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Summary

Consider mutually independent inputs Xj,---, X, on = different
occasions into a dam or storage facility. The total input is Y=X,+
---+X,. This sum is a basic quantity in many types of stochastic
process problems. The distribution of Y and other aspects connected
with Y are studied by different authors when the inputs are independ-
ently and identically distributed exponential or gamma random variables.
In this article explicit exact expressions for the density of Y are given
when Xi,-.., X, are independent gamma distributed variables with dif-
ferent parameters. The exact density is written as a finite sum, in
terms of zonal polynomials and in terms of confluent hypergeometric

functions. Approximations when 7 is large and asymptotic results are
also given.

1. Introduction

Consider the daily, weekly or monthly flow, in excess of certain
constant amount, of water into a dam. These excesses may be caused
by rains during those periods. Let X; be the excess flow at the ith
occasion. After m such occasions the total flow is Y=X4. - -+X,.
The usual assumptions are that X,,--., X, are mutually independent
and identically distributed as exponential or gamma variates. This
problem has been studied by many authors, see for example Prabhu
(41, p. 209). But a more realistic situation is that the expected flows
at these m occasions are different and hence X,--., X, are not identi-
cally distributed.

Consider the problem of grain storage. Let the yield in the nth
year be X,. Let a portion of the yield every year be stored. Denot-
ing the total storage in the nth year by Z, let
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Zp=a(Z,+X,), n=1,2,..-, Z,=0, 0<a<l.
Then
Zn=aX,,_1+a2X,,_z+ e -I—a"Xo .

This problem has been studied by many authors when X, X,,--- are
independently and identically distributed exponential or gamma variates,
see for example Prabhu ([4], p. 179). But a more realistic situation is
that

Zn:an—l n—1+an—2 n—2+"'+a0X0 ’ 0<(¥,<1, /L:Oy 1!"'

where X, X,,--- are independent variables but not necessarily identi-
cally distributed.

In many types of queueing problems one is interested in the total
waiting time Z=X,+ ...+ X, where the component waiting times X,
X,,- -+ may be mutually independent exponential or Erlangan type ran-
dom variables. Again the case when the components are identically
distributed has been studied in detail, see for example Prabhu ([4], pp.
150-172). Such sums of mutually independent random variables occur
as a basic quantity in the discussions of many aspects of stochastic
processes, see for example Cox and Miller [2]. In problems such as
storage, queues, waiting times, the assumption that X, is gamma dis-
tributed is a realistic one.

In this article we consider a linear combination of the type

Y=0, X+ - +0,X,

where X,---, X, are independent real gamma variates with different
parameters. For convenience we assume that a,>0, 1=1,--.,n. How-
ever the general procedure remains the same even if some of the a,’s
are negative but with appropriate modifications of the conditions when-
ever expansions and inversions are involved. Since the variables can
be easily rescaled, without loss of generality, we may consider only the
case when

(1) Y=X+-+X,
where Xj,---, X, are independent real gamma variates with X, having
the density,

(2) f@)y=zle*%[B5il(a)] , >0, &,>0, §,>0,

and f(x)=0 elsewhere. The aim of this article is to work out the
exact density of Y in explicit and computable forms so that exact prob-
abilities of the type Pr{Y=d} can be computed for every d once the
parameters a;, B;, 1=1,---,n are known. In this paper it is shown
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that the density can be written in terms of a confluent hypergeometric
function of many variables when the a,’s are general, in terms of zonal
polynomials when the a;’s are equal and as a finite sum of gamma den-
sities when the «,’s are integers. The asymptotic case when n— oo is
also discussed.

2. Exact density when the parameters are integers

Consider the Y in (1) when X, has the density in (2) where ¢, -,
a, are integers. The B,’s are not restricted to be integers. Since the
moment generating functions My (f) of X,, 1=1,---,m and My() of Y
exist we will work with the moment generating functions. It is known
that My (()=(1—8)" and due to independence one has

(3) My®)=T1 1 —B) .

The density of Y is available by inverting this moment generating
function. We will work out this by using a general partial fraction
technique. If some of the ,’s are equal then the corresponding factors
can be combined. Hence in the following discussion we will assume
that all the ;s are distinct and nonzero. Since the as are integers
one can put M,(t) as a finite sum by partial fraction technique. That is,

My()=TT (=)™ JT ¢ —1/8)

= []ﬁ—:l (_ﬁj)_"f] él ;}:1 b (t—1/8,)""

where the coefficients b,, are to be determined. But the density cor-
responding to the moment generating function (1—8,£)™" is y e v/%/
[8;(r)] for y>0 and zero elsewhere. Hence the density of Y, denoted
by g(y), is as follows.

(4) o@=[T1 (—8)7] £ 3 (~17b,5~"e5](r—1)

for y>0 and g(y¥)=0 elsewhere. Hence probabilities of the type Pr {y=d}
can be evaluated by using an incomplete gamma table. The coefficients
b,, will be evaluated by using the following technique. Since a, is as-
sumed to be an integer by using the well known results for repeated
factors we can write

bye=lim {—L B e~y T e~ 17807} -

/85 \ (@;—7)] Ot

Let
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40=]T gy and  A()=-2log 4(®)=—3 la/t—1/8)] -
i#J i#J

Then
O At)=A@) () -
ot

Hence

aﬂj"T aaj—r'-l

4A(t)= A@)A(t
ataj—r ( ) ataj_,«._l [ ( ) ( )]
:aj;é_l (()tj":r—1>A(aj—r—1-jl)A(jl)
71=0 J1

where for example A® and 4 denote the sth partial derivatives with
respect to ¢ of A(t) and 4(t) respectively with A©=A(t) and 4 =4(t)

and for example (73’>=m!/[v!(m—v)l], 0!=1. Now rewriting 49 and

continuing the process and then evaluating all the expressions at t=
1/3; one gets the following result.

(5) b= { jE (dj_?‘_1>A§aj—T—l_fl) ’i <jl._1>A(jj1—l—j2). . -}A,-/(aj——’r)!

71=0 1 j=0 \ Jo

where

4,=11(1/8,~1/g)y  and

AP=(=1)"1s! 3 a(1/g,—1/8) .

i#J

For example when «;=38, b;=4,, b,=A;4; and b;=[A9+(4,)14,/2.
This completes the derivation of the density.

3. Exact density when the parameters are equal

When B,=p8;=---=4, the problem is a trivial one and the density
of Y is obviously a gamma density. Here we consider the case a,=
cor=a,=a, B;>0, j=1,---,n and not all 8,’s equal. In this case the
moment generating function of Y can be written as

My(t)=TT (1—4,1) " =|I—tBI "

where B is a symmetric positive definite matrix with 8,,---, 8, being
its eigenvalues, I is an identity matrix of order » and |I—tB| denotes
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the determinant of I—¢B. For any 3>0 we may write

(6)  |I—tBI*=|I-Bja+B1—at)o|"
=|B|-3"(1— ot)~"|[— (I— 3 B~1)/(1L—3t)|"*

=T o5 o & 3 Qs omya—atyee

where K=(k,, ks, - -, k,) denotes a partition of the nonnegative integer
k into not more than = parts k=k,>.--=k,=0, k=k+---+k, Cxg
denotes the zonal polynomial of order k and

@x=TT (a—(—1)2), .  K=(ki--, k)

where for example (z),=x(x+1)---(x+m—1), (x),=1. The expansion
in (6) is valid when a norm of the matrix (I—4B')/(1—dt) is less than
unity. The absolute value of the largest eigenvalue being less than
unity is a sufficient condition. This condition can always be met by
adjusting the value of the arbitrary quantity é and choosing t. For
example 3<B;, i=1,---,n and t<min (1/8,, -+, 1/8,) is a sufficient con-
dition. Also the convergence of the series can be made faster by ad-
justing 8. For more details about zonal polynomials see Constantine
[1]. Thus the density function of Y is the following.

(1) gy)= [j]Tl /3;«] e 5 S (—‘I’?'KCK(I— 3Btyyre+k-1g=vh|[ 31+ [(na 4 )]

yna—le-—y/a

=[11677] 5} 51 (@aCalI— 3B\ (na),]

I'(na) i=o
for y>0 and ¢g(y)=0 elsewhere.
In order to compute probabilities of the type Pr{y=d} for a given
d one needs the zonal polynomials for all values of k. When k is large
explicit expressions for the zonal polynomials are not available. They
are available for small values of k. By using these available zonal
polynomials and by adjusting the value of 3 to make the convergence
of the series faster one can compute fairly accurate values of the re-
quired probabilities by using (7) and the incomplete gamma tables.

4. Exact density in the general case

In the general case we consider general values of a,’s and 8,’s, a;
>0, 8,>0, g=1,---,n. One can rewrite the factors as follows.

(1 —Bat) 2=(1—Bt) "B/ Bo)s[L — (1 — B/ Bo) (1 — Bit)] ™
=(1—Bty(8g0 3 B (1— gy LBty
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for [(1—4,/B:)/(1—Bit)|<1. A sufficient condition for the expansion is
that t<min (1/8,, 1/8,) and 8,<pB;. Rewriting the factors (A—Bt) ™, i=
2,3,---,m one has

My(®)=(1— Bt g8 - -8 -+ 3 {(@y, (@),
L (LB - (LBl (L= B) " sl 1)

for |[(1—8,/8)/(1—Bit)|<1, i=2,---,n, where y=aj+ay+---+a,, r=r+
-+++7,. A sufficient condition is that g,<g;, ©=2,---,n and t<min
(1/B,+ -+, 1/B,). But the density corresponding to the factor (1—g.t)=4+"
is y* e vA[fi*" I'(y+7)]. Term by term inversion is possible in this
case and the density is the following.

(8)  gw=[fl o] e 3.0 5 (@), (@),

Tn

(/B —=1/B)y] - - [(1/Bi—1/B )yl s/[rs! - - =7 M(r),}

for y>0 and g(y)=0 elsewhere. But the multiple series appearing in
(8) is a confluent hypergeometric function of n—1 variables, namly ¢,.
Hence

(9)  o@=[[T 65T 0] v e mpsan -, 0 s WUB—1/8,
"'1(1/181"'1/181;)?/) ’ y>0.

Properties of ¢, are already available and this function is studied in
detail in the literature on Special Functions. For a definition of ¢, see
Mathai and Saxena ([3], p. 163).

In order to make the convergence of ¢, faster one can use the
following procedure.

Pr {y=d} =Pr {oy=dd} for >0.

The density of 9Y is equivalent to the density in (9) with B, replaced
by 88, Now by choosing 3 one can make the arguments of ¢, smaller
so that the convergence of ¢, is made faster. Again exact probabilities
of the type Pr{y=d} can be evaluated from (8) by using incomplete
gamma tables.

5. Approximations

Gamma type approximations to the density of Y are available by
taking the first few terms of the series representation given in (8).
Here we will consider a normal approximation. Taking logarithms of
the moment generating function and expanding in powers of t one has
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the following.
log, My(t)=—3 o, log, (1—g,0)= 3} a,[,t-+(8,1)/2+ -]

for |p,t|<1, j=1,---,n. The coefficient of ¢’/r! in this expansion is the
rth cumulant K, or the rth semi-invariant of Y. But it is known that
K, is the mean value and K, is the variance of Y. Suppose that n is

large such that ﬁ a8,/ —0 as n— oo for r=3 and O<§‘, a,(B;/n'2)}
i=1 i=1

<oo. Then the rth cumulant of the random variable Y/n'? goes to
zero as n—oo for r=3. Hence we have the following result.

Z= [(Y— Jz=1 a,.ﬁ,.> /nm} / [E a,.p;/n] Y {Y—SJ‘__, a,.ﬂ,} / [; a,,9§]

L N(0,1) as n— oo when 0< 3] a,(3,/m")<oco and
j=1

1/2

é a,(B,/n'*) —0 as n—oo for r=3.
=1
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