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Introduction

This paper is concerned with the following single server queueing
system. Customers arrive at the system at epochs ¢, ¢, t,--+ (4,=0;
1, <t,<t,<---) where the interarrival times T,=t,—t,_, are independent
identically distributed random variables (i.i.d. r.v.’s) having distribu-
tion function (d.f.) A(x) with a finite mean «. The service require-
ments S,, S, S,,--- of the successive arriving customers are i.i.d. r.v.’s
having d.f. B(x) with a finite mean 8. The r.v.’s T, T},--- and S,, S,,

- are stochastically independent. We assume B/a<1. In this paper
it is shown that when the queue discipline is last-come-first-served with
preemption the stationary distribution of the number of customers in
the system immediately before (after) an arrival (departure) epoch is
geometric. Also it is shown that the remaining service requirements
of customers immediately before (after) an arrival (departure) epoch
are i.i.d. r.v.’s, and that the distribution of the time between a de-
parture and the next arrival epochs is independent of the state of the
system. Our approach method is based on Kelly [2].

Preliminaries

We cite below some preliminary results which are necessary for
the study of the queueing system described in preceding section.

Consider a random walk defined by U,,,=U,+7Y, (n=0,1,2,-- ),
where Y,=S,—T,,; (n=0,1,2,--.). The points at which the random
walk first jumps above its latest maximum value will be called ‘ascend-
ing ladder indices’. Since g/a<1, it follows that U,— —oco as m— oo
and consequently the total number K of ascending ladder indices is a
finite r.v. with probability one. It follows (see Kleinrock [3]) that

(1) Pr(K=n)=(1—0)s" (r=0,1,2,.-+),
where 1—6¢=Pr(U,<U,; n=1, 2,---). Moreover given that K=k and
that the successive ladder indices are the points n,, n,,-- -, n,, we put
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L=U, -0,

-1

t=1,2,---, k; n,=0).

It is well-known that I, L,- - -, I, are i.i.d. r.v.’s having d.f.

(2) F@)=Pr(Iss) (@20).
Define

(3)  F@=| Fu@—wdFu) @20 n=12--),

(4)  F@=1 (@z0),

and

(5)  C@=Prx.=o)=| Be+y)-ddw) (-eo<a<eo).
The following equations, then, were derived by Fakinos [1]:

(6) PrU,gxz; n=1,2,---|0,=0)= 2(1 a)o"F(x) for any =0,

(1) oF@=Ce+Fo || Fl-ura—a)-dRe)-dcm®,

where F(x)=1—F(x) and C(x)=1—C(x). From the definition of F(x)
it follows that

(8) | Fu—v—y)-dow)=|"" dow)=Pr (V.5 -)
={"dw+v-aBo) @20,
where A(x)=1—A(x). On the basis of the random walk, we define

D(x) for =0 as follows:

(9) D@)=Pr({U,g—=x; n=1,2,.--|U,=0, K=0)
_PrlU,=—z; n=1,2,---|U,=0)
Pr (K=0)

S" Pr(U,<—o; n=2,3,--|Y=u, Uy=0)-dC(w)

l—0
(by (1))

* A possible misunderstanding was involved in the derivation of this result of Fakinos
[1], i.e. Equation (11) of his paper, although the result is true. The corrected result of
Equation (11) of Fakinos’s paper becomes as follows:

Pr(K=1; L>z|Yo=u Uo=0)=n§]1(1—a)a" Sa"‘ F(—u+z—y)-dFni(y) (4<0).
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S' Pr(U.<—z—u; n=1,2,---|Uy=0)-dC(w)
l1—0o

o | F(-z—w-dow) Oy 6),

where F,(y)=0 (n=0,1,2,--.) for y<0.

Results

Let (D) be the set of arrival (departure) epochs after time ¢,
(=0). In this paper the system will be observed exclusively at epochs
ecE=AUD. At epoch ec& let p,=+1 or —1 according as ec A or
ecd. If ee A(D) let »* be the number of customers in the queue im-
mediately before (after) epoch e. If a customer arrives at epoch a € 4,
he takes up position y,+1 in the queue. The server devotes his at-
tention to the last arrival and so if a customer leaves the queue at
epoch d e 9 he leaves from position v,+1. Let y; be the remaining
service requirement at epoch e of the customer occupying position j
in the queue, for j5=1,2,.-.,v,. If a customer service is interrupted
because of the arrival of another customer, his remaining service re-
quirement remains constant until the server can attend to him again.
Let », be the time between an epoch e and the next arrival epoch.
Where its ommision can cause no confusion the subscript e¢ will be
dropped. It is clear that the process (o, v, y1, %20+ *» %.» 7) Observed at
successive epochs e € & is a Markov process.

THEOREM. Stationary distributions for (o=-+1, v, %1, Yz * s Xor 73)
and (o=—1, v, 1, %2»* * *» %u» 1) Observed at successive epochs e € £ are

(10) Pr(p:+11 V=mn, 11>x17 Zz>x27"', Xn>mm 7]>y)
1 — n
IEPnA(y) T[ F(xj) ’
j=1
and

(11) PI'(P=—‘1, V=", x1>w1y X2>w2,"'! Xn>xn9 77>y)
=2 PDW I Fz) .
Jj=1

where P,=(1—o0)dc".

PROOF. We show that if at the first epoch in & (o, v, 11y 220"
%.» ) has distribution (10) or (11), then at every subsequent epoch in &
it will have the same distributions, i.e. the following equations hold :
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1,5, 1 -
12) iPoA(?/)—EPo Pr(w,>y),

—_ n — n—1 _
a3)  ZPAW) [T Fa)=4 Pt T F@) Pr &>+, @>1)

LR Fl@) Pr@>g+a, 9>9)
for n=1,2,..., and
a4 2 P.DW) T F@)=1 P, 11 Fla,) Pr (@,>%+)
+ 2 P T F@) Pr(5>5+1)
for n=0,1,2,--., where w; (t=1, 2), %, ¥, Z are independent r.v.’s with

d.f.’s A(w), F(x), D(y), B(z) respectively. The validity of Equation (12)
is easily checked noting that the event {p=+1, v=0, >y} will occur
at an epoch e iff at the preceding epoch the event {p=—1, v=0} oc-
cured and the time between the next arrival and e is >y. Equation
(13) is obtained from the consideration that the event {p=+1, v=n}
can occur at an epoch only if at the preceding epoch either of the
events {p=+1, v=n—1} or {p=—1, v=n} occured. The validity is
checked as follows :

[the right-hand side of (13)]
=2 P [ F@)AW) || Ba.tv)-dAw)
2 j=1 0

+2 P, F@)Aw) || F@+v)-dDe)

=2 PiA@) T] F)|C@+o | Flan+o)

x { pap g C(u)} dFm(—u——v)]

=1 P A Tl Fe)|Cen+ 3 o | dow)

x S; F(w,+v)-dFo(—u—1)

—

=1 P, A@) ] F)|C)+ 3 o | dc)

X S;u F(—u—v+z,) -dF,,,('v)]

=% ,,_.A(y>jrr:F(x,->aF'(x,.) (by (7))
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=-;-P,,Fa(y) p Fa),

where B(x)=1—B(x). Equation (14) reflects the fact that the event
{p=—1, v=n} must be preceded by one of the events {p=+1, v=n}
or {p=—1, v=n+1}. The validity is checked as follows:

[the right-hand side of (14)]
:.;?P,, ,”, F(x,) S‘” A(y+v)-dB@)

+ 2P JT F@) | Diy+v)-dF ()

I

%p,, 1T F(x,)[g"_w F(—u—y)-dC(u)

j=1
o " aF@ {5 o[ Fu(—u—v—1)-d0)} ]
(by ®)

Il

) F)| | F—u—v)-dC)
paps So_wdC(u){Sj Fm(—u—v—y)-dF(v)H
T F@)| | F—u—y)-dow)
+ 50 Fu(—u—y-dow)]
P (y)TTF(x,)

The process (o, v, X1 Xz»-* s % 7) Observed at successive epochs
ec & is a periodic process since Pr{p=-+1(—1), v=n at the mth epoch
of ec &|p=+1(—1), v=n at the 0th epoch of e € £}=0 for any » and
any m=1 (mod.2). Hence, although expression (10) or (11) is a sta-
tionary distribution it is not in general a limiting distribution. The
process (p, ¥, Y1 Xa»***» % 7) Observed at successive epochs a €] or
d € 9, however, is an aperiodic process (Kelly [2]). Indeed, we can ob-
tain the following corollaries from the above theorem (for the proofs,
see Kelly [2]):

COROLLARY 1. The unique stationary distribution for (v, xi, Y-+,
x.) observed at successive epochs a € A 18

(15) Pr(v=n, 1:>8 5>, 1o>5) =Py 1T F@) -

(This result has been obtained by Fakinos [1].)
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COROLLARY 2. The unique stationary distribution for (v, yi, xu -+,
% 1) observed at successive epochs d € 9 1is

(16) Pr(l":n, x1>x1y Xz>wz,’ ) 2n>xm 7]>y)=Pn5(y);[j; F(xj) .

The distribution of the time between a departure and the mext arrival
epochs 1is independent of the state of the system.

Remarks. An idle time distribution in the GI/G/1 queue with first-
come-first-served is identical with that in the queue considered in this

paper. Hence D(x) defined by (9) is an expression of the idle time d.f.
in the GI/G/1 queue with first-come-first-served.
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