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Summary

Let 6, be an estimate of a real parameter 6. Suppose that for
some function ¢(-) and some random variable (r.v.) z,, the distribution of

Z,=(c(8)—c(0,))/zn

is continuous and depends only on 6 and » and that the cumulants of
Z, can be expanded in the form

K(Z)= 3 a(0n~ .

Then a confidence interval for 6 can be constructed with level 1—a+
O(n~?"?) for any given value of a and j.

1. Introduction

This paper offers ways of improving the accuracy of approximate
confidence intervals (C.1.’s) for one parameter problems when the cumu-
lants of the parameter estimate have a very commonly occurring type
of asymptotic expansion.

Section 2 summarises the usual first-order approximations to C.I.’s
based on an asymptotically normal estimate, and indicates the magni-
tude of their error. Section 3 shows how to reduce this error, and
Section 4 gives some examples.

2. First-order confidence intervals

Let & be an unknown real parameter known to lie in an interval
[a, b], where —co<a<b<o. Let ¢(-) be a one to one increasing func-
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tion on [a,b]. Let @, ¢ be the distribution function and density of
J10,1). Suppose that z,>0 is an r.v. bounded in probability away
from 0 and c and that the distribution of

Z,=(e(0)—c(6.)/=.
depends only on # and n. When
(1) Z, is asymptotically JI(0, v(6)/n) ,
then a confidence interval for 6 of level approximately 1—a is
(2) Vil ) SO Vi(6,, 1)
where V,(0, x)=c ' (c(0)+n""*x7,v(0)"*) and x,, x, are chosen so that
(3) () —O(x)=1—a .

For a one-sided test one chooses x;=co0 or x,= —oco, and for a two-
sided test, the usual choice is

(4) 6=—0,=0"(1—a/2) .

The C.I. (2) has level 1—a+-e,, where generally speaking the error
e, has magnitude n~? as n— oo, unless either (4) holds—i.e. the tails
are equal—or the distribution of Z, is symmetric; in either of these
events the magnitude of the error reduces to »~!. For more precise
conditions see Withers [9].

Example 2.1. Suppose 6, ~ Ji@, v(6)/n). Then c(@n)&ﬂl(c(ﬂ), V.(0)[n)
where V., (0)=cV(0)*V(0). (We use f(§) to denote the rth derivative
of £().) The choice r2=V,(8,) implies »(f)=1. Generally ¢(-) is chosen
either

(i) for simplicity—such as ¢(8)=6; or

(ii) to satisfy c(a)=—oco, ¢(b)=o0o—so that the interval (2) con-

tains no points outside [a, b]; or

(iii) so that V.(#)=1—that is c(0)=ga V(x) Yz ; or
by

(iv) to reduce the bias or skewness of ¢(d,).
However none of these choices reduce the magnitude of the error of

).

Example 2.1(a). Let 6, be the sample correlation of a sample of
size N=mn from a bivariate normal population with correlation 6. Let
c(@)=tanh™' ¢. This choice satisfies (ii), (iii), and (iv). But since its
bias is still O(»™'), the C.I. (2) still has error e,=0O(n'*) or O(n™") if
the tails are equal, the same as for the choice c(8)=4, r,=1—62. (The
same is true with choices of » such as N—1 or N-3.)
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Example 2.2. Let {X,,---, X,} be a random sample from Fy((x—8)/
o) where F, is a given distribution with variance 1. Choose c(8)=6
and 5,,, 7, such that the distribution of (é,,—o)/r,. does not depend on
(0, 0). (This is true for a wide class of estimates (é,., 7,).) Then in
general the interval (2) has error O(n~'?) unless either the tails are
equal or Fj is symmetric, in which case the error is O(n™).

3. Improved approximations

We now give a method for obtaining a C.I. for § with error O(n=7/?)
for any given j. We replace (1) by the stronger condition that the
cumulants of Z, have expansions of the form

(5) K(Z)~ 31 aun™, 121, ay=0
where {a,;=a,(0)} are functions of 4, and we assume that the distri-
bution of Z, is absolutely continuous. By Fisher and Cornish [3], (5)
implies (1) with v(6)=a.(9).

The assumption (5) holds for a wide class of (4,, z,); see for ex-
ample Withers [9] where formulas for {a,;} are given when (é,,, 7,) are
regular functionals of the empirical distribution of a random sample

of size n.
Let

P (¢)=Pr (n*a;*Z,<x) .

Upon substitution of (5) into the expansions of Cornish and Fisher, one
obtains the asymptotic expansion

(6) Pr(O() ~a+ 33 1", (x)

where g.(x) is a polynomial of degree r+1 given in terms of

( 7 ) A”:az—‘r/zaﬂ ’
in Appendix 1.
Set
xz, r=0
g.(x, 0)=
g.(x) , rzl

and for a given value of z, set

pi(a) = Pi(c(a)) = Tna2l(0)!/zgi—l(x; 0) ’ ig 1
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and
Ru(®)=c0)+ 5 n"p(0),  jZ1.

THEOREM 3.1. Suppose that (6) holds for xz=wx,, 2, satisfying (3)
and that for some j=1, R,.(0) is one to one increasing in a suitably
large meighbourhood of 5,,. Then a confidence interval of level 1—a with
error O(n='"%) is given by

( 8 ) an(ém xZ)éﬂévfn(ém xl)
where
(9) V0, 2= (e(0)+ 5 n-79.0)) .

a:(0)=r,2a,4(0)"*,

9:(0) =1,05(0)"*g\(x, 0)+ t72%cV(0)ai(0)/2 ,

05(0) = 7,0,1(0)gy(, )+ 722c(0)7'0 {ax1(0)g:(, 0)} /00
+ 232 P(0) 2ay(0)(2aP(0) + asP(0)'axu(0)™")/8
— e (0) e (0)an(0)"aSP(0)/4 ,

3 — — -

wW0)=—m(0)—> P®q(0)— P{®q,(0)}/2— P®q,(6)q:(0)

— P®qy(0)'/6 ,

and

a(0)= —105(0)—;21 PPg,(0)— PPai(0)Y/2— P{Pa,(8)ax(6)

— P®(qy(0)Y/2+0:(0)ax(0)) — P¥q,(6)*/6 — P¥q,(0)q,(6)/2
— P®q,(0)"/24 ,

where {P{°=P{(c(0)), 1=<r=<4} are given by
PO =cV(0)p(0)
P.;(2) —_ c(l)(ﬂ)—ngz)(a) — c(l)(a)—:ic(z)(o)pgl)(o) ,

13i(s) =c(8)*p{(0)— 3c(8)e®(0)pP(0)
+ {36(1)(0)—56(2)(0)2_c(l)(0)~4c(3)(0)} pgl)(a) ,

PLo=c(0)*pi(0)— 6¢°(0) " (O)p(0)
+ {156(1)(0)—66(2)(0)2_46(1)(0)—50(3)(0)} pgz)(o)
+ { —_ 156(1)(0)—66(2)(0)3+ 106(1)(0)—5c(2)(0)c(3)(0)
— (0 e (O} pX)
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PrROOF. By (6) with probability @(x)+0(n'"), ¢(6,)=R,..(6), which
for R,,, one to one is equivalent to

(Va0 ) +0,(n ") Z¢(6) ,

where ¢,(0)=Q,(c(9)), and g(w):x+§;‘, n~"*Q,(x) is the inverse of z(g)=~
g+§j n~"?P,(g). Now apply Appendix 2.
1

Note 1. For Example 2.1 for a given ¢(-), {q,(@n)} are independ-

ent of the choice of r,, provided r, is a function of 4, independent of
n; thus {g,} are most easily computed choosing r,=1.

Note 2. If j=2 and 7,=1 or Vc(é,,)‘/z, then for Example 2.1 the
interval (8) is just the same as that given by Withers [6] for

Y,(0)=n"(c(8) —c(6.))V(8.) 2 .

4. Some examples
Example 4.1. Returning to Example 2.1(a) we have

Case 1. c(0)=0 and r,=1: then ay(0)=(1-—6%* and by (4.12) of
Withers [6], g,(x)=0(x*—1/2), g,(x)=(3x—x*)/4+ 6% —bx+4x%)/4, so that
a(0)=2(1—-6%, q0)=—(0—06")(1/2+2"),

and
g(0)=1—0"){x—2*+0*(bx+4x%)} /4 .

Case 2. c¢(f)=tanh™'@ and r,=1: then a,(d)=1 and by (4.13) of
Withers [6], g,(x)=—0/2, g,(x)=(9x+x*)/12—60*x/4, so that

Table 1. Error in exact probability of one-sided nominally 95%
confidence interval given by (8) with z,=1 for Example 2.1(a)

0 j=1 j=2 j=3
n=>5
-.9 —-.202 —.09(6) —.05(3)?2
-.5 —.154 —.06(6) —.03(2)
Case 1 0 —.09(0) —.02(8) —.007
.5 —.01(7) .00(9) .010
.9 .043 —.19(2) .01(4)
-.9 —.07(1) —.04(1)2 —.01(5)2
—-.5 —.05(8) —.03(3) —.01(0)
Case 2 0 —.04(1) —.024 —.005
.5 —.021 -.017 —-.001
.9 —.00(1) —.01(5) .00(2)
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Table 1. (Continued)

[/ j=1 j=2 j=3
n=10

-9 —.12(8) —.04(5) —.01(9)
—-.5 —.09(3) —.02(7) —.00(9)
Case 1 0 —.04(5) —.00(5) .00(1)
.5 .00(6) .00(8) .00(0)
.9 .04(6) -.07(1) .01(3)2
-.9 —.03(5) —.01(6) —.00(4)

—-.5 —.028 —.013 —.002
Case 2 0 —.018 —.01(0) —.00(1)
. —.00(7) —.00(8) —.00(0)
.9 .00(2)2 —.00(8)3 .00(1)

n=20

-.9 —.08(4) —.02(2) —.00(7)
—-.5 —.05(7) —.01(1) —.00(2)
Case 1 0 —.02(3) .00(0) .00(0)3
.5 .01(3) .00(2)2 —.00(0)2
.9 .04(2) —.03(0) .00(6)
-.9 —.01(9) —.00(5) —.00(1)
—-.5 —.015 —.00(5) —.00(0)
Case 2 0 —.00(8) —.00(4)* —.00(0)
. —.00(1) —.00(3)3 .00(0)2
.9 .00(4) —.00(4) .00(0)s

Tables 1 and 2 were calculated by quadratic interpolation on
the nearest three points in David’s ‘Zables of the Correlation Coeffi-
cient’ (1938). The error of this formula was found using the tables
on a point outside this range and is indicated by the brackets and
superscripts:

.00(8) means .008+.001,  .00(6)® means .006+.003.

Table 2. Error in exact probability of two-sided nominally 90%
confidence interval given by (8) with 7,=1 for Example 2.1(a)

[ j=1 j=2 7j=3
n=>5
0 —.18(0) —.05(6) —.01(5)
Case 1 +.5 —.17(1) —.05(7) —.022)
+.9 —.15(9) —.28(9) —.03(9)°
0 —.08(2) —.04(9) .01(0)
Case 2 +.5 —.07(9) —.05(0) —.01(2)®
£.9 —.07(2) —.05(6)° —.01(2)¢
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n=10
0 —.09(0)2 —.01(1) .00(2)
Case 1 +.5 —.08(7)* —.02(1)2 —.00(8)
+.9 —.08(2)2 —.11(7)2 —.00(6)2
0 —.03(3)3 —.02(0) —.00(2)2
Case 2 +.5 —.03(5) —.02(1) —.00(3)
*. —.03(3)2 —.02(5)3 —.00(3)®

n=20
0 —.04(6)2 —.00(0)2 .00(1)4
Case 1 +.5 —.04(4)2 —.00(8)3 —.00(2)8
+.9 —.04(2)2 —.05(2) —.00(1)2
0 —.01(6)* —.00(8)3 —.00(0)3
Case 2 +.5 —.01(6) —.00(9)¢ —.00(0)?3
+.9 .01(5)2 —.01(0) —.00(0)¢®

(10) @)=z, @0)=-0/2, q0)=(8z+2")/12+6'z/4 .

When p,,(én; 6), the density of 6,, satisfies p.(6.; —0)=p,,(—é,,;0),
as is true for Example 2.1(a), then the error of the two-sided confi-
dence interval given by (4), (8) is symmetric in 4.

Example 4.2. Let X,,---, X, beiid. g}, S=3 X,, 6,=S/n. Taking

1
¢(0)=0 and r,=1 gives a,;(0)=20 and
(6—6,)(n/20)"=(m—S)(2m)~2,
where m=nf. Since S~y%,
gr(x! 0)=0_T/2(_1)rgrﬂ(x)

where g,,(x) denotes g,(x) for Z,=(x.—m)/m, given, for example, for
1=<r<6, by (3a) of Fisher and Cornish [3].
Hence

0(0)=(20)"x ,  @(0)=(2+=Y)/3,
q:(0)= —(20)"*(2x +=*)/18 ,

Table 3. Error in exact probability of one-sided nominally 95%
confidence interval given by (8) with 7,=1 for Example 4.2

m=né j=1 j=2 j=3 j=4
5 —.0795 .0085 —.0034 .0012
10 —.0502 .0034 —.0007 .00012
15 —.0388 .0021 —.00032 .00004
20 —.0324 .0015 —.00019 .00002

100 —.0128 .00026 —.00007 .00000(5)
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0(6)=20""(— 16+ Ta* + 32*)/405 .

Example 4.3. Returning to Example 2.2, ay(f)=1 and g,(x, 6)=
g.(x) do not depend on 4, so that

q(0)=7.9:-,(x)

and
A A Jj-1
Vul0ny ) =0, 47,070+ 3 n~"2g ()} .
r=1

Fisher and Cornish [3] give {g.,(x)} for the case of Student’s ¢-statistic.
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Addendum

Since this paper was written, Winterbottom [5] has published for-
mulae (A.1)-(A.3) equivalent to ours for the case when ¢(0)=0, r,=1,
and j=>5.

His notation a(&) & 0 T C) (—=1Ykr,s
Our notation Vs,.(én, x) x /] On ax(6) Arys

(Equivalently, taking c(§)=—@0, his ks is our As;s.)

He applied it to énz(x,ﬁ(l)——n)/n with §=2*n (NOT i/n as stated),
also to the maximum likelihood estimate, and to Case 2 of Example
4.1, for which he obtains q,(6) and gs(9).

APPENDIX 1
From Corollary 3.1 of Withers [6] we have
LEMMA 1. (5), (7) implies (6) with
91(x)= Ay + An(x*—1)/6 ,
95(%) = Apx[2+ Ay(x®— 3x) /24 + Al(—22°+51)/36
g5(x)=Ap+ Ay(x?—1)/6 4+ ApAgy(—2*+1)/6
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+ Agy(a* — 622+ 8)/120+ Agy Ao — 2t + 522 — 2)/24
+ A%(120* — 53 +17)/324 ,
and
g®)= >  Glpugi-u(®)

0sks(r-1)/2

where for 1<r<6, G,, and g¥(x) are given on pages 214, 215 of Fisher
aﬂrd CO’r"n’l:sh [3] w’ith a/:Au, b=A22, c:Aaz, d=A43, e=A54, f—_—Aﬁs, g-_—'
Ay, h=Ay: for example,

(Gy,0)s=coefficient in line 3 of IV=A,A} ,
and

(g¥(x));= polynomaal/divisor in line 3 of IV
=524 —52)/72 ,

while the other {G, .} needed for 4<r=<6 are as follows.
For r=4: GL=(Ay, Ay, 2A3Ay) .
For r=5: Gi=(Ay Ay),

G, =(ApAgy+ ApAg, Ass, ApAy+ AgpAy, 3A%Ay) .
For r=6: GL,=(Ag As Al+2434,,) ,

G2,4 = (2A22A23’ AZZAM + A43A23’ A§2A23 + 2A32A22A33’ ABG’ A33A54
+A82A557 2A43A441 2A22A33A43’ 4A§2A88) .

APPENDIX 2

Al. Summary

This contains some formulas for inverting series. Section 2 gives
the inverse of

(AL.1) Ye)=3 P,

as a power series in . Section 3 gives the inverse of

(AL.2) #(g)=g+3 ¢"P,(g)

as a power series in e, and gives some statistical applications.

A2. The first inversion series
Expressions for the inverse of (Al.1) are well known, e.g. §3.6.25
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of Abramowitz and Stegun [1]. However these expressions only give
the first few terms of the inverse, as a series in e. The general term
may easily be expressed using the notation of the following lemma.

LEMMA A2. For j=0,1,2,.--

() =35 o @b
where

1, r=0
(A2.1) o {Qt})={
0, r>0,

and for r=5=0, C,,({Q}N=2@Qs, - -Q, summed over {ki+---+k;=r,
ki=1,---, k;=1}, or equivalently

(A2.2) C.,({Q)=3 (ks -+, k)@ - - Q¥

summed over {k,+---+k.,=3, k+2k+---+rk,=r, k=0,---,k, 20},
where (k,,-j- -, k,) 1s the multinomial coeffictent j!/(k!---k,!).

For example C,,({Q&})=Q,, C;;({Q&})=Q!, Cj.1,,({Q})=3Q7'Q,
Crnti@b=(3 ot a+({ e,

Crasi@)=(1 Jai+(} Ja-@+i-Dar-eq.
THEOREM Al. When both series converge, the inverse of
Ye)=3 P,
is given for P,+0 by
(W)=3vQ,
where Q, is defined recursively by Q,=P,",
Q=-P ZPCQY, r>1.
PROOF. Set y=y(e), e=¢(y). Then
Pe=y—3 P
But
e'=31 0C({Q)) -
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An alternative formula for P, was given by McMahon in 1894.
An extension of his result to the problem of expressing a power of
e(y) as a series in {y"} is given in Part IX of David, et al. [2]. Their
Table 9 may be used as an alternative to Theorem 1 to obtain @, for
r<ll.

A3. The second inversion series
Let {P,} be functions on R with derivatives {P’}.

THEOREM A2. When both series converge, the inverse of
90(.¢1)=g+r§‘,;1 e"P(g)
18 given by
@) =2+ 33 'Q,(x)
where Q,(x) is defined recursively by
(A2.3) Qo)== 5 PA@C.(Qa))d!
and
P(x)=(d/dz)' P(x) .

PROOF. Q,(x) is the coefficient of e" in the Taylor series expansion
for

g=x— i} e'P,(g) .
The first five @, are as follows.

Qn=—P1 ’ Qz="‘Pz+meP1 ’

Qy=—PF;— szQl'— P®Q,— Pl‘”Qf/Z
= — P+ P,P{>+ P®P,— P™P,— P®P}[2

Q= —Pi— PQ,— PQ,— POQy— PQij2— POQQu— POQ6 ,

Qs = Ps - P4(1)Q1 - Pa(l)Qz - Pz(l)Qg - Pl(l)Q4 i 3(2)Q'f/2 - P,O)Qle
— PM(Qi/2+QQ) — P¥Q}[6 — POQQu/2— PQi/24 .

An alternative formula for Q,(x) involving multivariate Bell polynomials
is given by (3) of Riordan [4]. His formula seems more difficult for
algebraic manipulation.

As an application in statistics, consider the problem investigated
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by Fisher and Cornish [3]. Many standardized asymptotically normal
random variables Y, have rth cumulant of the form

li,=0(n""?) , r=1
141,,=14+0(n™"), r=2
la=0(n'"""), r>2 as n—oo,

(Here 7 is usually the sample size or associated degrees of freedom.)
Under this assumption they showed that P,(x)=Pr(Y,<x) satisfies ex-
pansions of the form

07(P(w)=5—3} f(a, L)
and

P (0(@)=2+33 g,(z, L)
where

0(@)=(2n)™" | exp (—4//2)dy

and f,, g, are polynomials of degree r+1 involving _£,={l,,} and hav-
ing magnitude O(n~""%).

They gave the first four f, and the first six g,, but no expression
for the general term. Expressions for f; and f; may be obtained from
the following application of Theorem A2.

COROLLARY Al. Let Q,(x, {P;}) denote Q.(x) of (A2.3). Then
9/, L)=Q.(x, {—f(=, -L)})
and
filw, L)=—-@Q\(, {9.x, L)}) .

An expression for f,(x,.[) for general » was. given by (2.8) of
Withers [6]. This may be used in Corollary 1 to obtain any desired
9.z, .L).

In most instances if,(x, L,) and f‘_J g.(x, .L,) can be rewritten in
1 1

the form ﬁ}n"’zf,(x) and i.:‘,n“’/zg,(:c). In this case {f,(x)} and {g.(x)}

have the same relationship to each other as do {f,(x, .L)} and {g.(z, .L)},
so that {f,(x), 1L=<r<6} are obtainable using Appendix 1 when (5) holds.

D.S.I.R.



[1]
[2]
(3]
[4]
[51]
[6]
(71

[8]
[91]

ACCURATE CONFIDENCE INTERVALS 61

REFERENCES

Abramowitz, M. and Stegun, 1. A. (1964). Handbook of Mathematical Functions, Na-
tional Bureau of Standards, Washington, D.C.

David, F. N., Kendall, M. G. and Barton, D. E. (1966). Symmetric Function and Allied
Tables, University Press, Cambridge.

Fisher, R. A. and Cornish, E. A. (1960). The percentile points of distributions hav-
ing known cumulants, Technometrics, 2, 209-225.

Riordan, John (1949). Inversion formulas in normal variable mapping, Ann. Math.
Statist., 20, 417-425.

Winterbottom, Alan (1979). Cornish-Fisher expansions for confidence limits, J. R.
Statist. Soc., B, 41, 69-75.

Withers, C. S. (1980a). Expansions for asymptotically normal random variables, Teck.
Report 94, A.M.D., D.S.I.R., Wellington, Submitted to J. R. Statist. Soc., B.

Withers, C. S. (1980b). The distribution and quantiles of a regular functional of the
empirical distribution, Tech. Report 96, A.M.D., D.S.I.R., Wellington, Submitted to
Ann. Statist.

Withers, C. S. (1980c). Accurate non-parametric inference—the one sample case, Tech.
Report 97, A.M.D., D.S.I.R., Wellington, Submitted to Ann. Statist.

Withers, C. S. (1983). Expansions for the distribution and quantiles of a regular
functional of the empirical distribution with applications to nonparametric confidence
intervals, Ann. Statist., 11, June issue.



