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Summary

We consider pth order autoregressive time series where the shocks
need not be normal. By employing the concept of contiguity, we ob-
tain the asymptotic power for tests of hypothesis concerning the auto-
regressive parameters. Our approach allows consideration of the double
exponential and other thicker-tailed distributions for the shocks. We
derive a new result in the contiguity framework that leads directly to
an expression for the Pitman efficiencies of tests as well as estimators.

The numerical values of the efficiencies suggest a lack of robust-
ness for the normal theory least squares estimators when the shock
distribution is thick tailed or an outlier prone mixed normal. An im-
portant alternative test statistic is proposed that competes with the
normal theory tests.

1. Introduction
We consider the pth order autoregressive (AR (p)) model
1.1 X—-0X, —---—0,X,_,=FE,, t=1,2,.--

where the errors E,’s are independent and identically distributed (iid)
random variables, E, being independent of X, ., k=1, with E(&,)=0
and Var(E,)=¢% and we examine the performance of commonly em-
ployed tests and estimators under various classes of error distributions.
By employing contiguity techniques we derive the limiting distributions
of statistics under local alternatives. These lead directly to expressions
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78-C-0722 and by the Army Research Office.
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for both Pitman efficiencies of tests and asymptotic efficiencies of point
estimators. With the exception of the very interesting and quite gen-
eral work of Gastwirth and Rubin [4], [5] and the recent work of
Martin [10] and Denby and Martin [3] little attention has been given
to distributional robustness in time series models.

Motivated by the typical nonparametric approach we consider
classes of thick tailed distributions as alternatives to normal shocks.
Besides the double exponential, whose treatment requires our weak reg-
ularity conditions, we consider t-distributions as well as mixtures of
normals as special cases in our numerical calculations. The latter model
reflects the possibility of outliers. We avoid the Cauchy and other in-
finite variance distributions because of the well known results on the
inefficiency of least squares estimators (see Kanter and Steiger [9]).
Generally our numerical results in Section 4 establish low asymptotic
efficiencies for normal theory tests and estimators when the error dis-
tributions are of the thick tailed type.

When the E’s are distributed as (28)"!exp[—|z|/8], the normal
theory tests and estimators are shown to have efficiency 1/2. The test
statistic for Hy: 6,=6,,---, ,=6,, depends on a scaled version of

(1.2) n~ z=§+1 sign (X,— 0,y X, ;—--+ =00 X ) (Xityr ooy Xip)

Previously, the normal theory MLE’s (Least Squares Estimators) were
the only commonly employed statistics with the property that their
asymptotic distribution depended only on the parameters 6,,---, 6, and
not on the form of the distribution. The double exponential statistic
(1.2) also has this property. Moreover, this lack of dependence on the
form of the error distribution can be extended to our whole class of
test statistics which are optimal under a particular error distribution,
provided the error distribution is sufficiently smooth. These modified
statistics retain the optimal properties of the original (unmodified) sta-
tistics and should prove to be interesting competitors to least squares
estimators when the error distributions have thicker tails than the
normal.

In the next section we state our assumptions and establish the
quadratic mean (q.m.) differentiability of certain random functions.
In Section 3 we prove the main contiguity results and Section 4 con-
tains the applications.

2. Assumptions and the condition of q.m. differentiability

Let X,, t=1 be an AR (p) process so that X,—60'X(¢, p)=E,, where
9'=(0y,---,0,), E, is described in (1.1) and
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2.1) Xt p)=X,r, -+, X, p<t.

Let f denote the density of each E, and ¢(X,,---, X,; 6) the joint
density of X,,---, X, when the parameter 6 obtains. Then the joint

density of Xj,--+, X, E,uy,--+, E, is g9(X;,- -+, X,; 0) t]_Tpf(E,,H). Trans-
j=1

forming from (X,,---, X,, E,.1,+++, E,) to (X;,---, X)) and noting that

the Jacobian is unity, we obtain ¢(X,,---, X,; 0)=9(X;,---, X,; 6) tﬁ"

j=1

f(X,,—0'X(p+7, p)). It follows that, under [g(x,,- -, ,; 6,) X f(x)], the
logarithm of the likelihood ratio is

_ Xy, X33 0) | P10 S (Epry—(0—0) X (044, D))
2.2) A8, 8)=log 9K 23 0) | SV jog SEnss
! g(Xl’ ct Xp; 00) Jj=1 f(Ep-i-j)

where, of course, E,,,=X,,,—0/X(p+7J, p), when 6, obtains, in accord-
ance with (1.1).
Consider the parametric family of probability measures {f(x+£),

&€ R} and set
(2.3) o(@, §)=[f(x—8&)/f(x)]"*=s(x—&)/s(x)

where s(z)=[f(x)]"?. For the rest of the paper we make the following
assumptions.

AssUMPTIONS. (Al) Considered as a stochastic process in 6, g(X,,
-+, X,; 0) is continuous in probability.
(A2) The random function p(x, &) defined in (2.3) is differentiable in

quadratic mean (q.m.) [f] with respect to & at £=0.
(A3) The roots of 1—0,B—6,B*—--.-—0,B*=0 lie outside the unit cir-

cle, so that (see Box and Jenkins [2])
(2.4) X =3 ey -

Remark 2.1. Assumption (A3) implies that the process X,, t=1 is
ergodic (cf. Hannan [7], p. 204 where {|¢.]} has a geometric bound
by (A3)).

THEOREM 2.1. Suppose that assumption (A2) holds and let p(X) de-
note the q.m. derivative. Then the random function ¢,8, 0*) defined by

(2.5) 8,0, 6¥)=p(E,,;, (0*—0)X(p+7, D))

18 differentiable in g.m. [f(x)Xg(xy,- -, x,; 0)] with respect to 6* at 6*
=0 with q.m. derivative

(2.6) $,0)=X(0+7, D)o(E,,) -
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Proor. By assumption E,, f[h’gil(ﬂ)]2=E,[h’X(p+1, P E [o(X)])*<
co. Thus, by Vitali’s theorem we have to show that

& B0, 0+ 20— 1P— E,[5(X)] B, X(p+1, D)

According to a well known theorem (H4jek and Sidak [6], p. 64) the
above follows from

71; E;x /10, 0+ 2h) =11 <E,[p(X)]* E [’ X (p+1, p)I
which, in turn, is implied by
S Elo(Ey 1 26) 1116} S & B (0T

where we set é=h'X(p+1, p). But the last relation follows by a se-
quence of routine arguments.

COROLLARY 2.1. ¢“%[¢%(8, 0+t 2h)—1]—2h'$,(0) as t— oo in the first
mean [f(x)Xg(@y,- -+, x,; 0)].

3. The property of contiguity and some consequences

Let 6 denote the set of values of 6 specified by assumption (A3).
For each €6 let P,, denote the probability measure describing the
behavior of X,-.-, X,, X,,,,-++, X,, t>p. The dependence of P,, on

the density of the error shocks f will not be indicated when there is
no danger of confusion. Let

3.1) 0,=0+ht™"?, h.—heR?.

In this section we establish the contiguity of the sequences {P,,}, {P.,}
and explore some consequences that are relevant for the applications
of Section 4. The property of contiguity follows from a sequence of
lemmas whose proofs are omitted since they are mainly based on the
quadratic mean differentiability of the random functions ¢,(4, 6%), j=1
(which has been established in Theorem 2.1), and standard arguments
using the stationarity and ergodicity of the process X,, t=1 (cf. Roussas
[11], p. 54-63). .

Let I'y(6), I'(6) be the covariance matrix of 2X(p-+1, p), 2¢,(6) re-
spectively and set p,=p(¥,,,). Then

(3-2) I'(0)=Tx(0) E,[o] .

For notational convenience set ¢,,(0)=¢,(0, 0,), 4,(0)=4,6, 6,), and define
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(3.3) 4(0)=2t"~ ]z:', 6,(6) -
LEMMA 3.1. max {|6,(0)—1]; 1=<j=t}—0, in P -probability.
LEMMA 3.2. jﬁl 1ogqsg,.w)—z{jz",:1 [¢,,(e)—1]—%jﬁ:=l[¢,,(o)—1]2}—>0 n
P, ~probability.
LEMMA 3.3. Jz [6,,(6)— 11— E[W'$.(0) in P,-probability.

Recalling the form of ¢,,(f) and using the fact that E,,, is inde-
pendent of X,,---, X,,,;,, we have E,(¢},(6)| A,_;)=1. Here J,=d(X],
<+, Xpin)y #20. The last relation, Corollary 2.1 and standard proper-
ties of conditional expectation imply

LEMMA 3.4. E(¢,(6)|A,)=0, a.s. [P)].

Finally, it may be shown that

LEMMA 3.5. jzl (,(8)—1)— 12 21 h';zéj(ﬁ)ﬂ—-—;— E[Wé(0)] in P.,
probability.

THEOREM 3.1. A,(ﬂ)—h’A,(ﬂ)—»—%h’F(ﬂ)h, in P, ,-probability.

Proor. The result follows by a straightforward combination of
assumption (Al), and Lemmas 3.2, 3.3, 3.5.

THEOREM 3.2. _L[4,(0)|P,,]=> N(0, I'(6)).

Proor. Claim follows from Lemma 3.4 and the central limit the-
orem for martingales.

An implication of Theorems 3.1, 3.2 is
THEOREM 3.3. I[A,(0)|P,,,,]=>N<—_;_h'r(a)h, h'r(o)h).

COROLLARY 3.1. The sequences Qf probability measures {P..}, {P,,,}
are contiguous.

As a consequence of Corollary 3.1 and Theorems 3.1-3.3 we have
THEOREM 3.4. (i) A,(ﬂ)—h’A,(ﬁ)—»-—%h’I‘(())h, i P, ,-probability.

(i) LI440)|P.,]= N(% W (6)h, h'r(o)h>.
(iii) L[4.0)|P..]= N(I'(6)h, I'(6)).
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In view of the applications of next section we need some further
results. To formulate them, let f, f® be two different densities
satisfying the assumptions (Al), (A2), each of which can be thought
as generating the innovations process E,, t=1. Denote by P, P%
the corresponding probability measures and by 4°(6), 42(6), o5, o
etc. the corresponding quantities. Also E® will denote expectation
under f“ while E{® will denote expectation under P, 1=1, 2.

THEOREM 3.5. _C[(A(6), A§‘>(0))’|P,§?]=>N<<g>, D) where p=—
IO and D=(Dy), 4 j=1,2 with Du=E*[GIIWTLO)k, D
E®[p"pP1W' T (2)(0)-1'82}"' EP[pPX(p+1, p)X'(p+k+1, p)oi2] and Dyp=

1
2

EP[(oPy11£2(0)+8 Z‘. EP[p" X (p+1, p)X'(p+Fk+1, p)oii]-
ProOF. By Theorem 3.1, it suffices to show

(3.4) LI 42, 4°)| PE= N ( X ). D)

where 6 is dropped in our notation. A linear combination of the vector

(W 4D, 49) is of the form 2t 3] (ald®+alg’)=2t"2 31Y,, where a,=
j=1 Jj=1

ah and (see (2.6)),

(3.5) Y,;=(o{a,+ pPa:) X(p+7, p) -

Consider the representation X,=3 O E,_., set Xl,t:é 9By X(p+7,
k=0 k=0
p)z(Xz,pH—u Ty Xz,j)', and define

(3.6) Y., ;= (0 +pPa:) Xi(p+ 3, p) -
By a well known theorem (Billingsley [1], p. 184) if we can show that

(3.7) S1u()?<oo,  where v(l)=EP(Y,—Y, )
=0

holds true, then 2t-V2 zt‘, Y, has an asymptotically normal distribution

=1
with variance 4 EPY?+8 3 EPY.Y,,,. But 4 E®Y?=a E@[p®Th Ih+
k=1

E®[p{"Tall'Pa,+2a E®[p"p(]ail$’h, and 8 EPY,Y,.,=8a] EP[p{"X(p+1,
D)X (p+k+1, p)oidila,+8a; EP[oP X (p+1, D) X'(p+k+1, p)ofJa,  which
verifies the covariance matrix of the theorem. It remains to verify
that (3.7) is true. It is easy to see that this amounts to showing that

( > Igbkgb,ml) <oo. But this is shown in Johnson and Bagshaw [8].
l 0

k=l+
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Remark 3.1. If E®(p®)=0, then D,=E®[pPp®W'I'P(#), Dy=
E®[(o")1'$(0), while D, remains the same. This happens, for in-
stance, if f(x)=(27)""? exp (—x%2) and f®(x) is any density with zero
mean value.

Theorem 8.5 and well known properties of contiguous probability}
measures imply

THEOREM 3.6. _L[4°(0)|P{;]= N(Dy, Dy) where Dy, Dy, are defined ;
wn Theorem 3.5.

4, Evaluation of asymptotic efficiencies

I) Pitman efficiency of tests

First we will consider testing hypotheses for AR (1) and then for
AR (p).

a) Consider testing the hypothesis Hy: =6, vs. H;: §+6, in AR(1),
and let f©, f be two candidate densities for generating the innova-
tions process. It is well known that under f the asymptotically most
powerful test for H, is based on 4. From Theorems 3.4, 3.5, 3.6 it
follows that under f® the Pitman efficiency of 4{(6,) with respect to
47(6,) is

- (Dy)*
(4.1) €,2= Dy, E‘”[(i:fl”)z] I'®h

where D,;, D,, are defined in Theorem 3.5. According to Remark 3.1,
if E® (p{®)=0 relation (4.1) simplifies to

_ [E(Z)(bgl)b?))]z
4.2 1,27 : - .
(*2 TR BOIGON

Table 1 contains the Pitman efficiencies of 4 with respect to 4 when
FP(x)=(2r) " exp (—«*2) and f® as indicated. When f®(x)=(1/2) exp
(—|x]), the Pitman efficiency of 4 with respect to 4 for various f®
is given in Table 2.

Remark 4.1. (i) In practice it is not realistic to assume that we
know the variance of the innovations distribution, and hence it is de-
sirable to have a test statistic independent of this unknown parameter.
To obtain this statistic we note that, according to the notation intro-
duced in Theorem 2.1,

(4.3) b(w)=%i>(%_’—; 1)
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Table 1.

Efficiencies of 4" based on the normal error distribution,

FO(@)=(2m)"* exp (—22]2)

true p.d.f.: f®(zx)

efficiency e,:

(28)* exp (—|=|/8)

.5

(v—2)(v+2)*(v+3)
Py +1)(u +4)7

t3, s, ts, t1o

.6495, .8353, .9443, .9863

(27a2)1? exp (— %/20%)

D _ T _ (A=p)xo™ _ _ajp5e 2 -t
@yt . | e
[p+(1—p)o] | dz
(1-p) —23[202 —e Pz (1—p) —22/252
+(27r02)1/2e Var ¢ + 2162
0=3: p=.9,.7,.5,.3,.1 .70, .55, .58, .72, .96

Table 2. Efficiencies of double exponential statistics based on
the error distribution, f®(x)=(1/2)exp(—|x])

true p.d.f. f®(x)

efficiency ey,»

(2ma?)~'/2 exp (—x%/20%) 2/n
(28)' exp (—|x|/) 1
‘ L o) L
’ L Ie2) | e+D)E+4a-*

13, t10, t20, L40

.2274, .4321, .5173, .5715

[
T

(i-p) _
Hmapre T

2 [p+(1—-p)'
T [ PZ_ _z22 (1—p)zs—? _zz/zqa:lz
e + ¢
S_ VZzp vorn dz

A Lt

o=3: p=.9,.7,.5,.3,.1

.70, .77, .82, .86, .80

where p(y), p(y; 1) correspond to the densities f(y) and f,(y)=0f(oy),
respectively. Provided that p is sufficiently smooth and ¢° is any n!?

consistent estimator,
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4.9) ax0)=2t" 33 L p(L222 ;1) X (p+5, )

=1 g ag
will have the same asymptotic properties as 4,(6,). A prime example is
(4.5) 2K =213 Mfﬁxw 1,7)

i=1

t

derived from double exponential errors. Here (2t)! > (X,—0,X,_1—
j=p

+1
-+ —0,X,_,) is one choice for g% The asymptotic distribution of 4 is

clearly the same as 4, and the Pitman efficiencies, which depend only
on Theorems 3.2 and 3.4-3.6, remain in force. These efficiencies show
(4.5) to be more robust than the normal theory test against the outlier
prone mixed normal.

(ii) From a practical standpoint, we would like asymptotic prob-
ability statements concerning the statistic (4.4) (such as level of sig-
nificance of test) to be free of the form of the error distribution. Note
that according to Theorem 3.2, the asymptotic variance of 4¥(6,) is
E [bl(%{; 1)]2<;12—FX>. Note also that %I} is independent of ¢ and
of the form of the distribution. Proceeding heuristically we consider
the test statistic

(4.6) aoy=le 3 [o(Brersn) [T s on.

For double exponential errors, p*=1 almost everywhere, and the result-

ing test statistic zﬂ(ﬂo) remains the same as (4.5). Thus the limiting
distribution of (4.5) is the same, whatever the underlying symmetric
error distribution.

b) Consider now the multiparameter hypothesis H,: =6, vs H:
0+60, in AR (p). Let f®, f® be two candidate densities for the inno-
vations distribution. It is well known that, under f®, the test based
on 4{°(6,) has certain asymptotic optimality properties such as asymp-
totically most stringent and asymptotically highest average power over
certain ellipsoids. We consider the smooth cases where 4{(f,) and
ﬁgﬂ(o,,) are asymptotically equivalent. Then, the test based on ﬁt(ﬁo)
rejects H, when ﬁﬁ“(ﬁo)’[l"‘“(ﬂa)]“25“(00)gxf,(a). It follows easily from
Theorems 3.4, 3.5, 3.6 that (dropping 6, from our notation),

LI AP | PS= 12

and

jovpry o o[ E2GOXo: Di®Kfoi 1))
I Fey-1 4 (2)
Lt P i FYpee e S era)



588 MICHAEL G. AKRITAS AND RICHARD A. JOHNSON

Also,
I[ﬁgz)r[l—vd)]—ljgz) | Pt(’gg] = x;
and

,[’[252>'[F‘2’]“2§2>| Pt(,?iz]=>;(§< E® (b(ZJ(gqo_; 1)) h’['xh> .

g
The Pitman efficiency thus is
(47) e[im ‘im: [——E—lem‘—}z
= TREGEY VERGEY

which is the same as the formula given in (4.2), and thus the effi-
ciency calculations in Tables 1 and 2 apply for all order autoregressions.
Although these efficiencies pertain to testing H,:#=#@, the important
hypothesis H,: X, are independent, is included. Moreover the statistic

ﬁ,(ﬁo) provides an important alternative to the ¥* test based on least
squares estimators.

1I) Efficiency of L.S. estimators

It follows from Theorems 3.1-3.4 that, within a certain wide class
of estimators, the best attainable asymptotic covariance matrix, under
the innovations distribution f, is E/p}]"'['s'. It is also well known
(see Whittle [12], [13]) that the asymptotic covariance matrix of the
L.S. estimators is independent of the innovations distribution. Thus,
the efficiency of the L.S. estimator with respect to the most efficient
estimator under f (although we have not checked if such an estimator

2
exists in all cases considered) is 1 / Ef[2b<£; 1)} , or an appropriate
o
power. Table 3 give some values. Note that for the double exponen-

Table 3. Efficiency of the L.S. estimator

X —i' 2)—1
! (eel2el551)]
(28 exp (—|=l/B) 1/2
, (v=2)(2+3)
g v(v+1)
ts,t4, 26, t10 .5, .7, .857, .945
J%e—xa/z R [;’%‘_12/2_*_ (1;)29_7)7.1:08 e_z.z/&,g]?- -1
(1-p) —2(20% [p+(1=p)] S—w P —z22 (1—p) —22[20% az
2t ¢ Ve © et
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tial and mixed normals models, the Pitman efficiency of the normal
theory test coincides with the efficiency of the L.S. estimator and the
corresponding numbers in Table 1 apply.
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