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Summary

In order to estimate the total value of an attribute of a finite
population, Brewer [2] proposed an estimator which is asymptotically
design-unbiased and which is optimal with respect to a certain super-
population model. In this note, it is shown that a class of estimators
which includes Brewer’s estimator, as well as the usual ratio estimator,
is admissible for any fixed population size. The proof of the result
follows that of Joshi [4], [5].

1. Introduction

The problem of estimating the total value of an attribute of a
finite population is frequently encountered. Some attention has been
directed towards determining the admissibility of various particular
total estimators (e.g., Joshi [4], [5], [6]). Brewer [2] proposed an esti-
mator which is asymptotically design-unbiased and which is optimal
with respect to a certain superpopulation model. However, the ques-
tion of admissibility of his estimator was unresolved. In this note, it
is shown that a general class of estimators which includes Brewer’s
estimator, as well as the usual ratio estimator, is admissible under
squared error loss for any fixed population size. The proof of the re-
sult follows that of Joshi [4], [6]. Although Joshi’s notation is differ-
ent than that generally used currently, it will be employed here in
order to facilitate comparison with his proofs.

Consider a finite population U of N distinct units labeled ¢, i=1,
..., N. With each unit ¢ is associated a pair of quantities (y;, x;), 1=
1,---, N. The x; are the quantities of interest while the y, are posi-
tive and known constants. Denote x=(x,,---, 2y). Let p(-) be a sam-
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pling design and S be the set of all possible samples scU (i.e. Z:g o(s)

=1). If a sample s is taken, then values {(¢, y;, ®,): 1 €s} will be re-

corded. A problem of interest in many surveys is to estimate the total

T(x)=>) x;, based on the sample drawn under p(-). Let =; be the in-
ielU

clusion probability of unit ¢ in the sample, i.e., =,=> p(s). Brewer [2]
i€s

proposes the following estimator of T'(x):

(1) ex(s, ©)=2 wrl-(%‘_. ¥) (X (7' —1x)/ X (=7 =)y

tE€ES 1&S 1E€S LES
where the =, satisfy certain conditions to guarantee that ej(s, x) is as-
ymptotically design-unbiased and has asymptotically smallest mean
square error (for appropriate increases of N and the sample size n(s))
under the model
a; ’L:j ’
( 2 ) m,;=ﬁyi+€t y E (si)=0 and E (61‘5])= .

0 otherwise .

Although Brewer [2] justified the estimator e; in a very strictly con-
ditioned asymptotic framework, Robinson and Tsui [8] relaxed the con-
ditions and provided a general asymptotic framework in which the same
conclusion can be derived. Note that e, is simply the usual ratio esti-
mator when a simple random sampling design is used.

In this note the general class of estimates of the form

(3) 8, )= 2 2+ (2 ¥ (B war)(Z )
where w;>0, i=1,-.-, N, is shown to be admissible (for fixed N) under

squared error loss. That is, there is no other estimator €(s, #) such
that

(4) 3 pe)(E(s, 2) = T()'s 3 ps) s, 2)— T(@))

for all z in R,, the set of all N-dimensional real vectors, and with
strict inequality holding for some z in R,.

The estimator é(s, ) can be motivated by the prediction theory
approach (cf. Royall [9]) as follows: with respect to the model given

by (2), the Best Linear Unbiased Estimator (BLUE) for 8 is ﬁ:(z Z;-
Yo7 2)/(% yi07%), which becomes (E,‘ wixi)/(g‘, wys) if w,=y.07%, i—_-ie,x---,
N. Based on the sample s, the estimator of the population total T'(x)
based on the prediction theory approach is >3 xﬁﬁmzsyt, which is ex-

actly the estimator é(s, #). Our admissibility result in the next section
shows that even though (3) can be motivated under a superpopulation
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model, it is actually admissible from the randomization theory approach.

With appropriate choices of the w,’s, the estimator é(s, ) encompasses

the following special cases: (a) the usual ratio estimator, (b) Brewer’s

estimator given by (1), and (c) the estimator > xt—l—(%‘, Y) (X %y, [n(s),
1&S tE€S

suggested by Basu [1], where n(s) is the number of units in the sample
s. Meeden and Ghosh [7] provide an alternative proof of the admissi-
bility of Basu’s estimator. Their proof, however, pertains only to the
admissibility of Basu’s estimator, while the admissibility proof in this
paper covers a broad class of estimators.

2. The admissibility result

The proof is similar to the one given by Joshi [5], who proved that
the usual ratio estimator is admissible. Modifications were required in
the definitions of B(s) and Z(s) below, in the assumptions about the
prior variances ¢!, and in the calculation of the constant k.

Suppose there exists an estimate e'(s, x) satisfying (4) with strict
inequality holding for some x € Ry. Denote

A(S) =§s ’.'Ic ’
(5) 9(s, ) =[AE)N(E'(s, ©) =2 @)
5(3)—_‘% wi/ % WY -

Suppose the prior distribution of the x; is such that the x; are all dis-
tributed independently with mean E (x,)=0y,. We have

(6) E[ds o)—T@)]=EI[€(s, ¥)—3 w;—ﬂA(S)—g (Xi—0y,)P

=A%s) E [g(s, x)—0]2+%.“ E (x,—0y,),
where the expectation E is taken with respect to the prior described.
Moreover,

(7) E [é(s, 2)— T(®)]*
=K {['E‘Es wiwi/ieZ; WY (l% Yi)—0A(s)— g‘.;s (w,—0y,)}?

=A(s)' E (5(8)—0)2+’_$ZE E (z,—0y.)".

Thus, taking expectations of both sides of (4) with respect to the prior
and cancelling out common terms, we have

(8) > D(s)A’(s) Elg(s, ©)— 0]2§§§ n(8)A¥s) E [z(s)—0]*
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where S={seS: p(s)#0}. If we further assume that each x; is dis-
tributed normally with variance ¢}=ky,/w; where k>0, then

(9) E [z(s)—01'=k/B(s)
where
(10) B(s)= % wY; -

The joint distribution of the «; for i€es is

L=(2z)" [ o7 exp (—-;— 5 (xt—ayi)Z/az) .
i1€8

We have, by (9) and the special form of the o}:
(11) E (9 log L/o0y =E [ (y:/o}) (@~ 0y)I'=B(s)/k .

Let E (g(s, x))=0+0b(s, 0), where b(s, 6) is the bias of the estimate.
Using the Cramér-Rao inequality, we have

E (9(s, 2)—0)'=[%/B(s)](1 +V'(s, 0))*+b%(s, 0) .
Inequality (8) now becomes:

3 Ps)AMs)bs, )+ 33 pls) [AYE)/B(s)] (1 +'(s, 0))'=k 33 p(s)A%s)/B(s) -

se S

Proceeding as Joshi did ([5], pp. 1661-1662 and [4], pp. 1733-1734), we
see that b(s, 8)=0 for all seS. Therefore, g(s, x)=7%(s) for almost all
2 € Ry, which in turn implies that €'(s, x)=é(s, ) for almost all x € R,.
In other words, é(s, x) is weakly admissible in the class of all meas-
urable estimates.

To strengthen the result so that e'(s, x)=é(s, x) for all x ¢ Ry, we
next show that Theorem 4.1 of Joshi [4] holds for é(s, ). Following
Joshi’s [6] argument again, let Q%_, and Q%_, be hyperplanes in R,
such that the last k& coordinates are fixed to be a=(ey_i+1,-**, ay) and
o =(y_rs1, * +» ), Trespectively. Let S,={seS: ies, i=N—Fk+1,---,
N}, i.e., S, consists of all the samples s containing the last k units.
To establish a 1—1 correspondence between the points of Q%_, and Q%_;,
we put

wg:wrl'h% ’ i=1v"'7N_k-
The constant & is found by equating
12) é(s, o) —T(z")=é(s, x)— T(x) ,

which as shown in the appendix, is given by
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N N
h= 3 wita:—at)/ S wg .
i=N—k+1 i=N—k+1

As Joshi [4] argues, the estimate ¢/(s, ) can be extended to every
hyperplane Q%_, by setting
e(s, 2" )—T(x")=¢€'(s, x)— T(x) .

Applying the remaining argument in the proof of Theorem 4.1 of Joshi
[4], we see that his Theorem 4.1 holds for our é. For reference, we
state the result below.

THEOREM. If an estimate €'(s, x) satisfies

> pE)(E'(s, )—T@)'=s X p(s)(@(s, 2)— T(x))’

sesk se Sk
for almost all x in Q%_,., then
e(s, x)=é(s, x)  for almost all x in Q%_, .

Furthermore, Theorem 5.1 in Joshi [4] also applies and e€/(s, x)—
é(s, x) cannot be different from zero for any xz ¢ R,. This shows that
(4) cannot be a strict inequality for any z € Ry. In other words, é&(s, )
is admissible.

Appendix
The constant h that satisfies equation (12)
[é(s, «")— T'(=")]—[é(s, 2)— T'(x)]1=0
= 2 @)t 3

i1SN-k
N
> (wxi+hwy)+ X wal
ies i=N—k+1
+ (S y) st
i€s

iexwiyi
N N
- (@i+hy)— X ai— X w— 3 o«
SN~k i=N—k+1 ics i=N—k+1
iSN—k
N
2 Wi+ > wioy
e i=N—k+1 5
——== Y
I WY, ids

i€s

N
+ 2 2+ > a,=0

iSN-k i=N-k+1
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N
> hwyt+ X wilel—a)
i t=N—k+1

& 3 hy,+=EE 22 Y
isilfls—k ’E WY, i€Es
— > hy,=0
t1SN—-k

N N
S gt h 12 wy;—h . NS_‘lkH wtyi‘i‘i I?_J‘kﬂ wya}—ay)
= — Y cs —N= N

i&s ! 2 WY

iks

N N
Sh= X wi(ag_at)/ > WY .
i=N—k+1 i=N—k+1
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