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Summary

In order to construct a higher-order asymptotic theory of statistical
inference, it is useful to know the Edgeworth expansions of the dis-
tributions of related statistics. Based on the differential-geometrical
method, the Edgeworth expansions are performed up to the third-order
terms for the joint distribution of any efficient estimators and com-
plementary (approximate) ancillary statistics' in the case of curved ex-
ponential family. The marginal and conditional distributions are also
obtained. The roles and meanings of geometrical quantities are eluci-
dated by the geometrical interpretation of the Edgeworth expansions.
The results of the present paper provide an indispensable tool for con-
structing the differential-geometrical theory of statistics.

1. Introduction

Since Efron [10] introduced the concept of statistical curvature, it
has gradually been recognized that the curvature of a statistical model
plays an important role (Efron [11], Efron and Hinkley [12], Madsen
[16]). Amari [3] has given a general differential-geometrical framework
for analyzing spaces of statistical distributions, and proved the validity
of the geometrical approach to treat the asymptotic properties of sta-
tistical inference, such as the second-order efficiency, second-order ancil-
larity and conditional inference (Amari [3]-[5]). The separate endeavors
of Rao [18], Amari [2], Chentsov [7], Efron [10], etc. are thus unified
to result in a new powerful differential-geometrical method of statistics.

Differential-geometry plays indeed an essential role in the higher-
order asymptotic theory of statistical inference. On the other hand,
the Edgeworth type expansions are necessary to know the asymptotic
properties of inference. Hence, it is necessary to give a geometrical
representation of Edgeworth expansions. The present paper performs
this task in a curved exponential family. To this end, we introduce a
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new coordinate system consisting of an estimator (or a test statistic in
the case of testing hypothesis) and complementary approximate ancil-
lary statistics. We obtain the Edgeworth expansion up to the third
order of the joint distribution of these statistics in terms of geomet-
rical quantities. This provides us with an indispensable tool for analyz-
ing higher-order asymptotic properties related to problems of statistical
inference.

We shall show briefly that the present theory gives direct solutions
to the problems of higher-order information loss and higher-order effi-
ciency of an estimator (Efron [10], Amari [3], [4], see also Pfanzagl [17],
Akahira and Takeuchi [1]), of higher-order ancillarity (see, e.g., Cox [8],
Amari [5]), of conditional inference and of testing statistical hypothesis
and interval estimation (Kumon and Amari [15]).

Refer to Amari [3], [4] for the differential-geometrical framework
for statistics and to Schouten [19] for the index notations in differen-
tial geometry.

2. Geometry of curved exponential family

2.1. Differential geometry of expomential family

Let us consider a full, regular, minimally represented exponential
family S of distributions. A member of S can be represented by the
density function of the form

(2.1) p(x, 6)=exp {0'x,—¢(6)}
on some carrier measure P(x) on the sample space X of a vector ran-
dom variable x=(x;)=(x,, - -, %,), where §=(6*)=(6", ¢*,- - -, ") is a vector

parameter specifying the distributions in S. Einstein’s summation con-
vention is assumed throughout the present paper, so that the summa-
tion is automatically taken over those indices (such as ¢ in the above
expression) that appear twice in a term once as a superscript and once

as a subscript. Hence, 6z, implies é 0z, automatically without the
i=1

summation symbol 31. We treat the case where random variables x
and parameters 0 take on continuous values. The above parameter ¢
is called the natural parameter of the exponential family S. The family
S forms a manifold, where 6 plays the role of a local coordinate system.

We can introduce a Riemannian metric in S (Rao [18], Chentsov
[7], Amari [3]).

DEFINITION 1. The metric tensor g,(f) of S at ¢ is defined by the
Fisher information matrix

(2.2) 9:/(0)=E [0, Uz, 0)3;l(x, 0)] ,
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where E denotes the expectation, 9, denotes the differentiation /06",
and

l(x, 0)=log p(x, 0) .
In the case of exponential family, we have
(2.3) gij(o):aiaj¢(0)

from the definition. The inner product of two vectors X=(X*) and Y
=(Y") in the tangent space T, at 8 is given by

(X, Y)=g, XY .

When this vanishes, X and Y are said to be orthogonal. The length
| X]|| of a vector X is also given by

I X|P=g,XX" .
A one-parameter family of affine connections is introduced in the

following manner (Amari [3], cf. Chentsov [7], Dawid [9]). Let f,,,,
be the covariant components of an affine connection parametrized by
a, which we call the a-connection.

DEFINITION 2. The a-connection is defined by

2.4) I,(6)=E [2,0,U(z, 0)0,U(x, 6)]+ 1;‘ T,,.(0) ,
where
2.5) T,,,=E [0, 1z, 0)3,(=, 0)3,1(x, 0)]

is a symmetric tensor.

We can easily calculate the following relations in the space of ex-
ponential family,

(2.6) -f'ijk: 1;a Tijk ’
(2.7) Tijk:atajak¢:aigjk .

The connection with a=1 is called the exponential connection and that
with a=—1 is called the mixture connection. Refer to Amari [3], [4]
for the detailed geometrical structures of the space of an exponential
family.

It is convenient to use another coordinate system (parametrization)
in S. The expectation of 2 with respect to the distribution p(z, 9),
7(0)=E [x] is calculated in the component form as
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(2.8) 7:(0)=E [2,]=0,4(0) .

It is known (Chentsov [7], Barndorff-Nielsen [6]) that the transforma-
tion between 6 and 7 is one-to-one, and we can use » as a parameter
or a coordinate system specifying points in S. We call 5 the expecta-
tion parameter.

Since the Jacobian matrices of the coordinate transformations be-
tween ¢ and 5 are given by

2.9) 070607 =g, , 06%/0n;=g" ,

where g/ is the inverse matrix of g,;,, we can obtain the metric and
the a-connections in terms of the expectation parameter ;. Since a
point z=(z) in the sample space X can naturally be mapped to a point
» in S having the same expectation coordinates »,=w; we can identify
the sample space X with the space S of distributions by the use of
the expectation parameter. The expectation parameter 7 is convenient
in this respect. We hereafter use mainly the expectation parameter.
However, the same results can be obtained by using the natural param-
eter 0, because our theory is independent of the specific choice of co-
ordinate systems.

2.2. Curved exponential family and ancillary subspaces

Let M be a statistical model consisting of the density functions
f(x, u), parametrized by an m-dimensional parameter u=(u")=(u', %’
«++,u™). When M is smoothly imbedded in S by

f(@, w)=plx, 6(u)] ,

M is called an (n, m)-curved exponential family. It forms an m-dimen-
sional manifold with a local coordinate system #. It can also be con-
sidered as an m-dimensional submanifold of S, defined by the equation
6=0(u) or n=x(u) in the respective coordinate systems of S.

Let us attach an (n—m)-dimensional smooth submanifold A(u) to
every point 8(u) or n(u) of M imbedded in S, such that A(u) transverses
M at p(w) and A={A(u)|n(u) € M} forms a smooth family of submani-
folds. We call the family A={A(u)} an ancillary family rigged to a
curved exponential family M, and call each A(u) the ancillary subspace
at u of A. Let us introduce a coordinate system v=(v*), k=m+1, m+
2,---,n in each A(u) such that the origin v=0 is put at point »(u) on
M. Then, given an ancillary family A, a point 5 in S can uniquely be
determined by the pair (u, v) (at least in some neighborhood of M),
such that the point 7 is on the ancillary subspace A(u) and the coor-
dinates of the » on A(u) are v. We can represent the point » by a
smooth function of u and » as »=y»(u, v) or in the component form as
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771=77¢(ua7 ’U‘) ’ i'__lv"" n; az]—y"'y m; K=m+1,"',’n,

where we use indices 1, j, k, etc. to represent quantities related to
the coordinate system 6 or 5 in S, indices a, b, ¢, etc. to represent
those in the coordinate system w of M, and indices «, 2, p, etc. to
represent those in the coordinate system v of the ancillary family A.
Obviously, 4, 7, k, etec. run from 1 to =, a, b, ¢, etc. run from 1 to
m, and k, A, g, etc. run from m+1 to n.

The pair (u, v) can be regarded as a local coordinate system of S
in some neighborhood of M. It is convenient to introduce a new single
vector variable w by w=(u, v) or in the component form

w*=(u* v) , a=1,---,m; a=1,---,m; k=m+1,---,n

ie., w=ul,--., wr=u", wrt'=y"*,..., w=1v". We use indices a, B,
7, ete. to denote quantities in the coordinate system w. The trans-
formation from w to » can be written as

n=n(w) .

Let x, x,,---, xy be N independent observations from a distribu-

tion f(x, u,) in M. Then, 5:% }E‘, z; is a sufficient (vector) statistic.
i=1

Since a point Z in the sample space X can be identified with a point

7 in S having the same components in the 5-coordinates =%, we can

represent this point Z in terms of the new w-coordinates related to

A as
(2.10) Z=n(%, D) .

This defines new statistics # and 9, which together form a sufficient
statistic. Obviously # and % are determined, depending on the ancil-
lary family A rigged to M.

Reduction of information is carried into effect by a statistical in-
ference procedure from % to some statistic %, e.g., # is an estimator
of %, in the case of estimation, % is a test statistic in the case of test-
ing, ete. If we choose an ancillary family A such that the statistic
under consideration can be derived by the M-part @ of Ww=(%,¥), which
is another expression of %, this coordinate system w associated with A
is convenient to analyze the performance of the statistical procedure.
The M-part 4 represents the summarized information, and the A-part
¥ represents the abandoned information. This is the reason why we
introduce an ancillary family A.

The metric tensor is written as

(2.11) 9o(w)=9"B..By,;
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in the new coordinate system w, where
(2.12) B, (u)=09,94(u, 0) , 0,=0/ow"

is the Jacobian matrix of the coordinate transformation from » to w.
Here, all the quantities are evaluated on M, i.e., at v=0, and hence
are functions of u only. The m vectors B,,:--, B,,

B, (u)=(B.) , a=1,---,m

form a set of vectors spanning the tangent space at # of M. Simi-
larly, n—m vectors B,.,--+, B,

B‘(U)Z(B‘i) , ;c=rm,+1,...’n

form a set of vectors spanning the tangent space of A(u) at v=0.
Their contravariant expressions are

Bi=g¢"B,;, Bi=¢g"B,,.
The M-part of g.;,
(2.13) gab_—.g“B};szg“Bath

is the Fisher information matrix of M, and hence is the metric tensor
of M. The A-part g., of g.;

(2.14) g.(w) =gijB£B{ = gijBn‘sz
is the metric of A(u) at v=0. The mixed part
(2.15) 9.{w)=B.B!g,

is the inner product of the tangent vectors of M and A(u), and it
vanishes when M and A(u) are orthogonal at . The ancillary family
A is said to be orthogonal at u,, when

(2'16) gux(uﬂ) =0 ’

and is said to be orthogonal when g,(#)=0 holds for all . When a
family A is orthogonal at w, we can define

(2.17) Qave=0.95(t) »

which is a tensor because of (2.16). This tensor can be used to eval-
uate g,.(u), when u is close to u,, We have indeed

(2.18) Jo(U) = QoW —u5) +O(u—u, ")

The a-connection can be represented in the w-coordinates as

(2.19) I,=1,B.B!B:+Bi(3,B)g., »
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because the Jacobian matrix of the transformation from 6 to w is given
by B:. Taking account of

(0:B7)9:;=0,B,;— B;0,9:;=0;B,;— BiB; T ,
we have

- 14+«
) 2

Tﬁrﬂ + Cﬂrb ’

where
Cpr,):(aﬁBT])B: y TﬁT5= TijkB;B¥B§ .

By putting a=—1 and a«=1, we have

(2.20) Fp,a =Cpra ’
(2.21) Iewﬁr‘; = C'gra had Tﬁ,,, ’

where “m” and “e” represent the mixture and exponential connec-
tions, respectively. The M-part of the a-connection

(2.22) Frpe=— 1'2*“ TpetCane

gives the a-connection in M. The A-part

(2.23) [=— 1‘2“” T tCo

gives the a-connection in A(u).

We next consider curvatures of a manifold. The a-curvature of a
manifold is defined by the rate of the “a-intrinsic” change in the tan-
gent directions as positions change in the manifold. The “a-intrinsic”
change is measured by the covariant derivative of the tangent vectors
with respect to the a-connection. The e-curvature of M is thus defined
by a tensor

(2.24) Hi(u)=BiF,B} ,

where l;, is the covariant derivative with respect to the a-connection.
Similarly, the e-curvature of an ancillary subspace A(u) is defined by

(2.25) Hi(w)=B!F,B: .

We consider the exponential (i.e., a=1) curvature of the model M
and the mixture (i.e., a=—1) curvature of the ancillary subspace of
an orthogonal ancillary family A, because they play fundamental roles
in the problems of statistical inference. The exponential curvature of
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M is given in this case by the tensor
(2.26) H,(u)=H/, B.=(3. B)B.. ,

where “e” denotes the underlying exponential connection because of

©

H}B,,=0. The mixture curvature of A(u) is given by the tensor
(2.27) H.o(w)=H:B,,=(3.B.)B:

where “m?” denotes the underlying mixture (a=—1) connection.

2.3. Stochastic expansion
Let us define new random variables

F=VN[E—qu, 0)], #=vN(@—u), 9=VNb, w=(,7),

where % is the true parameter of distribution. Since the expectation

~

of % is n(u, 0), ¥ is asymptotically normally distributed with zero mean
and covariance matrix g,,. In order to obtain the joint distribution of
# and %, we expand (2.10) at (u,0). The stochastic expansion yields

(2.28) %,=B,w"+ ?}—ﬁ C.s 0" * + _GIW D, ;, P +O0,(N~*) ,

where
Bu‘: aa77i ’ Caﬁi'_" aaaﬁ"h ’ -Daﬂriz aaapaﬂ]i

are evaluated at (u,0). By multiplying the inverse of B,; or g*’B,,g",
we have

(2.29) W =gBi%,—

1 mecesy 1 e mpeoas _
TN Cs W ———WD,;,,,wﬁw W+O0,(N72) ,
where g** is the inverse of g,,,

Csr = Cﬂringda ’ D;rd = DpraiBfgm ’

and indices e, B, 7, etc. are raised or lowered by the use of g,, or g*.

Since the quantity C,,, which gives the mixture connection in the
w-coordinate system, plays an important role, we clarify the geometric
meanings of its M-, A-, and mixed parts.

THEOREM 1. The M-, A-, and mixed parts of C,, represent the
following geometric quantities.

m

(2.30) Cabc= abc 1
(2.31) Co=T0, ,
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(2.32) Core=H,, ,
(2.33) Cua=Haa ,
(2.34) Cuir=Qure— Hae
especially

(2.35) Cow=—H,. ,

Jor an orthogonal family A, because g¢,(u)=0 implies Q.,,=0. It 1is
possible to choose the coordinate system v for each A(u), such that

(2.36) Ca;z =Van= % axd

holds.

PrROOF. The equations (2.30)-(2.33) are the direct consequences of
(2.22), (2.23), (2.24) and (2.27), respectively. We have (2.34) from

e

Ca:b = C:ab = (aaBn)Bg = aa(thBg) - thaaBll; = aag:b - Hub: = Qa,b: - Hab: .

It is always possible to choose the coordinate system v in each A(u) such
that g.(u) is kept constant for any . In this case, from 0=0,9,,=
0.(B.Big;;), we have

Corry ==

2 T‘lti ’

where the bracket ( ) implies the symmetrization of indices,
Ca(xl)=%(Ca:1+Cah) .

Moreover, by applying an adequate orthogonal transformation to each

A(u), the coordinate v* in each A(u) can be made to satisfy
BﬁaaB,i—BzaaB“;:O .

We have in this case C,.,=C,,, proving the theorem.

By taking the expectation of (2.29), we have

2.37) E [w"1=—-2-}-1—v~c«+0<N-l>,

where
Ca — C;rgﬁr

because of
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E [@*] =g+ O(N"") .

This shows that the expectation of the statistic w=(#%, %) is biased
from wy=(uy, 0) by —C*uy)/2N+O(N-*%). We can modify the statistic
W to yield the unbiased version

(2.38) w*=w+C(W)/2N ,
and thus
E [w*]=w,+O(N~%?) .
In terms of the deviation part
w*=vN (*—w,) ,
we have
(2.39) w*=w—E; [w] ,

where E; denotes the expectation with respect to the distribution in
S specified by w. This can be written as

(2.40) @ =ip+ 2}_ Co(d) ="+ 2;_ Co(ug) + iv 2,7+ O(N*?)
Since the statistic #* is unbiasedly modified up to order N7, it is
convenient to obtain the Edgeworth expansion of the distribution of
w* first and then to obtain that of % therefrom. Moreover, the un-
biasedly modified statistic #* itself plays a very important role in the
theory of estimation, as will be seen in the next section.
One may consider that the statistic

(2.41) W, = —E, [@] ,

where E; denotes the expectation with respect to the distribution spe-
cified by (4%, 0) or f(x, %), is more natural than #w*. The points » sat-
isfying

W¥**(n)=const.
indeed lie in one A(u), while those satisfying
W¥(n)=const.

do not. However, we can prove that the distributions of #* and #**
are the same except for the term of O(N~*%). Hence, we can regard
them equivalent so long as the third-order asymptotic theory is con-
cerned.
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3. Geometric aspects of Edgeworth expansions

3.1. Joint distribution of % and

Vector random variable i or @w* is asymptotically normally distrib-
uted, with asymptotic covariance matrix g**. The probability density
function p(w*; u,) of w*, where u, is the true parameter of the distri-
bution, can be expanded in the following Gram-Charlier series,

3.1) D™ ; o) = [T 0. (10)] {1+ ) c,,l...,,k(uo)h,al...a,,(a,*)} ,
where
(3.2) PD¥; 9.)=(det |g.,]) *(2r) ™" exp | — 1 g™

and h°v-ex(w*) is the tensorial Hermite polynomial in #* of degree k
with respect to the normal distribution ¢(#*; g.;). See Appendix 1 for
the Hermite polynomials.

In virtue of the orthogonal relations of the Hermite polynomials,
we have

(33)  eveitu) = | P whtr oK@t = - B [ )]

where ¢ is the contravariant (upper index) version of c,...,,, indices
being raised or lowered by the use of g+ or g,,. Hence, the coeffi-
cients can be calculated from the moments

(3-4) #"1“'“k=E [’ib*“l' . .ﬁ)*ak] ]

(Appendix 2). It is more tractable to use the cumulants k' instead
of the moments, since the cumulant ke of #w* is of order N-¢*-»7
(k=2). We put

(3.5) Ke#r=y/N g,
(3.6) K< = Nt ,

The higher-order cumulants are o(N~') and hence are not necessary to
evaluate the distribution function up to the term of O(N7).

In order to calculate the moments g“v"**k or cumulants k** from
(2.29) we need to know the moments or cumulants of Z,. Since ¢(8)
is the cumulant generating function of x, we have

E[%]=0, E [55511'—‘9“ ’ E [515/@]: Tijk/m ’
E[%,%,5.2.]= 3g(’ljgkm)+stjkm/N ’
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where T, is the third cumulant, and
Sijkmz a‘aj akam(/’(ﬁ)

is the fourth cumulant of .

By calculating the moments or cumulants of #w* up to the neces-
sary order (Appendix 2), we have the following geometric expression
of the Edgeworth expansion of the joint distribution of #* and %*.

THEOREM 2. The distribution of w* is expanded as

(B.7)  P(W*; o) =p(W*; gup) |1 +——== Kap,h“ﬂ’(W*)+—ﬁCaph“ﬂ(W*)

6~/—
+ 241N Kaﬁ,dh"ﬁf"(w*)+—1—NKu,9,K,,.ch"ﬁ"’“(w*)}
+O(N) ,
where
(3.8) K;y="Tss—3C0=—314, (a=—1/3)
(3.9) Ciy= Ll 0"
(3.10) Koss=Susrs— AD e+ 12(F g+ I op) s

The distribution of unmodified % or partly modified #** can be
derived as follows.

THEOREM 3. The distribution of W is derived by replacing w* in
3.7) by W,

e~ 1
3.11 fe =g C-
( ) W =W+ —F=— /N
and by adding the term
— L (6.0g,.h
2N !

tn the last bracket. The distribution of Ww** is obtained from (3.7) by
replacing w* by w** and by adding the term

1
—1 ey e
2N ( xC )grﬁ

wn the last bracket.

3.2. Efficiency of estimators and distribution of u* or i
Let % be an estimator of u, #=f(Z) which is a smooth function
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of the sufficient statistic ¥ independently of N. Then, the set of the
points 7 in S which are mapped to u by f, forms an (n—m)-dimensional
submanifold A(w),

A(u)={n € S| f(n)=u} .

This implies that, when Z € A(u), the value of the estimator is wu.
When the estimator is consistent, we can show that »(u) € A(u). Thus,
a consistent estimator # in general defines an ancillary family A con-
sisting of the above A(u)’s. This A is said to be associated with the
estimator. The coordinates # of the point T in the associated A, z=
7(, ) give the value of the estimator. The unbiasedly modified esti-
mator is given by #*. The random variables # and #* are ¥/ N times
of the estimation error. Hence, by knowing the distribution of % or
#*, we can evaluate the estimator. We can also calculate the amount
of information loss caused by summarizing the data = into an estima-
tor .

The distribution of #* is obtained by integrating (3.7) with respect
to 9*. Let us put

(3‘12) gab =0gar— ga:gblg‘l ’

which is the inverse of the A-part g*®* of g**. The inequality
(3.13) Gar =0as

holds, implying that g¢,,—g., is positive semi-definite. The equality
holds, when and only when g,.(u,)=0, i.e., A is orthogonal at w,.

THEOREM 4. The distribution of u* or u is given by
(3.14) (¥ ; Ue) = p[W* ; ()] +O(N?) .

According to (3.13), the theorem shows that the estimator #* (or
i) is mostly concentrated at around the true value u, when the as-
sociated ancillary family A is orthogonal. We can prove from (3.13)
that the Fisher information of % (or #*) is Ng,,(%,)+0(1), and that
the mean square error (or the covariance of the estimator ) is (Ng,,)™
+O(N-?%. Hence, an estimator is (first-order) efficient, when the asso-
ciated A is orthogonal.

We next evaluate the higher-order terms of the distribution of #*
for an orthogonal A. The same result has already been obtained in
Akahira and Takeuchi [1] without geometrical interpretations.

THEOREM 5. When A is an orthogonal family, the distribution of
w* 18 given by
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(B15)  DE*: )= (0% gur) {1+ Ko 2, hot (i)
s Konedh ) K.,MKdefh“““f(a*)}
+O(N),
where the third and fourth cumulant terms
(3.16) Kupe=Tope—3le= =80, (@=—1/3),
(3.17) Kuve=Surea—4ADupes+12(Fous+ s ) eag®”

are common to all orthogonal ancillary families independently of a spe-
cific A, and only the term

3.18)  C=CurCrng"0"=Tusalsrsg*g +2H,. Hiag" + HoHy'
depends on A through the mixture curvature I’},M.

Proor. The expansion (3.15) is obtained by integrating (3.7) with
respect to #* and by using the relation (A.1.4) in Appendix 1. When
A is orthogonal, the density function p(#*;u,) depends on A only

through the mixture curvature ﬁ,m of A(u,) up to the terms of order
N-!. Hence, the higher-order efficiency is evaluated by the mixture
curvature of the associated A.

By the use of the above expansion, we can easily calculate the
covariance of an (unbiasedly modified) first-order efficient estimator it* by

3.19) E [a*aa*b]=¢b+_1_cm+o(N—l)

_gab+ {(I"2)ab+2(H2)ab+(H2)ab} +O(N 1) ,

where

(.20 (Fays= P g
(8:21) (HYy=HeHbg"g
(8.22) (H? = H '"v,;‘g.,gl,, ,

are positive semi-definite matrices. The first term of the right-hand
side in (3.19) shows that the estimator is (first-order) efficient. The
remainings are the second-order terms. (These terms are called the
third-order terms in some literatures, where terms of order 1/¥N
are said to be second-order terms.) We have from this the following
theorem, which summarizes the higher-order efficiency of an first-order
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efficient estimator, by taking account that the mixture curvature fI,x.,
of the associated ancillary subspaces vanishes for the maximum likeli-
hood estimator (Amari [3]).

THEOREM 6. The second-order mean square error of the unbiased
version of a first-order efficient estimator is decomposed imto three mon-
negative terms. One is the square of the mixture connection of M,
which is the Bhattacharyya bound, sometimes called the naming curva-
ture. There 1s a parametrization of M such that this term wvanishes
identically, when and only when the mixture Riemann-Christoffel curva-
ture tensor of M vanishes. Another term 1is the square of the exponen-
tial curvature of M. This is a temsor, and the above two are common
to all the first-order efficient estimators. The third is the square of the
mixture curvature of the ancillary subspace A(w,), which depends on the
estimator or the associated A. This term wvanishes for the maximum
likelihood estimator, showing that it is second-order most efficient among
all the (unbiasedly modified) first-order efficient estimators.

We can prove the stronger assertion that the unbiasedly modified
maximum likelihood estimator minimizes the expected loss E [f(@*)] for
any convex loss function. Moreover, it can be easily shown that the
amount of information loss 4g,, by taking a first-order efficient estima-
tor is given by

(3.23) Agab=(ﬁ12)ab+%(ﬁ2)a,, ,

and is minimized for the maximum likelihood estimator (Amari [3]).
However, we can prove that there exist no estimators which uniformly
minimize the information loss of order N-!, by the use of (3.7).

The distribution of the unmodified % is given by replacing #@* in
(3.15) by

1'% — ¢ 1 Ca
WS N

and adding the term —(3,C%g,.~h**/2N. The distribution of #@** is the
same as that of #* up to the terms of order N'.

3.3. Edgeworth expansion in a locally orthogonal ancillary family

We can construct a higher-order asymptotic theory of testing sta-
tistical hypothesis in a similar manner. Let us consider a test for the
null hypothesis H,: u=wu, against H,: u#u,., We can associate an an-
cillary family A with a test T such that the critical region R of the
test T is bounded by some of A(u)’s in A, where the sample space X
is identified with S by »=x as before.
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We can easily prove that a test T is first-order most powerful
when the associated A is orthogonal at u,. However, an orthogonal
A does not in general gives the most powerful test for higher-order, in
contrast with the problem of estimation. In order to analyze the
second- and third-order powers of a test T at

(3.24) w,=u,+te/VN ,
where ¢ is a vector satisfying
gab(uO)eaeb=1 ’

we need to know the Edgeworth expansion of the distribution of #=
~N (it—u,) or its unbiasedly modified version #*, when the true param-
eter of the distribution is u,. The point is that the ancillary subspace
is orthogonal at u,, but not u,.

THEOREM 7. The Edgeworth expansion of w* at u,, when A is locally
orthogonal at w,, is given by

(3.25) p(@*;u,):da*;g@(u,)}{u Ko, hoe ()

1
N
s (2Qu— Hn)Quag ™
o €3+ 2QuQug —2Hung
+EQu et + H
g e+ 1200 Qe — Hoa)g o

1

+ 72N

Kaache,hMef} FON-)

where
é:b =Ir, fbgugd '+2H,. Hyu.9%9"
j{abcd =Susea—4D4pea+12(1 0+ Fabe)rfcdgef .

The proof can be accomplished from (3.7) by careful calculations,
taking the relation

Go(U)= 1/—5_\7: Q50
into account. See Appendix 3. The distribution depends on A only

through two quantities IHI:M and Q,,. up to the order of N-'. We will
show a higher-order asymptotic theory of statistical test and a theory



DIFFERENTIAL GEOMETRY OF EDGEWORTH EXPANSIONS 17

of interval estimation by applying the above result (Kumon and Amari

[15]).

3.4. Distribution of v* and higher-order ancillarity

We can similarly obtain the distribution of ¥* by integrating (3.7)
with respect to w*.

THEOREM 8. The distribution of o* can be expanded for an orthog-
onal A as

(3:26) B0 1) =¢l5*; Gl {1+ Ko (0¥) - CUh0¥)

+LKMh“W(a*)+—1—K,1”K,,.,h“m(«7*)}

24N 72N
+O(N-7)
where
(3'27) sz = ﬁp:ﬁuy + ﬁabxﬁ.lab + 1 Ta»: Tlav .

2
The Fisher information which the statistic #* carries is measured
by the matrix

(3.28) L, =E [0, l(%*; uo)0, U(¥*; uy)] ,
where
U@ ; up) =log p(T*; u,) .

As can easily be shown from (3.26), I,,=0(1). The statistic #* which
summarizes N independent observations z,,---, %, carries the Fisher
information of only order 1. (The statistic @* obtained by summariz-
ing N observations carries the Fisher information of order N.) Hence,
?* can be said to be an approximately ancillary statistic. We call a
statistic 7" an ancillary statistic of order p, when it carries the Fisher
information of order N-». The above #* is an ancillary statistic of or-
der 0 in this sense.

Given an ancillary family A, we can take any coordinate system
v* in each A(u), especially such coordinates v* in each A(u) that

(3.29) g.(u)=const.

holds for all w at v=0. The statistic #* in this coordinate system is
an ancillary statistic of order 1, because the Fisher information of this
v* is of O(N~'). We can further modify the coordinate system in each
A(u) such that
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(3.30) K (w)=—3T,,m)=0 (a=—1/3),

holds, by taking the normal coordinate system of the a=—1/3 connec-
tion. We have in this case the second-order ancillary statistic.

We cannot proceed further to get a higher-order ancillary statistic.
It is indeed possible to modify the coordinate system such that K,.(u)
=0 holds at v=0 for all u, besides (3.29) and (3.30). However, the
term C%(u) still remains, and it is in general impossible to have a set
of coordinate systems in all the A(u) such that g,.(u) and Cl(u) do not
depend on u at the same time. This yields the following generaliza-
tion of the result of Amari [5].

THEOREM 9. A maximal set of ancillary statistics of the Oth, first,
and second order can always be given by the above procedures. However,
third-order ancillary statistics do mot in general exist.

3.5. Conditional distribution and mutual information

From (3.7), (3.15) and (3.26), the following relation easily follows
for an orthogonal family A,

p(U*, V¥ ; wy) abe o
(8.31) T p@*;’uo) t F — = (Koo h®* + Kok )+——R

+ON-)

where the term R is given by
(3.32) Rz-}[Ciﬁh"ﬁ— 2 1t — G2k
+-—1—-[Ka,arah"ﬁ”’— apealt® — K, ]
[ K. 5 Kb — Koy Ko sh™*** — K, K, ]

- Ti (Kab:hab‘ + -Kaxlha‘l) (Kabchabc + Ktl,uh'lﬂ)

_ —l—Kach,I,,h“"h““ .
36

Noting that Kab,zfeIm, Kaﬂ:—j-nl,m, we have the following theorem.

THEOREM 10. The conditional probability of u* given the ancillary
statistic v* 1s expanded as

(3.38) p(@*; o, 7%) = (%3 ) {145 7
+O(N-) .

SN (Hab.h“h‘—l“imhah~*)+-1ﬁR
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This relation is obtained in Amari [5] up to the term of order N~"2
The above theorem gives the term of order N~!. The above relation
is useful for studying problems of conditional inference.

We finally give the Shannon mutual information I(U: 17) between
a first-order efficient estimator % and the related ancillary statistic .
This is the same as the mutual information between #* and #* except
for the term of o(N-!). The Shannon mutual information I(I)' V) s
given by

(3.34) IU: V)=E [log p(gff’;j;(%f?)uo) ]

By expanding (3.34) by the use of (3.31) and taking account of (3.32),
we have

THEOREM 11.

(3'35) I((\] : IA,) = _Zlﬁ (Ie{ab::Ie{cd;lgMgbdg'u1 + ﬁ;zaln{lvﬂbg”gl”gab) .

APPENDICES

1. Tensorial Hermite polynomials with melric tensor g,,

The tensorial polynomials are shown in Grad [13] in the orthogonal
coordinate system, where the metric g,, reduces to the unit matrix.
Let us consider a general coordinate system in which the metric is
given by g.;, and define the tensorial Hermite polynomials in this co-
ordinate system.

By operating the derivative D*=g**(d/ow’) successively to the nor-
mal distribution with the covariance g

o(w)=(det |g.,))"*2r) ™" exp (— L g

we have
Drp(w)=—wrp(w) ,
Dtp(w) =(ww —g**)p(w) ,
Drrp(w)=(3g " Pw” —ww w')p(w) ,

and so on, where D% %=D=...D%, The results will be, in general,
polynomials in w multiplied by ¢(w). We define the tensorial Hermite
polynomial A™r*«(w) by the identity

(A.1.1) (=)D rp(w)=hr"""s(w)p(w) .
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Evidently k= =(w) is of degree k in w and the coefficient of the high-
est degree term w"-.-w is unity. By convention h’(w)=1.
We can calculate ¢(w—t) in the following two ways,

o(w—t)=(det |g.4)"*(2r) " exp ( — % 9 s W W+ g, 5t Wk — % g,,ﬂt"t">
=¢(w) exp (g,pt“wﬁ —%yaﬁt“t”>
and by Taylor’s theorem
(w—t)=3 (=1, Do mrgp(w) = 3 ayreeay R e w)g(w)
= I T i k! ’

where ¢,...., is the covariant version of tu«x=tut%...t%, indices being
raised or lowered by the use of g*f or g,,. Consequently, the Hermite
polynomial her*(w) is given by the coefficient of t,... /k! in exp (9.,
t*w? —(1/2)g,,t°t?).

The first six polynomials are

=1, h=w, h*=ww—g”, hFT=www—3g“w’,

ket = wewPww’ —6g“fww® + 39?9,

hrxﬁﬁ::wawﬂwrwﬂwc_10g(nﬁwrw6wt)+15g(aﬁgrdwt) ,

hetre = P wrww ' — 159 Pw wrw w® + 45g“F g w w” — 15g*g7 g .
Differentiating the identity

exp <gaﬂtﬂwﬂ —-;—gaﬂtntﬁ> = i t"ll;:_"'%h"l“'"k(w)

with respect to w and identifying the coefficients in ¢,,....,, we have

(A.1.2) Déher e e(w) =kgPh e (w) .

From this, we can derive the following important orthogonal property
w klgtalbil - gube if k=1,

(A.1.3) S_m h"l"'“k(w)h""l"""l(w)go(w)dw={

) otherwise ,

where the symmetrization ( ) is taken for the indices «,-:-, a; only.
In fact, integrating by parts, we have

Sw hal"‘akhpl"'ﬂlgod’ll):(_l)l Soo

=(-1y~|

hal...,kDpl...plsodw

£

Dplhal...akDpz...pl‘pdw
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=J(—1)" r gePrmherao Db bpdaw .
Continuing the integration by parts, we find that the above integration
is zero when k is not equal to ! and is klg‘'#i g% when k=l.

When w* consists of w*- and v*- parts, a=1,.---, m, k=m+1,---, n,
and when the orthogonality g,.=0 holds between them, we have

()= (det g, (det |9.1)"(@r) ™ exp (— L guww — 2 g.v)

=p(u)e(v) .
Hence, from
D s sig(w) = DA org(w) D17 (0)
we have
Rt sk gp) = R s (u)her +17 ()

Furthermore, the expression c,,.....h"*«(w) can be decomposed into
Lk
rgo < r )cal....lr,m...,kh“l"'“r(u)h‘rﬂ‘“‘k(v) .

Hence, using (A.1.3), we have a useful relation

(A.1.4) S‘” Copoeah W)WV =y. ..o h ()

which is used to derive (3.15).

2. Calculations of moments or cumulants of w*
The coefficients ¢*x in (3.1) are expressed as

e=p, 260 = pb — gt | B6c°r = po —3p‘egtr
2Ac7Frd = e Gglat i Sglabgi>

1204 = pyobrse — 10g<eh o + 15 uCogPrge

TR0 = pebrost — 1 Bgles s> 45 glasgr e — 15glabgrige® |

Since we know that p*=0o(N!), c*=0O(N~") and the cumulant k" of
w* is of order N-*-2/ (k=2), it is useful to express the ¢ in terms
of the cumulants. Taking the above evaluations of the orders into
account, we have the following simple expressions by neglecting the
terms of order higher than N~

ZCﬂﬁ — K“ﬂ __gaﬁ , 3c¢FT= K“ﬁ)’ y 246"57‘ — Kﬂﬁﬂ ,
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1207 = gotrse | T20¢oE =10k O

For the expressions in terms of the cumulants, see Kendall [14] in
the one-dimensional case.
In order to calculate the moments or cumulants of #*, it is better

to express @w* by the Hermite polynomials in # The expression is
derived by the use of (2.29) and (2.40) as

(A.2.1) w*“=(U«f+iVﬂ>@+

N W"”h”(i)—}——llv—X"”"hUk(ﬁ)

1
VN
where

Ut=g"Bj, V*=L1Cil"Bj, W*=—_C"BiB,

Xatik— %(Cfac’rﬁl _ %_ Dﬁraa) BgB{B,;‘ .

From (A.2.1), we can calculate the moments of #* necessary to obtain
3.7).

3. Proof of Theorem 7
From (3.7), we have

(A.3.1) p('ﬂ)* ’ u,) = 50[77)* 5 gaﬁ(ue)] {1 + _6—}—_-Kuﬁ,(u,)h“ﬁ’(’l])*)

1 1
shet K., b
tIN AN Coh®+5in 24N "

+ 72N KnﬁrthhaﬁrhC} +O(N 3/2)

It is necessary to integrate (A.3.1) with respect to #*. This is done
by the following calculations, where we use g,.(u,)=1tQ.e*/VN :

(8.3.2) " ol*; g w)ldo*

=%} Gas(t)] {1+ QWng“eCedh“} FON-)

(8.33) {7 ol@*; g (u)IK.p (e (@)
= 0l0%; 0us100] Ko 0 () + 5 (2

— B )Qug e} + O(NY)
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where the second term arises from the integral of K,,.h**, and those
derived from K,.h** and K,,h** become of order N~

(A.3.4) Sl H@H)C2h*di
= p(W¥)C2h™ + O(N-72)
= (1) {(C2+ 2Quar Quos— 2H ) %ge + HA} P+ O(N )

because of (2.34), where

o m

Ch= charefbgcegd, +2H,. H,.,9"9", =H . H, /Aubg‘”g“ .

(A.3.5) Sc_om So(ﬁ)*)Kapﬁhaprdd’b*
— i) K oght - O(N )
= 30(11*) {Kabcd + 12(2‘,'”(ch11 — ﬁ.cdz)gu} ha.bcd + O(N._l/z) ,

where

Kabcd =Oabed ™ 4Dabcd + 12(1—;@ + fabe)chdgEf .
(A.3.6) Sm PWHVK 15, K BP0 = p(0*) K oK o ™! + O(N )

Summarizing (A.3.2)-(A.3.6), we have the Edgeworth expansion given
by (3.25).
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