</td>
<td>.00(1)</td>
</tr>
<tr>
<td>.5</td>
<td>.00(6)</td>
<td>.00(8)</td>
<td>.00(0)</td>
</tr>
<tr>
<td>.9</td>
<td>.04(6)</td>
<td>-.07(1)</td>
<td>.01(3)2</td>
</tr>
<tr>
<td>Case 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-.9</td>
<td>-.03(5)</td>
<td>-.01(6)</td>
<td>-.00(4)</td>
</tr>
<tr>
<td>-.5</td>
<td>-.028</td>
<td>-.013</td>
<td>-.002</td>
</tr>
<tr>
<td>0</td>
<td>-.018</td>
<td>-.01(0)</td>
<td>-.00(1)</td>
</tr>
<tr>
<td>.5</td>
<td>-.00(7)</td>
<td>-.00(8)</td>
<td>-.00(0)</td>
</tr>
<tr>
<td>.9</td>
<td>.00(2)2</td>
<td>-.00(8)3</td>
<td>.00(1)</td>
</tr>
</tbody>
</table>

$n=20$			
Case 1			
-.9	-.08(4)	-.02(2)	-.00(7)
-.5	-.05(7)	-.01(1)	-.00(2)
0	-.02(3)	.00(0)	.00(0)3
.5	.01(3)	.00(2)2	-.00(0)2
.9	.04(2)	-.03(0)	.00(6)
Case 2			
-.9	-.01(9)	-.00(5)	-.00(1)
-.5	-.015	-.00(5)	-.00(0)
0	-.00(8)	-.00(4)2	-.00(0)
.5	-.00(1)	-.00(3)3	.00(0)2
.9	.00(4)	-.00(4)	.00(0)5

Tables 1 and 2 were calculated by quadratic interpolation on the nearest three points in David's 'Tables of the Correlation Coefficient' (1938). The error of this formula was found using the tables on a point outside this range and is indicated by the brackets and superscripts:

$.00(8)$ means $.008\pm.001$, $.00(6)^3$ means $.006\pm.003$.

Table 2. Error in exact probability of two-sided nominally 90% confidence interval given by (8) with $r_n=1$ for Example 2.1(a)

<table>
<thead>
<tr>
<th>θ</th>
<th>$j=1$</th>
<th>$j=2$</th>
<th>$j=3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n=5$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>-.18(0)</td>
<td>-.05(6)</td>
<td>-.01(5)</td>
</tr>
<tr>
<td>$\pm .5$</td>
<td>-.17(1)</td>
<td>-.05(7)</td>
<td>-.02(2)</td>
</tr>
<tr>
<td>$\pm .9$</td>
<td>-.15(9)</td>
<td>-.28(9)</td>
<td>-.03(9)3</td>
</tr>
<tr>
<td>Case 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>-.08(2)2</td>
<td>-.04(9)</td>
<td>.01(0)</td>
</tr>
<tr>
<td>$\pm .5$</td>
<td>-.07(9)3</td>
<td>-.05(0)</td>
<td>-.01(2)3</td>
</tr>
<tr>
<td>$\pm .9$</td>
<td>-.07(2)2</td>
<td>-.06(6)4</td>
<td>-.01(2)4</td>
</tr>
</tbody>
</table>
\begin{align*}
\text{ACCURATE CONFIDENCE INTERVALS} & \quad 55 \\

n=10 & \\
\text{Case 1} & \quad 0 \quad -0.09(0)^2 \quad -0.01(1) \quad 0.00(2) \\
& \quad \pm 0.5 \quad -0.08(7)^2 \quad -0.02(1)^2 \quad -0.00(8) \\
& \quad \pm 0.9 \quad -0.08(2)^2 \quad -0.11(7)^2 \quad -0.00(6)^2 \\
\text{Case 2} & \quad 0 \quad -0.03(3)^2 \quad -0.02(0) \quad -0.00(2)^2 \\
& \quad \pm 0.5 \quad -0.03(5) \quad -0.02(1) \quad -0.00(3) \\
& \quad \pm 0.9 \quad -0.03(3)^2 \quad -0.02(5)^2 \quad -0.00(3)^2 \\

n=20 & \\
\text{Case 1} & \quad 0 \quad -0.04(6)^2 \quad -0.00(0)^2 \quad 0.00(1)^4 \\
& \quad \pm 0.5 \quad -0.04(4)^2 \quad -0.00(8)^2 \quad -0.00(2)^4 \\
& \quad \pm 0.9 \quad -0.04(2)^2 \quad -0.05(2) \quad -0.00(1)^2 \\
\text{Case 2} & \quad 0 \quad -0.01(6)^2 \quad -0.00(8)^2 \quad -0.00(0)^4 \\
& \quad \pm 0.5 \quad -0.01(6) \quad -0.00(9)^4 \quad -0.00(0)^4 \\
& \quad \pm 0.9 \quad 0.01(5)^2 \quad -0.01(0) \quad -0.00(0)^4 \\

(10) \quad q_1(\theta) = x, \quad q_4(\theta) = -\theta/2, \quad q_2(\theta) = \frac{3x + x^2}{12} + \frac{\theta^2 x}{4}.

When \(p_n(\hat{\theta}_n; \theta) \), the density of \(\hat{\theta}_n \), satisfies \(p_n(\hat{\theta}_n; -\theta) = p_n(-\hat{\theta}_n; \theta) \), as is true for Example 2.1(a), then the error of the two-sided confidence interval given by (4), (8) is symmetric in \(\theta \).

\textbf{Example 4.2.} Let \(X_1, \ldots, X_n \) be i.i.d. \(\chi^2_\nu \), \(S = \sum_{i=1}^n X_i \), \(\hat{\theta}_n = S/n \). Taking \(c(\theta) = \theta \) and \(\tau_n = 1 \) gives \(a_2(\theta) = 2\theta \) and

\[
(\theta - \hat{\theta}_n)(n/2\theta)^{1/2} = (m - S)(2m)^{-1/2},
\]

where \(m = n\theta \). Since \(S \sim \chi^2_m \),

\[
g_r(x, \theta) = \theta^{-r/2}(-1)^r g_{r0}(x)
\]

where \(g_{r0}(x) \) denotes \(g_r(x) \) for \(Z_m = (\chi^2_n - m)/m \), given, for example, for \(1 \leq r \leq 6 \), by (3a) of Fisher and Cornish [3].

Hence

\[
q_1(\theta) = (2\theta)^{1/2} x, \quad q_4(\theta) = (2 + x^2)/3,
\]

\[
q_2(\theta) = -(2\theta)^{-1/2}(2x + x^3)/18,
\]

\textbf{Table 3.} Error in exact probability of one-sided nominally 95\% confidence interval given by (8) with \(\tau_n = 1 \) for Example 4.2

<table>
<thead>
<tr>
<th>(m = n\theta)</th>
<th>(j=1)</th>
<th>(j=2)</th>
<th>(j=3)</th>
<th>(j=4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>-0.0795</td>
<td>0.0085</td>
<td>-0.0034</td>
<td>0.0012</td>
</tr>
<tr>
<td>10</td>
<td>-0.0502</td>
<td>0.0034</td>
<td>-0.0007</td>
<td>0.0012</td>
</tr>
<tr>
<td>15</td>
<td>-0.0388</td>
<td>0.0021</td>
<td>-0.00032</td>
<td>0.0004</td>
</tr>
<tr>
<td>20</td>
<td>-0.0324</td>
<td>0.0015</td>
<td>-0.00019</td>
<td>0.0002</td>
</tr>
<tr>
<td>100</td>
<td>-0.0128</td>
<td>0.00026</td>
<td>-0.00007</td>
<td>0.00000(5)</td>
</tr>
</tbody>
</table>
\[q_i(\theta) = 2\theta^{-1}(-16+7x^2+3x^4)/405 . \]

Example 4.3. Returning to Example 2.2, \(a_{21}(\theta) = 1 \) and \(g_\ell(x, \theta) = g_\ell(x) \) do not depend on \(\theta \), so that
\[q_i(\theta) = \tau_{a_{21}(\theta)}(x) \]
and
\[V_{j\alpha}(\hat{\theta}_n, x) = \hat{\theta}_n + \tau_{a_{21}(\theta)} n^{-1/2} \left\{ x + \sum_{r=1}^{j'_\alpha} n^{-r/\alpha} g_\ell(x) \right\} . \]

Fisher and Cornish [3] give \(\{ g_\ell(x) \} \) for the case of Student's t-statistic.

Acknowledgements

The first draft of this paper was written in 1978 while an Exchange Visitor at the Division of Mathematics and Statistics, C.S.I.R.O., Canberra. I wish to thank D.M.S. for its support, and also David Harte for assistance with Tables 1 and 2.

Addendum

Since this paper was written, Winterbottom [5] has published formulae (A.1)-(A.3) equivalent to ours for the case when \(c(\theta) = \theta \), \(\tau_\alpha = 1 \), and \(j = 5 \).

<table>
<thead>
<tr>
<th>His notation (\hat{\theta}(\xi))</th>
<th>(\xi)</th>
<th>(\theta)</th>
<th>(T)</th>
<th>(\nu(\theta))</th>
<th>((-1)^{r_\xi} \kappa_{r_\xi})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our notation (V_{j\alpha}(\hat{\theta}_n, x))</td>
<td>(x)</td>
<td>(\theta)</td>
<td>(\hat{\theta}_n)</td>
<td>(a_{21}(\theta))</td>
<td>(A_{r_\xi})</td>
</tr>
</tbody>
</table>

(Equivalently, taking \(c(\theta) = -\theta \), his \(\kappa_{r_\xi} \) is our \(A_{r_\xi} \).)

He applied it to \(\hat{\theta}_n = (\chi^2(\lambda) - n)/n \) with \(\theta = \lambda^2/n \) (NOT \(\lambda/n \) as stated), also to the maximum likelihood estimate, and to Case 2 of Example 4.1, for which he obtains \(q_i(\theta) \) and \(q_3(\theta) \).

APPENDIX 1

From Corollary 3.1 of Withers [6] we have

Lemma 1. (5), (7) implies (6) with
\[g_1(x) = A_{11} + A_{32}(x^2 - 1)/6, \]
\[g_2(x) = A_{22}x/2 + A_{43}(x^3 - 3x)/24 + A_{23}(2x^3 + 5x)/36, \]
\[g_3(x) = A_{12} + A_{32}(x^2 - 1)/6 + A_{22}A_{43}(-x^3 + 1)/6 \]

\[+ A_{45}(x^4 - 6x^3 + 3)/120 + A_{32}A_{43}(-x^4 + 5x^3 - 2)/24 \\
+ A_{25}(12x^4 - 53x^2 + 17)/324 , \]

and

\[g_r(x) = \sum_{0 \leq k \leq \lceil (r-1)/2 \rceil} G_r^{k} g_r^{k}(x) \]

where for \(1 \leq r \leq 6 \), \(G_{r,0} \) and \(g_0(x) \) are given on pages 214, 215 of Fisher and Cornish [3] with \(a = A_{11} \), \(b = A_{22} \), \(c = A_{32} \), \(d = A_{43} \), \(e = A_{44} \), \(f = A_{65} \), \(g = A_{76} \), \(h = A_{87} \): for example,

\[(G_{4,0})_3 = \text{coefficient in line 3 of IV} = A_{23}A_{33}^2 , \]

and

\[(g_0(x))_3 = \text{polynomial/divisor in line 3 of IV} = 5(2x^3 - 5x)/72 , \]

while the other \(\{ G_{r,k} \} \) needed for \(4 \leq r \leq 6 \) are as follows.

For \(r = 4 \):
\[G_{12} = (A_{23}, A_{44}, 2A_{32}, A_{33}) . \]

For \(r = 5 \):
\[G_{13} = (A_{11}, A_{44}) , \]
\[G_{14} = (A_{23}A_{33} + A_{23}A_{33}, A_{44}A_{33} + A_{33}A_{44}, 3A_{33}^2A_{33}) . \]

For \(r = 6 \):
\[G_{15} = (A_{42}, A_{43}, A_{33} + 2A_{32}, A_{33}) , \]
\[G_{16} = (2A_{22}A_{23}, A_{22}A_{43} + A_{43}A_{23}, A_{32}A_{33} + 2A_{32}A_{23}, A_{33}A_{43}, A_{33}A_{54} \\
+ A_{32}A_{33}, 2A_{32}A_{43}, 2A_{32}A_{33}A_{43}, 4A_{32}^2A_{33}) . \]

APPENDIX 2

A1. Summary

This contains some formulas for inverting series. Section 2 gives the inverse of

\[y(\epsilon) = \sum_{r=1}^{\infty} \epsilon^r P_r , \]

as a power series in \(\epsilon \). Section 3 gives the inverse of

\[x(g) = g + \sum_{r=1}^{\infty} \epsilon^r P_r(g) \]

as a power series in \(\epsilon \), and gives some statistical applications.

A2. The first inversion series

Expressions for the inverse of (A1.1) are well known, e.g. §3.6.25
of Abramowitz and Stegun [1]. However these expressions only give the first few terms of the inverse, as a series in ε. The general term may easily be expressed using the notation of the following lemma.

Lemma A2. For $j=0,1,2,\cdots$

$$\left(\sum_{i=1}^{\infty} \varepsilon^i Q_i\right)^j = \sum_{r=0}^{\infty} \varepsilon^r C_{r,j}([Q_i])$$

where

$$C_{r,0}([Q_i]) = \begin{cases} 1, & r=0 \\ 0, & r>0 \end{cases}$$

and for $r\geq j\geq 0$, $C_{r,j}([Q_i]) = \sum Q_{k_{i}} \cdots Q_{k_{j}}$ summed over $k_{1} + \cdots + k_{j} = r$, $k_{1} \geq 1, \ldots, k_{j} \geq 1$, or equivalently

$$C_{r,j}([Q_i]) = \sum (k_{1}, \ldots, k_{r}) Q_{k_{1}}^1 \cdots Q_{k_{r}}^r$$

summed over $k_{1} + \cdots + k_{r} = j$, $k_{1} + 2k_{2} + \cdots + rk_{r} = r$, $k_{1} \geq 0, \ldots, k_{r} \geq 0$, where (k_{1}, \ldots, k_{r}) is the multinomial coefficient $j!/(k_{1}! \cdots k_{r}!)$.

For example $C_{r,1}([Q_i]) = Q_r$, $C_{j,j}([Q_i]) = Q_{j}^1$, $C_{j+1,j}([Q_i]) = jQ_{j+1}^1Q_{j}^1$,

$$C_{j+2,j}([Q_i]) = \binom{j}{2} Q_{j-1}^1Q_{2}^1 + \binom{j}{1} Q_{j}^1,$$

$$C_{j+3,j}([Q_i]) = \binom{j}{2} Q_{j-1}^1Q_{3}^1 + \binom{j}{1} jQ_{j-2}^1Q_{3}^1 + j(j-1) Q_{j-2}^2Q_{2}^1Q_{3}.$$

Theorem A1. When both series converge, the inverse of

$$y(\varepsilon) = \sum_{r=1}^{\infty} \varepsilon^r P_{r},$$

is given for $P_{1} \neq 0$ by

$$\varepsilon(y) = \sum_{r=1}^{\infty} y^r Q_{r},$$

where Q_{r} is defined recursively by $Q_{1} = P_{1}^{-1}$,

$$Q_{r} = -P_{1}^{-1} \sum_{i=1}^{r} P_{i} C_{r-i}([Q_i]), \quad r>1.$$

Proof. Set $y = y(\varepsilon)$, $\varepsilon = \varepsilon(y)$. Then

$$P_{1} \varepsilon = y - \sum_{r=2}^{\infty} P_{r} \varepsilon^{r}.$$ But

$$\varepsilon^{r} = \sum_{r=4}^{\infty} g^{r} C_{r}([Q_i]).$$
An alternative formula for P_r was given by McMahon in 1894. An extension of his result to the problem of expressing a power of $e(y)$ as a series in $\{y^r\}$ is given in Part IX of David, et al. [2]. Their Table 9 may be used as an alternative to Theorem 1 to obtain Q_r for $r \leq 11$.

A3. The second inversion series

Let $\{P_r\}$ be functions on R with derivatives $\{P_r^{(j)}\}$.

Theorem A2. When both series converge, the inverse of

$$x(g) = g + \sum_{r=1}^{\infty} e^{r}P_{r}(g)$$

is given by

$$g(x) = x + \sum_{r=1}^{\infty} e^{r}Q_{r}(x)$$

where $Q_{r}(x)$ is defined recursively by

(A2.3) $Q_{r}(x) = -\frac{\sum_{j=0}^{r-1} \sum_{k=j}^{r-1} P_{r-k}^{(j)}(x)C_{k}(\{Q_{r}(x)\})}{j!}$

and

$$P_{r}^{(j)}(x) = (d/dx)^{j}P_{r}(x).$$

Proof. $Q_{r}(x)$ is the coefficient of e^{r} in the Taylor series expansion for

$$g = x - \sum_{r=1}^{\infty} e^{r}P_{r}(g).$$

The first five Q_{r} are as follows.

$Q_{1} = -P_{1}, \quad Q_{2} = -P_{2} + P_{1}^{(1)}P_{1},$

$Q_{3} = -P_{3} - P_{2}^{(2)}Q_{1} - P_{2}^{(3)}Q_{2} - P_{2}^{(3)}Q_{3}/2$

$= -P_{3} + P_{2}P_{2}^{(1)} + P_{2}^{(1)}P_{1} - P_{2}^{(1)}P_{1} - P_{2}^{(1)}P_{1}/2,$

$Q_{4} = -P_{4} - P_{3}^{(2)}Q_{1} - P_{3}^{(2)}Q_{2} - P_{3}^{(2)}Q_{3} - P_{3}^{(2)}Q_{4}/2 - P_{3}^{(2)}Q_{1}Q_{2} - P_{3}^{(2)}Q_{1}/6,$

$Q_{5} = -P_{5} - P_{4}^{(3)}Q_{1} - P_{4}^{(3)}Q_{2} - P_{4}^{(3)}Q_{3} - P_{4}^{(3)}Q_{4} - P_{4}^{(3)}Q_{5}/2 - P_{4}^{(3)}Q_{1}Q_{2} - P_{4}^{(3)}Q_{1}Q_{4}/24.$

An alternative formula for $Q_{r}(x)$ involving multivariate Bell polynomials is given by (3) of Riordan [4]. His formula seems more difficult for algebraic manipulation.

As an application in statistics, consider the problem investigated
by Fisher and Cornish [3]. Many standardized asymptotically normal random variables Y_n have rth cumulant of the form

$$l_{rn} = O(n^{-r/2}) , \quad r = 1$$
$$1 + l_{rn} = 1 + O(n^{-1}) , \quad r = 2$$
$$l_{rn} = O(n^{1-r/2}) , \quad r > 2 \text{ as } n \to \infty ,$$

(Here n is usually the sample size or associated degrees of freedom.) Under this assumption they showed that $P_n(x) = \Pr(Y_n \leq x)$ satisfies expansions of the form

$$\Phi^{-1}(P_n(x)) = x - \sum_{1}^{\infty} f_r(x, \mathcal{L}_n)$$

and

$$P_n^{-1}(\Phi(x)) = x + \sum_{1}^{\infty} g_r(x, \mathcal{L}_n)$$

where

$$\Phi(x) = (2\pi)^{-1/2} \int_{-\infty}^{x} \exp \left(-\frac{y^2}{2} \right) dy$$

and f_r, g_r are polynomials of degree $r + 1$ involving $\mathcal{L}_n = \{l_{rn}\}$ and having magnitude $O(n^{-r/2})$.

They gave the first four f_r and the first six g_r, but no expression for the general term. Expressions for f_5 and f_6 may be obtained from the following application of Theorem A2.

Corollary A1. Let $Q_r(x, \{P_i\})$ denote $Q_r(x)$ of (A2.3). Then

$$g_r(x, \mathcal{L}) = Q_r(x, \{-f_i(x, \mathcal{L})\})$$

and

$$f_r(x, \mathcal{L}) = -Q_r(x, \{g_i(x, \mathcal{L})\}) .$$

An expression for $f_r(x, \mathcal{L})$ for general r was given by (2.8) of Withers [6]. This may be used in Corollary 1 to obtain any desired $g_r(x, \mathcal{L})$.

In most instances $\sum_{1}^{\infty} f_r(x, \mathcal{L}_n)$ and $\sum_{1}^{\infty} g_r(x, \mathcal{L}_n)$ can be rewritten in the form $\sum_{1}^{\infty} n^{-r/2} f_r(x)$ and $\sum_{1}^{\infty} n^{-r/2} g_r(x)$. In this case $\{f_r(x)\}$ and $\{g_r(x)\}$ have the same relationship to each other as do $\{f_r(x, \mathcal{L})\}$ and $\{g_r(x, \mathcal{L})\}$, so that $\{f_r(x), 1 \leq r \leq 6\}$ are obtainable using Appendix 1 when (5) holds.

D.S.I.R.
REFERENCES

