ACCURATE CONFIDENCE INTERVALS FOR DISTRIBUTIONS WITH ONE PARAMETER

C. S. WITHERS

(Received Aug. 6, 1981; revised Feb. 18, 1982)

Summary

Let $\hat{\theta}_n$ be an estimate of a real parameter θ . Suppose that for some function $c(\cdot)$ and some random variable (r.v.) τ_n , the distribution of

$$Z_n = (c(\theta) - c(\hat{\theta}_n))/\tau_n$$

is continuous and depends only on θ and n and that the cumulants of Z_n can be expanded in the form

$$K_r(Z_n) \approx \sum_{i=r-1}^{\infty} \alpha_{ri}(\theta) n^{-i}$$
.

Then a confidence interval for θ can be constructed with level $1-\alpha+O(n^{-j/2})$ for any given value of α and j.

1. Introduction

This paper offers ways of improving the accuracy of approximate confidence intervals (C.I.'s) for one parameter problems when the cumulants of the parameter estimate have a very commonly occurring type of asymptotic expansion.

Section 2 summarises the usual first-order approximations to C.I.'s based on an asymptotically normal estimate, and indicates the magnitude of their error. Section 3 shows how to reduce this error, and Section 4 gives some examples.

2. First-order confidence intervals

Let θ be an unknown real parameter known to lie in an interval [a, b], where $-\infty \le a < b \le \infty$. Let $c(\cdot)$ be a one to one increasing func-

Keywords and phrase: Accurate confidence intervals, Cornish-Fisher expansions, cumulants, percentiles.

tion on [a, b]. Let Φ , ψ be the distribution function and density of $\mathcal{N}(0, 1)$. Suppose that $\tau_n > 0$ is an r.v. bounded in probability away from 0 and ∞ and that the distribution of

$$Z_n = (c(\theta) - c(\hat{\theta}_n))/\tau_n$$

depends only on θ and n. When

(1)
$$Z_n$$
 is asymptotically $\mathfrak{N}(0, v(\theta)/n)$,

then a confidence interval for θ of level approximately $1-\alpha$ is

$$(2) V_{1n}(\hat{\theta}_n, x_2) \leq \theta \leq V_{1n}(\hat{\theta}_n, x_1)$$

where $V_{1n}(\theta, x) = c^{-1}(c(\theta) + n^{-1/2}x\tau_n v(\theta)^{1/2})$ and x_1, x_2 are chosen so that

$$(3) \qquad \qquad \varphi(x_1) - \varphi(x_2) = 1 - \alpha .$$

For a one-sided test one chooses $x_1 = \infty$ or $x_2 = -\infty$, and for a two-sided test, the usual choice is

$$(4) x_1 = -x_2 = \Phi^{-1}(1-\alpha/2).$$

The C.I. (2) has level $1-\alpha+e_n$, where generally speaking the error e_n has magnitude $n^{-1/2}$ as $n\to\infty$, unless either (4) holds—i.e. the tails are equal—or the distribution of Z_n is symmetric; in either of these events the magnitude of the error reduces to n^{-1} . For more precise conditions see Withers [9].

Example 2.1. Suppose $\hat{\theta}_n \stackrel{\cdot}{\sim} \mathcal{M}(\theta, V(\theta)/n)$. Then $c(\hat{\theta}_n) \stackrel{\cdot}{\sim} \mathcal{M}(c(\theta), V_c(\theta)/n)$ where $V_c(\theta) = c^{(1)}(\theta)^2 V(\theta)$. (We use $f^{(\tau)}(\theta)$ to denote the rth derivative of $f(\theta)$.) The choice $\tau_n^2 = V_c(\hat{\theta}_n)$ implies $v(\theta) = 1$. Generally $c(\cdot)$ is chosen either

- (i) for simplicity—such as $c(\theta) = \theta$; or
- (ii) to satisfy $c(a) = -\infty$, $c(b) = \infty$ —so that the interval (2) contains no points outside [a, b]; or
- (iii) so that $V_c(\theta) = 1$ —that is $c(\theta) = \int_{\theta_0}^{\theta} V(x)^{-1/2} dx$; or
- (iv) to reduce the bias or skewness of $c(\hat{\theta}_n)$. However *none* of these choices reduce the magnitude of the error of (2).

Example 2.1(a). Let $\hat{\theta}_n$ be the sample correlation of a sample of size N=n from a bivariate normal population with correlation θ . Let $c(\theta)=\tanh^{-1}\theta$. This choice satisfies (ii), (iii), and (iv). But since its bias is still $O(n^{-1})$, the C.I. (2) still has error $e_n=O(n^{-1/2})$ or $O(n^{-1})$ if the tails are equal, the same as for the choice $c(\theta)=\theta$, $\tau_n=1-\hat{\theta}_n^2$. (The same is true with choices of n such as N-1 or N-3.)

Example 2.2. Let $\{X_1, \dots, X_n\}$ be a random sample from $F_0((x-\theta)/\sigma)$ where F_0 is a given distribution with variance 1. Choose $c(\theta) = \theta$ and $\hat{\theta}_n$, τ_n such that the distribution of $(\hat{\theta}_n - \theta)/\tau_n$ does not depend on (θ, σ) . (This is true for a wide class of estimates $(\hat{\theta}_n, \tau_n)$.) Then in general the interval (2) has error $O(n^{-1/2})$ unless either the tails are equal or F_0 is symmetric, in which case the error is $O(n^{-1})$.

3. Improved approximations

We now give a method for obtaining a C.I. for θ with error $O(n^{-j/2})$ for any given j. We replace (1) by the stronger condition that the cumulants of Z_n have expansions of the form

(5)
$$K_r(Z_n) \approx \sum_{i=r-1}^{\infty} a_{ri} n^{-i}, \quad r \ge 1, \ a_{10} = 0$$

where $\{a_{ri}=a_{ri}(\theta)\}$ are functions of θ , and we assume that the distribution of Z_n is absolutely continuous. By Fisher and Cornish [3], (5) implies (1) with $v(\theta)=a_{2i}(\theta)$.

The assumption (5) holds for a wide class of $(\hat{\theta}_n, \tau_n)$; see for example Withers [9] where formulas for $\{a_{ri}\}$ are given when $(\hat{\theta}_n, \tau_n)$ are regular functionals of the empirical distribution of a random sample of size n.

Let

$$\mathcal{Q}_n(x) = \Pr(n^{1/2} a_{21}^{-1/2} Z_n \leq x)$$
.

Upon substitution of (5) into the expansions of Cornish and Fisher, one obtains the asymptotic expansion

(6)
$$\mathcal{Q}_n^{-1}(\boldsymbol{\Phi}(x)) \approx x + \sum_{r=1}^{\infty} n^{-r/2} g_r(x)$$

where $g_r(x)$ is a polynomial of degree r+1 given in terms of

$$A_{ri} = a_{21}^{-r/2} a_{ri} ,$$

in Appendix 1.

Set

$$g_r(x, \theta) = \begin{cases} x, & r = 0 \\ g_r(x), & r \ge 1 \end{cases}$$

and for a given value of x, set

$$p_i(\theta) = P_i(c(\theta)) = -\tau_n a_{21}(\theta)^{1/2} g_{i-1}(x, \theta), \quad i \ge 1$$

and

$$R_{jnx}(\theta) = c(\theta) + \sum_{i=1}^{j} n^{-i/2} p_i(\theta)$$
, $j \ge 1$.

THEOREM 3.1. Suppose that (6) holds for $x=x_1, x_2$ satisfying (3) and that for some $j \ge 1$, $R_{jnx}(\theta)$ is one to one increasing in a suitably large neighbourhood of $\hat{\theta}_n$. Then a confidence interval of level $1-\alpha$ with error $O(n^{-j/2})$ is given by

$$(8) V_{in}(\hat{\theta}_n, x_2) \leq \theta \leq V_{in}(\hat{\theta}_n, x_1)$$

where

$$(9) \qquad V_{jn}(\theta, x) = c^{-1} \left(c(\theta) + \sum_{i=1}^{j} n^{-i/2} q_i(\theta) \right) ,$$

$$q_1(\theta) = \tau_n x a_{21}(\theta)^{1/2} ,$$

$$q_2(\theta) = \tau_n a_{21}(\theta)^{1/2} g_1(x, \theta) + \tau_n^2 x^2 c^{(1)}(\theta)^{-1} a_{21}^{(1)}(\theta)/2 ,$$

$$q_3(\theta) = \tau_n a_{21}(\theta)^{1/2} g_2(x, \theta) + \tau_n^2 x c^{(1)}(\theta)^{-1} \partial \left\{ a_{21}(\theta) g_1(x, \theta) \right\} / \partial \theta$$

$$+ \tau_n^3 x^3 c^{(1)}(\theta)^{-2} a_{21}(\theta)^{1/2} (2a_{21}^{(2)}(\theta) + a_{21}^{(1)}(\theta)^2 a_{21}(\theta)^{-1})/8$$

$$- \tau_n^3 x^3 c^{(1)}(\theta)^{-3} c^{(2)}(\theta) a_{21}(\theta)^{1/2} a_{21}^{(1)}(\theta)/4 ,$$

$$q_4(\theta) = - p_4(\theta) - \sum_{i=1}^{3} \bar{P}_{4-i}^{(1)} q_i(\theta) - \bar{P}_{2}^{(2)} q_1(\theta)^2 / 2 - \bar{P}_{1}^{(2)} q_1(\theta) q_2(\theta)$$

$$- \bar{P}_{1}^{(3)} g_1(\theta)^3 / 6 ,$$

and

$$\begin{split} q_{\mathfrak{z}}(\theta) &= -p_{\mathfrak{z}}(\theta) - \sum_{i=1}^{4} P_{\mathfrak{z}-i}^{(1)} q_{i}(\theta) - \bar{P}_{\mathfrak{z}}^{(2)} q_{1}(\theta)^{2} / 2 - \bar{P}_{2}^{(2)} q_{1}(\theta) q_{2}(\theta) \\ &- \bar{P}_{1}^{(2)} (q_{2}(\theta)^{2} / 2 + q_{1}(\theta) q_{3}(\theta)) - \bar{P}_{2}^{(3)} q_{1}(\theta)^{3} / 6 - \bar{P}_{1}^{(3)} q_{1}(\theta)^{2} q_{2}(\theta) / 2 \\ &- \bar{P}_{1}^{(4)} q_{1}(\theta)^{4} / 24 \ , \end{split}$$

$$\begin{split} \textit{where} &~\{\bar{P}_i^{(r)} \!=\! P_i^{(r)}(c(\theta)),~1 \!\leq\! r \!\leq\! 4\} ~~\textit{are given by} \\ &~\bar{P}_i^{(1)} \!=\! c^{(1)}(\theta)^{-1} p_i^{(1)}(\theta) \\ &~\bar{P}_i^{(2)} \!=\! c^{(1)}(\theta)^{-2} p_i^{(2)}(\theta) \!-\! c^{(1)}(\theta)^{-3} c^{(2)}(\theta) p_i^{(1)}(\theta)~, \\ &~\bar{P}_i^{(3)} \!=\! c^{(1)}(\theta)^{-3} p_i^{(3)}(\theta) \!-\! 3 c^{(1)}(\theta)^{-4} c^{(2)}(\theta) p_i^{(2)}(\theta) \\ &~~+ \{3 c^{(1)}(\theta)^{-5} c^{(2)}(\theta)^2 \!-\! c^{(1)}(\theta)^{-4} c^{(3)}(\theta)\} p_i^{(1)}(\theta)~, \\ &~\bar{P}_i^{(4)} \!=\! c^{(1)}(\theta)^{-4} p_i^{(4)}(\theta) \!-\! 6 c^{(1)}(\theta)^{-5} c^{(2)}(\theta) p_i^{(3)}(\theta) \\ &~~+ \{15 c^{(1)}(\theta)^{-6} c^{(2)}(\theta)^2 \!-\! 4 c^{(1)}(\theta)^{-5} c^{(3)}(\theta)\} p_i^{(2)}(\theta) \\ &~~+ \{-15 c^{(1)}(\theta)^{-6} c^{(2)}(\theta)^3 \!+\! 10 c^{(1)}(\theta)^{-5} c^{(2)}(\theta) c^{(3)}(\theta) \\ &~~- c^{(1)}(\theta)^{-4} c^{(4)}(\theta)\} p_i^{(1)}(\theta)~. \end{split}$$

PROOF. By (6) with probability $\Phi(x) + O(n^{-j/2})$, $c(\hat{\theta}_n) \ge R_{jnx}(\theta)$, which for R_{inx} one to one is equivalent to

$$c(V_{jn}(\hat{\theta}_n, x)) + O_p(n^{-j/2}) \geq c(\theta)$$
,

where $q_i(\theta) = Q_j(c(\theta))$, and $g(x) \simeq x + \sum_{1}^{\infty} n^{-r/2} Q_r(x)$ is the inverse of $x(g) \simeq g + \sum_{1}^{\infty} n^{-r/2} P_r(g)$. Now apply Appendix 2.

Note 1. For Example 2.1 for a given $c(\cdot)$, $\{q_j(\hat{\theta}_n)\}$ are independent of the choice of τ_n , provided τ_n is a function of $\hat{\theta}_n$ independent of n; thus $\{q_j\}$ are most easily computed choosing $\tau_n=1$.

Note 2. If j=2 and $\tau_n=1$ or $V_c(\hat{\theta}_n)^{1/2}$, then for Example 2.1 the interval (8) is just the same as that given by Withers [6] for

$$Y_n(\theta) = n^{1/2}(c(\theta) - c(\hat{\theta}_n))V_c(\hat{\theta}_n)^{-1/2}$$
.

4. Some examples

Example 4.1. Returning to Example 2.1(a) we have

Case 1. $c(\theta) = \theta$ and $\tau_n = 1$: then $a_{21}(\theta) = (1 - \theta^2)^2$ and by (4.12) of Withers [6], $g_1(x) = \theta(x^2 - 1/2)$, $g_2(x) = (3x - x^3)/4 + \theta^2(-5x + 4x^3)/4$, so that

$$q_{\scriptscriptstyle 1}\!(\theta)\!=\!x(1\!-\!\theta^{\scriptscriptstyle 2})$$
 , $q_{\scriptscriptstyle 2}\!(\theta)\!=\!-(\theta\!-\!\theta^{\scriptscriptstyle 3})(1/2\!+\!x^{\scriptscriptstyle 2})$,

and

$$q_3(\theta) = (1-\theta^2)\{x-x^3+\theta^2(5x+4x^3)\}/4$$
.

Case 2. $c(\theta) = \tanh^{-1} \theta$ and $\tau_n = 1$: then $a_{2i}(\theta) = 1$ and by (4.13) of Withers [6], $g_1(x) = -\theta/2$, $g_2(x) = (9x + x^3)/12 - \theta^2 x/4$, so that

Table 1. Error in exact probability of one-sided nominally 95% confidence interval given by (8) with $\tau_n=1$ for Example 2.1(a)

	θ	j=1	j=2	j=3
n=5				
	9	202	09(6)	$05(3)^{2}$
	5	154	06(6)	03(2)
Case 1	0	09(0)	02(8)	007
	.5	01(7)	.00(9)	.010
	.9	.043	19(2)	.01(4)
	9	07(1)	$04(1)^2$	$01(5)^2$
Case 2	5	05(8)	03(3)	01(0)
	0	04(1)	024	005
	.5	021	017	001
	.9	00(1)	01(5)	.00(2)

Table 1. (Continued)

	$\boldsymbol{\theta}$	j=1	j=2	j=3
n=10				
1	9	12(8)	04(5)	01(9)
	5	09(3)	02(7)	00(9)
Case 1	0	04(5)	00(5)	.00(1)
	.5	.00(6)	.00(8)	.00(0)
	.9	.04(6)	07(1)	$.01(3)^{2}$
	9	03(5)	01(6)	00(4)
	5	028	013	002
Case 2	0	018	01(0)	00(1)
	.5	00(7)	00(8)	00(0)
	.9	$.00(2)^{2}$	$00(8)^{3}$.00(1)
n=20				
1	9	08(4)	02(2)	00(7)
	5	05(7)	01(1)	00(2)
Case 1	0	02(3)	.00(0)	.00(0)8
	.5	.01(3)	$.00(2)^{2}$	$00(0)^{2}$
	.9	.04(2)	03(0)	.00(6)
	9	01(9)	00(5)	00(1)
	5	015	00(5)	00(0)
Case 2	0	00(8)	$00(4)^{2}$	00(0)
	.5	00(1)	$00(3)^3$	$.00(0)^{2}$
	.9	.00(4)	00(4)	.00(0)5

Tables 1 and 2 were calculated by quadratic interpolation on the nearest three points in David's 'Tables of the Correlation Coefficient' (1938). The error of this formula was found using the tables on a point outside this range and is indicated by the brackets and superscripts:

.00(8) means $.008 \pm .001$, $.00(6)^3$ means $.006 \pm .003$.

Table 2. Error in exact probability of two-sided nominally 90% confidence interval given by (8) with $\tau_n=1$ for Example 2.1(a)

	$\boldsymbol{\theta}$	j=1	j=2	j=3
n=5				
1	0	18(0)	05(6)	01(5)
Case 1	$\pm .5$	17(1)	05(7)	02(2)
	$\pm .9$	15(9)	28(9)	$03(9)^3$
	0	08(2) ²	04(9)	.01(0)
Case 2	±.5	$07(9)^{2}$	05(0)	$01(2)^3$
	±.9	$07(2)^{2}$	$05(6)^3$	01(2)4

n=10				
	0	$09(0)^{2}$	01(1)	.00(2)
Case 1	±.5	$08(7)^{2}$	$02(1)^2$	00(8)
	±.9	$08(2)^2$	$11(7)^2$	$00(6)^3$
	0	03(3) ⁸	02(0)	00(2) ²
Case 2	±.5	03(5)	02(1)	00(3)
	$\pm .9$	$03(3)^{2}$	$02(5)^{3}$	$00(3)^{8}$
n = 20				
	0	$04(6)^{2}$	$00(0)^{2}$.00(1)4
Case 1	$\pm .5$	$04(4)^2$	$00(8)^3$	$00(2)^{3}$
	$\pm .9$	$04(2)^{2}$	05(2)	$00(1)^2$
	0	$01(6)^2$	00(8) ³	$00(0)^3$
Case 2	$\pm .5$	01(6)	00(9)4	$00(0)^{3}$
	$\pm .9$	$.01(5)^{2}$	01(0)	$00(0)^{6}$

(10)
$$q_1(\theta) = x$$
, $q_2(\theta) = -\theta/2$, $q_3(\theta) = (3x + x^3)/12 + \theta^2 x/4$.

When $p_n(\hat{\theta}_n; \theta)$, the density of $\hat{\theta}_n$, satisfies $p_n(\hat{\theta}_n; -\theta) = p_n(-\hat{\theta}_n; \theta)$, as is true for Example 2.1(a), then the error of the two-sided confidence interval given by (4), (8) is symmetric in θ .

Example 4.2. Let X_1, \dots, X_n be i.i.d. χ_{θ}^2 , $S = \sum_{i=1}^{n} X_i$, $\hat{\theta}_n = S/n$. Taking $c(\theta) = \theta$ and $\tau_n = 1$ gives $a_{21}(\theta) = 2\theta$ and

$$(\theta - \hat{\theta}_n)(n/2\theta)^{1/2} = (m-S)(2m)^{-1/2}$$
,

where $m = n\theta$. Since $S \sim \gamma_m^2$,

$$g_r(x, \theta) = \theta^{-r/2}(-1)^r g_{r0}(x)$$

where $g_{r0}(x)$ denotes $g_r(x)$ for $Z_m = (\chi_m^2 - m)/m$, given, for example, for $1 \le r \le 6$, by (3a) of Fisher and Cornish [3].

Hence

$$q_1(\theta) = (2\theta)^{1/2}x$$
 , $q_2(\theta) = (2+x^2)/3$, $q_3(\theta) = -(2\theta)^{-1/2}(2x+x^3)/18$,

Table 3. Error in exact probability of one-sided nominally 95% confidence interval given by (8) with $\tau_n=1$ for Example 4.2

$m = n\theta$	j=1	j=2	j=3	j=4
5	0795	.0085	0034	.0012
10	0502	.0034	0007	.00012
15	0388	.0021	00032	.00004
20	0324	.0015	00019	.00002
100	0128	.00026	00007	.00000(5)

$$q_4(\theta) = 2\theta^{-1}(-16 + 7x^2 + 3x^4)/405$$
.

Example 4.3. Returning to Example 2.2, $a_{21}(\theta)=1$ and $g_r(x,\theta)=g_r(x)$ do not depend on θ , so that

$$q_i(\theta) = \tau_n g_{i-1}(x)$$

and

$$V_{jn}(\hat{\theta}_n, x) = \hat{\theta}_n + \tau_n n^{-1/2} \left\{ x + \sum_{r=1}^{j-1} n^{-r/2} g_r(x) \right\}.$$

Fisher and Cornish [3] give $\{g_r(x)\}$ for the case of Student's t-statistic.

Acknowledgements

The first draft of this paper was written in 1978 while an Exchange Visitor at the Division of Mathematics and Statistics, C.S.I.R.O., Canberra. I wish to thank D.M.S. for its support, and also David Harte for assistance with Tables 1 and 2.

Addendum

Since this paper was written, Winterbottom [5] has published formulae (A.1)-(A.3) equivalent to ours for the case when $c(\theta)=\theta$, $\tau_n=1$, and j=5.

His notation	$ ilde{ heta}(\xi)$	ξ	θ	T	$v(\theta)$	$(-1)^r \kappa_{r,s}$
Our notation	$V_{5n}(\hat{\theta}_n, x)$	\boldsymbol{x}	θ	$\hat{ heta}_n$	$a_{21}(\theta)$	$A_{r,s}$

(Equivalently, taking $c(\theta) = -\theta$, his $\kappa_{r,s}$ is our $A_{r,s}$.)

He applied it to $\hat{\theta}_n = (\chi_n^2(\lambda) - n)/n$ with $\theta = \lambda^2/n$ (NOT λ/n as stated), also to the maximum likelihood estimate, and to Case 2 of Example 4.1, for which he obtains $q_4(\theta)$ and $q_5(\theta)$.

APPENDIX 1

From Corollary 3.1 of Withers [6] we have

LEMMA 1. (5), (7) implies (6) with

$$g_1(x) = A_{11} + A_{32}(x^2 - 1)/6$$
,
 $g_2(x) = A_{22}x/2 + A_{43}(x^3 - 3x)/24 + A_{32}^2(-2x^3 + 5x)/36$,
 $g_3(x) = A_{12} + A_{33}(x^2 - 1)/6 + A_{22}A_{22}(-x^2 + 1)/6$

$$+A_{34}(x^4-6x^2+3)/120+A_{32}A_{43}(-x^4+5x^2-2)/24 +A_{32}^3(12x^4-53x^2+17)/324$$
,

and.

$$g_r(x) = \sum_{0 \le k \le (r-1)/2} G'_{r-2k,2k} g^*_{r-2k}(x)$$

where for $1 \le r \le 6$, $G_{r,0}$ and $g_r^*(x)$ are given on pages 214, 215 of Fisher and Cornish [3] with $a = A_{11}$, $b = A_{22}$, $c = A_{32}$, $d = A_{43}$, $e = A_{54}$, $f = A_{65}$, $g = A_{76}$, $h = A_{97}$: for example,

$$(G_{4,0})_3 = coefficient in line 3 of IV = A_{22}A_{32}^2$$
,

and

$$(g_4^*(x))_3 = polynomial/divisor in line 3 of IV$$

= $5(2x^3 - 5x)/72$,

while the other $\{G_{r,k}\}$ needed for $4 \le r \le 6$ are as follows.

For
$$r=4$$
: $G'_{22}=(A_{23}, A_{44}, 2A_{32}A_{33})$.

For
$$r=5$$
: $G_{32}'=(A_{13}, A_{34})$,

$$G_{14}' = (A_{22}A_{33} + A_{32}A_{23}, A_{55}, A_{43}A_{33} + A_{32}A_{44}, 3A_{32}^2A_{83})$$
.

For
$$r=6$$
: $G_{42}'=(A_{42}, A_{45}, A_{33}^2+2A_{32}A_{34})$,

$$G_{24}' = (2A_{22}A_{23}, A_{22}A_{44} + A_{43}A_{23}, A_{32}^2A_{23} + 2A_{32}A_{22}A_{33}, A_{66}, A_{33}A_{54} + A_{32}A_{55}, 2A_{43}A_{44}, 2A_{32}^3A_{33}A_{43}, 4A_{32}^3A_{33}).$$

APPENDIX 2

A1. Summary

This contains some formulas for inverting series. Section 2 gives the inverse of

$$(A1.1) y(\varepsilon) = \sum_{1}^{\infty} \varepsilon^{r} P_{r}$$

as a power series in ε . Section 3 gives the inverse of

(A1.2)
$$x(g) = g + \sum_{r=1}^{\infty} \varepsilon^{r} P_{r}(g)$$

as a power series in ε , and gives some statistical applications.

A2. The first inversion series

Expressions for the inverse of (A1.1) are well known, e.g. §3.6.25

of Abramowitz and Stegun [1]. However these expressions only give the first few terms of the inverse, as a series in ε . The general term may easily be expressed using the notation of the following lemma.

LEMMA A2. For $j=0,1,2,\cdots$

$$\left(\sum\limits_{i=1}^{\infty}\,arepsilon^{i}Q_{i}
ight)^{j}=\sum\limits_{r=j}^{\infty}\,arepsilon^{r}C_{rj}(\left\{ Q_{i}
ight\})$$

where

(A2.1)
$$C_{r0}(\{Q_i\}) = \begin{cases} 1, & r=0 \\ 0, & r>0, \end{cases}$$

and for $r \ge j \ge 0$, $C_{rj}(\{Q_i\}) = \sum Q_{k_1} \cdots Q_{k_j}$ summed over $\{k_1 + \cdots + k_j = r, k_1 \ge 1, \cdots, k_j \ge 1\}$, or equivalently

(A2.2)
$$C_{r,i}(\{Q_i\}) = \sum_{j} (k_1, \cdots, k_r) Q_1^{k_1} \cdots Q_r^{k_r}$$

summed over $\{k_1+\cdots+k_r=j, k_1+2k_2+\cdots+rk_r=r, k_1\geq 0, \cdots, k_r\geq 0\}$, where (k_1, \cdots, k_r) is the multinomial coefficient $j!/(k_1!\cdots k_r!)$.

For example $C_{r1}(\{Q_i\}) = Q_r$, $C_{jj}(\{Q_i\}) = Q_1^j$, $C_{j+1,j}(\{Q_i\}) = jQ_1^{j-1}Q_2$,

$$C_{j+2,j}(\{Q_i\}) = \left(egin{array}{c} j \ 2 \end{array}
ight) Q_1^{j-2}Q_2^2 + \left(egin{array}{c} j \ 1 \end{array}
ight) Q_1^{j-1}Q_3 \; ,$$

$$C_{j+3,j}(\{Q_i\}) = {j \choose 1}Q_1^{j-1}Q_4 + {j \choose 3}Q_1^{j-3}Q_2^3 + j(j-1)Q_1^{j-2}Q_2Q_3$$

THEOREM A1. When both series converge, the inverse of

$$y(\varepsilon) = \sum_{r=1}^{\infty} \varepsilon^r P_r$$

is given for $P_1 \neq 0$ by

$$\varepsilon(y) = \sum_{r=1}^{\infty} y^r Q_r$$

where Q_r is defined recursively by $Q_1 = P_1^{-1}$,

$$Q_r = -P_1^{-1} \sum_{s=2}^r P_s C_{rs}(\{Q_i\})$$
, $r > 1$.

PROOF. Set $y=y(\varepsilon)$, $\varepsilon=\varepsilon(y)$. Then

$$P_1 \varepsilon = y - \sum_{s=1}^{\infty} P_s \varepsilon^s$$
.

But

$$\varepsilon^s = \sum_{r=s}^{\infty} g^r C_{rs}(\{Q_i\})$$
.

An alternative formula for P_r was given by McMahon in 1894. An extension of his result to the problem of expressing a power of $\varepsilon(y)$ as a series in $\{y^r\}$ is given in Part IX of David, et al. [2]. Their Table 9 may be used as an alternative to Theorem 1 to obtain Q_r for $r \le 11$.

A3. The second inversion series

Let $\{P_r\}$ be functions on R with derivatives $\{P_r^{(j)}\}$.

THEOREM A2. When both series converge, the inverse of

$$x(g) = g + \sum_{r=1}^{\infty} \varepsilon^r P_r(g)$$

is given by

$$g(x) = x + \sum_{r=1}^{\infty} \varepsilon^r Q_r(x)$$

where $Q_r(x)$ is defined recursively by

(A2.3)
$$Q_r(x) = -\sum_{i=0}^{r-1} \sum_{k=1}^{r-1} P_{r-k}^{(j)}(x) C_{kj}(\{Q_i(x)\})/j!$$

and

$$P_r^{(j)}(x) = (d/dx)^j P_r(x)$$
.

PROOF. $Q_r(x)$ is the coefficient of ε^r in the Taylor series expansion for

$$g = x - \sum_{r=1}^{\infty} \varepsilon^r P_r(g)$$
.

The first five Q_r are as follows.

$$\begin{split} Q_1 &= -P_1 \;, \qquad Q_2 = -P_2 + P_1^{(1)} P_1 \;, \\ Q_3 &= -P_3 - P_2^{(1)} Q_1 - P_1^{(1)} Q_2 - P_1^{(2)} Q_1^2 / 2 \\ &= -P_3 + P_1 P_2^{(1)} + P_1^{(1)} P_2 - P_1^{(1)^2} P_1 - P_1^{(2)} P_1^2 / 2 \;, \\ Q_4 &= -P_4 - P_3^{(1)} Q_1 - P_2^{(1)} Q_2 - P_1^{(1)} Q_3 - P_2^{(2)} Q_1^2 / 2 - P_1^{(2)} Q_1 Q_2 - P_1^{(3)} Q_1^3 / 6 \;, \\ Q_5 &= -P_5 - P_4^{(1)} Q_1 - P_3^{(1)} Q_2 - P_2^{(1)} Q_3 - P_1^{(1)} Q_4 - P_3^{(2)} Q_1^2 / 2 - P_2^{(2)} Q_1 Q_2 \\ &- P_1^{(2)} (Q_3^2 / 2 + Q_1 Q_3) - P_2^{(3)} Q_1^3 / 6 - P_1^{(3)} Q_1^2 Q_2 / 2 - P_1^{(4)} Q_1^4 / 24 \;. \end{split}$$

An alternative formula for $Q_r(x)$ involving multivariate Bell polynomials is given by (3) of Riordan [4]. His formula seems more difficult for algebraic manipulation.

As an application in statistics, consider the problem investigated

by Fisher and Cornish [3]. Many standardized asymptotically normal random variables Y_n have rth cumulant of the form

$$egin{aligned} l_{1n} = &O(n^{-1/2}) \;, & r = 1 \ & 1 + l_{2n} = &1 + O(n^{-1}) \;, & r = 2 \ & l_{rn} = &O(n^{1-r/2}) \;, & r > &2 \; ext{as} \; n o \infty \;, \end{aligned}$$

(Here n is usually the sample size or associated degrees of freedom.) Under this assumption they showed that $P_n(x) = \Pr(Y_n \le x)$ satisfies expansions of the form

$$\Phi^{-1}(P_n(x)) = x - \sum_{n=1}^{\infty} f_n(x, \mathcal{L}_n)$$

and

$$P_n^{-1}(\Phi(x)) = x + \sum_{1}^{\infty} g_r(x, \mathcal{L}_n)$$

where

$$\Phi(x) = (2\pi)^{-1/2} \int_{-1/2}^{x} \exp(-y^2/2) dy$$

and f_r , g_r are polynomials of degree r+1 involving $\mathcal{L}_n = \{l_{rn}\}$ and having magnitude $O(n^{-r/2})$.

They gave the first four f_r and the first six g_r , but no expression for the general term. Expressions for f_5 and f_6 may be obtained from the following application of Theorem A2.

COROLLARY A1. Let $Q_r(x, \{P_i\})$ denote $Q_r(x)$ of (A2.3). Then

$$g_r(x, \mathcal{L}) = Q_r(x, \{-f_i(x, \mathcal{L})\})$$

and

$$f_r(x, \mathcal{L}) = -Q_r(x, \{g_i(x, \mathcal{L})\})$$
.

An expression for $f_r(x, \mathcal{L})$ for general r was given by (2.8) of Withers [6]. This may be used in Corollary 1 to obtain any desired $g_r(x, \mathcal{L})$.

In most instances $\sum_{1}^{\infty} f_r(x, \mathcal{L}_n)$ and $\sum_{1}^{\infty} g_r(x, \mathcal{L}_n)$ can be rewritten in the form $\sum_{1}^{\infty} n^{-r/2} f_r(x)$ and $\sum_{1}^{\infty} n^{-r/2} g_r(x)$. In this case $\{f_r(x)\}$ and $\{g_r(x)\}$ have the same relationship to each other as do $\{f_r(x, \mathcal{L})\}$ and $\{g_r(x, \mathcal{L})\}$, so that $\{f_r(x), 1 \le r \le 6\}$ are obtainable using Appendix 1 when (5) holds.

D.S.I.R.

REFERENCES

- Abramowitz, M. and Stegun, I. A. (1964). Handbook of Mathematical Functions, National Bureau of Standards, Washington, D.C.
- [2] David, F. N., Kendall, M. G. and Barton, D. E. (1966). Symmetric Function and Allied Tables, University Press, Cambridge.
- [3] Fisher, R. A. and Cornish, E. A. (1960). The percentile points of distributions having known cumulants, *Technometrics*, 2, 209-225.
- [4] Riordan, John (1949). Inversion formulas in normal variable mapping, Ann. Math. Statist., 20, 417-425.
- [5] Winterbottom, Alan (1979). Cornish-Fisher expansions for confidence limits, J. R. Statist. Soc., B, 41, 69-75.
- [6] Withers, C. S. (1980a). Expansions for asymptotically normal random variables, Tech. Report 94, A.M.D., D.S.I.R., Wellington, Submitted to J. R. Statist. Soc., B.
- [7] Withers, C. S. (1980b). The distribution and quantiles of a regular functional of the empirical distribution, *Tech. Report* 96, A.M.D., D.S.I.R., Wellington, Submitted to Ann. Statist.
- [8] Withers, C. S. (1980c). Accurate non-parametric inference—the one sample case, Tech. Report 97, A.M.D., D.S.I.R., Wellington, Submitted to Ann. Statist.
- [9] Withers, C. S. (1983). Expansions for the distribution and quantiles of a regular functional of the empirical distribution with applications to nonparametric confidence intervals. Ann. Statist., 11, June issue.