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Summary

The purpose of this note is to derive the asymptotic distributions,
means and variances of the Stein estimator, as well as that of the
quadratic loss function for the vector case when the population means
are nearly equal. These results are given in Section 3 and are obtained
by using a method similar to the perturbation method, used by Nagao
[4]. In Section 4 exact moments of the Stein estimator are also de-
rived.

1. Introduction

Suppose Xj,:-:, Xy is a sample of N observations from an N(4, I,)
population where #(px1) is unknown. If it is suspected that the 4,,
1=1,---, p are nearly equal, but not near the origin, then Lindley (in
the discussion following Stein’s [5] paper) (see also Efron and Morris
[3]) suggested the following Stein estimator of 6:

(1.1) ¢(X>=i',,e+(1—N(X i“) = ))(X—?Ze)
— X)) (X—Xe

where X:% ﬁ‘iX,.~N(0, I/N) is the maximum likelihood estimator
j=
of 6, c=p—3,
S 12 5 1 12
X=23 X¢~N<0,,, W{> with 7,=--310,,

¢=1,1,---,1) and X=(X,---, X,).

#(X) is a better estimator than X, because its risk
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— , - 1
E N(¢(X)—0)(¢(X)—6)=p—(p 3)E—p_3+2K<p

where K is a Poisson random variable with parameter 1=(1/2)N(6—7,¢)
-(0—0,¢) and p is the risk of the maximum likelihood estimator.
Efron and Morris [2] showed that X—X,e=Y~N{4,(1/N)UI,—
(1/p)ee’)} and is independent of )?pe where A=60—0,e. Let Z=(Zy---,
Z,)=TY with I" an orthogonal matrix with last row equal to (1/4/D )¢
and (=({, -+, ¢,)=I4 then Z~N{¢, (1/N)(I,—ad")} where d'=(0,0,

.,0,1). Hence Z,={,=0 with probability one and (Z,---, Z,.,)'~
N(w, (1/N)I,_,) where o'=({,--+,&{,_1). Therefore (1.1) can be written
as :

_ (4
e e wr]
x I (717\72—{{)

where Z=(+(1/¥N)Z and X,e=(1/(Vp VN ))Z}e+,e, Z~N(0, I,— 38" ;
ZF~N(0,1) and independent of each other.

Expanding (1.2) in a series we get for N large enough that
M)+ D)+~

(1.3)  $(X)=h(Z)+ hs(Z)+ ;h(Z)+E

x/N Nx/—
where hy(Z)=0,e+I"(=0,e+4=0,

h(Z)=T"Z+—L Zse,
Vp

h(Z)=—4

123

ha(Z)=§<Agl(Z>—r'Z> :

h(Z)= f (I"Zg(Z)— MgX(Z)—94Z))}
and a,=C'C=(0—0,e)(0—0,¢) ,

gn(Z)——Z’C ,

w2)=227.
ay
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Throughout this paper R will indicate a residual term that consists
of order terms in N. These order terms will contain the next power
terms in N which can be seen from the series under consideration plus
additional terms that may arise, because the convergence constraints
have been ignored. This can be done if N and 6 are large enough, as
explained by Copson [1]. (See also Subsection 4.2 for further clarification).

In the next section some lemmas are given. These lemmas are of
importance in the derivation of asymptotic distributions.

2. Lemmas for further use

LEMMA 2.1. Suppose Z(px1)~N(0, I,—3d") where ¢'=(0,0,---,0,
1), then E h(Z)e"™ @ =¢ "' E h,{A(Y*+1A4'Tt)}; j=2,83,4 where Y*~

N, I_): A(p><p—1):[0{{—}0]; =t~ t,) and h(Z); j=2,3,4 are
defined im Section 1.

LEMMA 2.2.

E h(Z)hd(Z) exp (ith(Z)'h(Z))
=(1-2it)"*Eh(Z)h(Z) exp (itZ'Z) j,k=2,3,4

where t is a scalar and Z~N(0, I,—ad").

The proofs of Lemmas 2.1 and 2.2 follow easily. For further de-
tails see van der Merwe [T7].

3. The distribution of the Stein estimator

3.1. On the characteristic function

THEOREM 3.1. The characteristic function of V*=vN (H(X)—h(Z))
for N large enough is given by:

3.1) ¢V.<it>=e-"~2{1+W¢1<t>+~¢z(t)+R}

where O,(t)= —a,m:
0,(t)= 1#([ e; >t——(?§z:—)(t’/l)z} :
PROOF.

b =E e L+t h(Z)) 4+ ih( )+ L (it hZ)} +B] .

N
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By using Lemma 2.1 equation (3.1) follows.

3.2. The distribution of V*

THEOREM 3.2. The probability density function of V* for N large
enough 1is given by

/2
B2 Frt=(o) e L G0+ 50" B
where §,(v¥)= — L ¥y,
7]
ot)=2 (L (o) o ([, L Jor 4 D vy
ao 2 p 2a’O
PROOF.

Frto)=(o ) {7 griteredn - d,

The proof follows by making use of the fact that
E k*(t)e " =¢-" 2 E k*(Y—iv¥),  where Y~N(0, L)
(k*(t) is a function in t).

Using (1.8) and taking expected values the mean and variance of
#(X) are given by

E (p(X))=0—-4 + £2=3) 4
(¢(X)) Na0+ Nat +R
and
tn=1 r1_2¢ (2 40 _201}
Var (X)) = L+ {ao A4 <I,, p) +R.

3.3. The quadratic loss function
The quadratic loss function is defined as U=N((X)—0)'(¢(X)—0).

THEOREM 3.3. The probability density function of U for N large
enough 1is given by

e—uIZupﬂ—l {1 1 CZ (

@3)  Sl=Froem 1T N 2a

1—lu>+R} u>0.
P

PROOF.

fa(u)=51—. S ¢0(i%) exp (—itu)dil
Tl Je—ioo
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where ¢U(i2)=(1—2ii)-p/z{1+..1_<_f2_(iZ)—z—c(?:-?’-)-(ii)(l—2iE)“
N\ a, a,
26t onrot
+22 ipya—2if)? )+ R
0

is the characteristic function of U which is obtained by using Lemma
2.2. For further algebraic details see van der Merwe [7].

Also

E (U)=1o———(7[’1\;f’)2 +R

and

_ 4(p—3) _ (p—3)
Var (U)=2p— R.
ar (U)=2p Na, N} +
3.4. The marginal distributions of the Stein estimator
THEOREM 3.4. The probability density function of V*=+vN (¢(X)

—h(Z))) where $(X,) is the ith component of the Stein estimator as de-
fined in equation (1.1), and h((Z,)=0, for large enough N is given by

gl(v*)+—gz(v )

B4 fralot )—7= exp (—2ot) {14+

2 VN

./— Gy )+R}

—C
v¥d, ,

0

where  §(vF)=

aon=-S-—vr)| L
a, D
ot =2 [or(~2p+ - (0-+ 6p-3))
0
—op (A (ptep—3)— —1>}
vl(mo(p+p )—(p—1)
aM A¢=0‘——
Proor. By putting t'=(¢, t;,--+,¢,---,t,) equal to (0,0,---,¢,

-, 0) in equation (3.1) the characteristic function of V;* is obtained.
The density function follows in the same way as in Theorem 3.2.

Also
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— 1 cA
3.5 E(V¥=—=S2 4 ¢ (p—8)+R
(3.5) VO =rFa 4T N e PO
and
2¢ (p—1 1 2
3.6 E(V¥)=1— — )£ +R.
(3.6) (Vi) =1-2 2oh o (o 1) +

The results given by van der Merwe and de Waal [9] can be ob-
tained as special cases if p is taken as p+1, 1/p as zero and 4 as 4.

3.5. The case 3=d"l,

If ¥+1I, but equal to ¢’I, then the Stein estimator as defined in
Section 1 can be written as

6D E=Ket(1l-—— B )X-%)
N(X-%,0)(X-X,0)

here o——P=3__P=81, =2 (=2 ..,
where ¢ N—pt2 N + N + N +

S=3 3 (X,— X)t~aty:  with n=(N—1)p
i=1j=1

and independent of X. Also
3.8) E(S)=cn and E(S)=o'n(n+2).

By making use of the same methods as in the previous sections
the asymptotic distribution, mean and variance of this estimator as well
as that of the quadratic loss function can be obtained.

4. Moments of the Stein estimator
4.1. FExact moments

Let W=%v-z—‘2;()_(t—)z,)2 where )—(1~N<0i, ”—;’>, 4=1,-.-,p; and by
using the results from Ullah [6] it follows that

—_ 2 a
4.1 EX,—0)W'=2__% EW,
(4.1) (X;—40,) N 0, w
—_— 4 2 2
42 E(X,—0,) -r=("_ﬁ_ "—>E -,
(4.2) R0 W= (35 2t 55| EW

To evaluate the expectations involved in (4.1) and (4.2) EW™" (r=1, 2)
and its partial derivatives with respect to 0, are required.
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Since W~y;_i(2) where 1=2—N2 }E‘_, 0.—6,),
g° i=1

43  EW-)=2-rIl(p=1)2-17) e“lFl( p—1_,,p—1, 2)

I'((p—1)/2) 2 2
where lFl(a;c;x)zg—(‘z’—():‘)—xL and (a),=a(a+1)---(a+l—1); and (a)=1.
Also
a —r—o-r(_1y L (r+8) '(p—1)/2—17)
*4 aw W= ) G T2+ s)
Xe“lFI< p;l —7r; p;l +s; 2) .

The first two derivatives of E W~" with respect to 6, can easily be
obtained and are as follows:

G -+ N =~ d -
45 L EBEw-r=N(,— (_EW'>,
(4.5) 26, W= =0\
o* -»_ N2 o dF - N 1\/ d -
4. EW-=N"(9,—7 2<—EW') —1—-—><—EW'>.
(4.6) 26" el ») dx +02< p/\da
. 04 N = 022 N 1
(4.5) and (4.6) follow.
Defining

_T(e=V2+p) s p(p=2_  .p—=1_ . _
@D =B o (2224 220 b02) 00

The following theorem can now be stated:

THEOREM 4.1. The first two moments of H(X)—0, (where ¢(X,) is
the ith component of the Stein estimator as defined in equation (3.7))
are given by

(48 E@X)—0)=—Lndifu,
- 2 2
(49  E@X)—0)=S+én {Affo,z—”w(l—%)fo,l} +3 Enln+2)
2 _1)d
x {difur+ (1 p) o} -
PROOF. By using the results given in (3.8)-(4.7) equations (4.8)
and (4.9) follow.
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E (¢(X,—0,) and E (¢(X,—0.)") were also calculated but for lack
of space are not given here. The interested reader is referred to van
der Merwe [8].

Ullah [6] actually derived the moments for the Stein estimator if
6,, are all near the origin. If we put 1/p, p, 4;, » and ¢*/N equal to
zero, K+1, B;, T—K and o* respectively in equations (4.8) and (4.9),
Ullah’s results follow.

4.2. Asymptotic moments

Copson [1] showed that for large values of 2; f,, can be approxi-
mated by

1 & (w—p)(l—(p—1)2—p)
T Ave gg na )

By using this approximation for fy, fo2 f-i,1 and taking o*=1; ie. é
as ¢ the first two moments of the Stein estimator about 4, are now
given by

Euaxrwo=§;Aﬁﬁ§%?Aﬁ4e
0 0

and

2¢c (p—1 1 2}
- 1 Ai R )
N, | p 2a, (P14 +

E (¢(X) 00 =~

which correspond to the asymptotic moments obtained in Subsection
3.4 (equations (8.5) and (3.6)). Higher order moments will also corre-
spond which is a further indication that the asymptotic distributions
will approximate the exact distributions quite well if N and a, are
large enough and that term by term integration as used in Theorems
3.1-3.4 are permissible.
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