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Summary

Let X,,--+, X,, and Y},---, Y, be independent, random samples from
populations which are N(4, ¢2) and N(6, ¢2), respectively, with all pa-
rameters unknown. In testing H,: =0 against H,: §+0, the t-test
based upon either sample is known to be admissible in the two-sample
setting. If, however, one tests H, against H;:|0|=¢>0, with ¢ arbi-
trary, our main results show: (i) the construction of a test which is
better than the particular ¢-test chosen, (ii) each ¢-test is admissible un-
der the invariance principle with respect to the group of scale changes,
and (iii) there does not exist a test which simultaneously is better than
both t-tests.

1. Introduction

In this paper we investigate the problem of hypothesis testing for
the common, unknown mean of two normal distributions with unknown
variances, when there exists a zone of indifference separating the null
and alternative hypotheses.

We shall assume that one has a random sample from each of two
normal populations, referred to herein as the X and Y samples (or
populations), where the samples are of sizes m=2 and n=2, respec-
tively. We denote the common mean by 6 and the variances by o2
and o), where —co<f< 0, 0<0s?, and 0<e¢?. A number of recent arti-
cles appearing in the literature have been directed at achieving domi-
nance over the classical one-sample inferential procedures for 4 in this
two-sample framework.

In an estimation setting, Cohen and Sackrowitz [2], [3] offer un-
biased minimax estimators of ¢ which, under mild sample size restric-
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tions, dominate the mean of one sample when loss is taken to be pro-
portional to squared error. Moreover, for equal sample sizes exceeding

9, a procedure simultaneously dominating the sample means X and Y
is given. Brown and Cohen [1] also offer improved two-sample esti-
mators, but additionally exhibit a confidence interval of width equal
to that of the classical procedure and with coverage probability greater
everywhere in the parameter space.

Within the hypothesis testing framework, Cohen and Sackrowitz
[4] have shown that when testing §=0 against the unrestricted alter-
native 6#0, the one-sample t-test based upon the X sample (say) is an
admissible procedure in the two-sample setting. This is somewhat sur-
prising in light of the aforementioned realities of the estimation problem.
They also demonstrate, however, that if one restricts the alternative
space by bounding the variance of the X population away from zero,
then a similar test based upon both samples may be found whose power
exceeds that of the one-sample t-test everywhere in the alternative
space. It is our purpose to consider a different restriction in the form
of a zone of indifference for the mean and, therefore, we will treat
the problem of testing =0 against |#|=e, where ¢ is positive and arbi-
trary. Our feeling is that this is a somewhat more natural region over
which to seek a dominating procedure, since a test developed for the
case of bounded variance will not necessarily have high probability of
detecting large absolute values of 6 when the variance ¢, is small.

In Section 2 we specify a dominating two-sample procedure for the
indifference zone problem, while in Section 3 we identify some of the
properties of both the proposed similar test as well as of other poten-
tially successful competitors to the ¢-test, particularly with respect to
the notion of invariance under the group of scale changes. We show,
specifically, that in an important sense the parametrization of the pro-
posed test is independent of e, that no invariant test can dominate the
one-sample t-test, and also that unless further restriction is imposed on
the parameter space it is futile to search for a procedure which simul-
taneously dominates both one-sample t¢-tests. The proposed test also
suffices as a competitor in the case of bounded variance considered by
Cohen and Sackrowitz [4]. Moreover, this section contains some of the
basic germination for the form of the test of Section 2, principally a
result due to Stein [7] giving a sufficient condition for admissibility of
tests of parameters of multiparameter exponential families. Section 4
(Appendix) contains the proof of several auxiliary lemmas.

2. A dominating similar test in the presence of a zone of indifference

We first give some preliminaries necessary for the main result of
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this section. The approach is initially quite similar to that given by
Cohen and Sackrowitz [4]. Lengthy computations arising in the proof
of Theorem 2.1 have been deferred to the Appendix.

The distributions of the sample (X, X;,---, X,,, Y}, Y3,---,Y,) con-
stitute a four-parameter exponential family with a minimal sufficient

statistic being <X’, X2, Y, > Y}) and corresponding natural param-
eter (mé/a%, —1/2%, nbja?, —1/26%). Let T,=31X?, T,=31Y?, and s,=
1 1

VT,—nY*®. The conditional density of X given 7, which depends upon
6 and o, only through the noncentrality parameter 3,=mé/s2, is easily
seen to be

(L—mast,)™" exp (3,u)
(tatmy® " (1o)== exp (9.(t.m) ) do

if |u|=(t,/m)"?

@1) £ (ult)=

0, otherwise ,
from which it follows that the conditional c.d.f. of X given T, is
0, if u<—(t,/m)"2,

(m/t )Y
L @—oynom exp .0t /m) o

’

(2.2) F,(u]t)=4 —
[, =027 exp (.0(t./my"do
-1

1, otherwise .

Since T,./s: has a non-central chi-squared distribution with m degrees
of freedom and non-centrality parameter 4,, the marginal density of
T, is given by

(2.3) 90,0, (t)=K(0, 0;) €xXp (—1,/202)t5" P/ *(E /M)
X SI Q=)™ 2 exp (Vm OVt vjed)dv,  for t,>0,
-1

where K(0, 0.)=K, exp (—m*/20})/07, K,=(m/2x)"*/(2 V2 ((m—1)/2)),
and I'(-) is the Gamma function.

We consider a class &F of test functions of the form

o 0, if CXT, Y, T)<X=<CYT.Y,T,)
24) ¢..XT,Y, T)=
1, otherwise,

where a €[0, 1], @€ (0, 1/2), and CZ and CV are functions of the argu-
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ments shown. As ¢,, has an acceptance region composed of convex
sections, it follows from a result of Matthes and Truax [5] that & is
complete for testing §=0 in the two-sample setting. We shall, in fact,
restrict ourselves to a subset &, of F consisting of tests of the form
(2.4), but where

Cg(Tx’ }_” Ty)=F0‘1(1——a/2—aQ,,( ?! su)Qz(Tz)lTx)
(2.5) and _ _
Crf(Txv Y, Ty):F&l-l(a/z_an(Y’ sv)Qz(Tz)IT.r) .
Here Q.(-), which is non-negative, and Q,(-) are functions chosen con-
sistent with the conditions that E,_,{Q/Y, $,)} =0 and that the argu-
ments of Fy! in (2.5) are in (0, 1).
We note that &, consists of similar tests, as
Eipopoy (@0l =1— By, (B, {F(CY(T., Y, T,)| T:)
—F(CUT. Y, T)|T)}|Y, T}
=1-E,, {E,, {1—a}|Y, T} =a.
Define k.=t s(m—1)/(m—1+%,(m—1))"?, where t,(m—1) repre-
sents the (1—a/2) percentile of the t-distribution with m—1 degrees of
freedom.

Let us now consider a particular member of &,, denoted ¢}, and
determined by choosing

(2.6)  Q=aT/ b/ — T, (T,  Q=sgn ¥/(c,+s,/b),

where ¢,>2/a, ¢>0, ki, e*m>b,, ¢, is a constant proportional to 2 and
for which an upper bound is to be subsequently specified, and I,(-) is
the indicator function of the set A. Denoting differentiation with re-
spect to a by priming, we now state the following:

LeMMA 2.1. Let B, . (a) denote the power function of ¢¥f.. Then
Bty (0)>0, for all (0, o, 0,) such that |6|=e.

ProOF. From (2.1)-(2.5) it is straightforward to show that
@7 B O=(KO, o)ym™ | 1—)>d0E, Q)
x| (exp (o om1210%) —exp (— i om122)
X exp (—1,/202)tP'Q.dt,, |
where K(0, 0,) and K, are given in (2.8). The result follows directly.

LEMMA 2.2. Let m=3, n=4, and a€(0,1/2). Then there exists a
positive comstant M, mot depending wupon 6, o, a,, or a*, such that
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185,04,0,(0)/B1. .0, (@*)|Z M, for all a*€(0,1) and (0, o, ,) such that |f|=e.
PROOF. See Appendix.
We now state the main result of this section.

THEOREM 2.1. Let X, X,,--+, X,, and Y,, Y,,---, Y, be independent,
random samples from populations which are N(0, o2) and N(0, a2), respec-
tively, with all parameters unknown. Let a€(0,1/2), m=3, n=4, and
e>0 be arbitrary. Then in testing H,: 6=0 versus H,:|0|=¢, the one-
sample t-test of size a based upon the X sample (say) is dominated by
the test ¢}, given in Lemma 2.1, for a sufficiently small.

PrROOF. Let y be a constant in (0, 1) and let b, denote the quantity
r'k; .e'm (a rationale for b, will be given in Section 3). Expanding
Bs..,.,(@) in a Taylor series about a=0 with the third term constituting
the remainder, we have

2
(2.8) Borepe(@) =By, (0)+aB;.,_..(0)+ ‘; Bl (@*)

for some a* € (0,a). But, as the first term is the ¢-test’s power, it
suffices to show that for some a, the second and third terms are posi-
tive in sum for all (4, g,, 0,) € H, and a* € (0, a). It, therefore, suffices
to show (i) f,.,(0)>0, for all (9, o, o,) € Hy, and (ii) 184.,.,,(0)/8LL,.0,(a%)]
=M>0, for all (8, g, ,) € H, and a* € (0, 1), where M is a constant not
depending on 6, g, g,, or a*. Thus, by Lemmas 2.1 and 2.2 we have
the desired result.

Remarks. (i) An upper bound for the constant ¢, of the test
¢, is specified at the end of the proof of Lemma 4.7, since the con-
straints on that quantity occur therein.

(ii) The constant a is also specified, by way of an upper bound,
at the end of the proof of Lemma 2.2 since this constant depends upon
M.

(iii) We have arbitrarily chosen to “beat” the t-test based upon
the X sample. It is clear, however, that a test of identical form to
#k., with the roles of statistics and sample sizes related to the X and
Y samples reversed, would dominate the ¢-test based upon the Y sample.

(iv) If the problem is altered through translation to one of test-
ing H,:0=60, vs. H,:|0—60,|=e, we encounter no additional difficulties,
since letting X/=X,—60, and Y/=Y,—0, permits us to use all of the
aforementioned results.

(v) A result directly analogous to Theorem 2.1 applies in the one-
sided testing problem of H,: =0 vs. H,: 0=¢, or vs. H: < —e¢.
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3. Invariance, universality of the mixture constant a, and motivational
consideration

We shall, in this section, consider some specific properties of the
testing problem discussed in Section 2, with a view towards the notion
of invariant test procedures. We represent the sample and parameter
spaces by X and 6, respectively, and begin by noting the following
standard definition :

DEFINITION 3.1. A test function ¢ is said to be invariant under
a group of transformations, &, if ¢(g(x))=¢(x), for all x € ¥, and g€ G.
The following result establishes the futility of searching among the
class of invariant tests for a successful competitor to the ¢-test when
G is taken to be the group of scale changes.

THEOREM 8.1. In testing H,: 0=0 vs. H,:|0|=e>0, there does mot
exist a test funmction invariant under the group G of scale changes,
which dominates ¢, ., the one-sample t-test based upon the X sample.

ProOF. The orbits of & consist of sets indexed by a point, say
(0*, a;kr U;‘). Taking g= {gk: gk(xlv Ty Y10y, yn)z(kxlv Yy kxmr kyh
-++, ky,), k>0}, we obtain the transformation induced in & by g, as
90, 05, 0,)=(k0, ko, ka,). Hence, the orbit generated by (6*, o¥, o}) is
the line L(0*/o%, 6*/c})={(0, 0., 0,): 0)o,=0*/a¥, 0/o,=0%/a}}. Assume
that ¢ is invariant under ¢ and dominates ¢,, when testing H,vs. H,,
and let 4>1 be arbitrary. Then there exists a point (¢, ¢/, a;) € 6 such
that [6'|=e, and for which Bor,o,,o,(8) > Bor,oy,1 ($0,.). Now consider any
other point (0, 0., 0,) for which 6#0. Then B, (D) = Bie, dug 10, 800,/o(P), 3S
¢ is invariant under & and p(¢) is, therefore, constant on orbits of @
(note that (6, ., 0,) and (4e, 4e0,/0, 4ea,/0) are of common orbit). But
the r.h.s. of this last equality is at least 8,, tuoyy0,400,(P0,0)s @S 4 has been
chosen greater than unity and ¢ dominates ¢o,. for all points for which
[f]=ze. Moreover, by the well-known invariance of ¢,. under G, we
have ﬂd«,dcaz/ﬂ,dwylﬂ(¢0,a)=ﬁﬂ,vx,av(¢0,a)' Thus, ﬂ@,vz,uy(¢)gﬁﬂ,oz,ay(¢0,a)r for all 4+
0, with strict inequality for some 6'+#0; i.e., ¢ dominates ¢,, over the
unrestricted alternative. However, ¢,, is contradictorily known to be
admissible if H; is unrestricted. This completes the proof of the the-
orem.

This lack of invariance of a potentially successful competitor, per-
haps disconcerting at first glance, is not unreasonable. For e should
logically be in the same units of measurement as the data, and if these
units are changed then e should be changed concordantly. It is with
respect to this “scaled” ¢ that one’s test function should reach the
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same conclusion regarding the rejection of H,. It is easy to show that
our dominating procedure, ¢},, indeed has this property.

We now employ this last result to prove an interesting property
relating to the constant a. Ostensibly, the choice of an upper bound
for this constant would seem to depend upon the point of indifference
e. The following result demonstrates, on the contrary, that any value
of a consistent with the specification of a test of the form indicated
by (2.6) for a particular choice of ¢ is consistent with the choice of
a test for any other ¢ as well.

THEOREM 3.2. Let 3>0 be arbitrary and ¢7 . be a test of the form
indicated by (2.6) which dominates ¢, ., when testing H,: 6=0 vs. H,:|0|
=¢,. Then ¢F. also dominates ¢,, when H, is changed to Hi*:|0|ze,

=a€0.
Proor. For any (4, o,, 0,) € H¥, we have

Bd,vx,ay(¢* ):Ed,ax,uy {¢;k0),l(X, T:m Y’ Ty)}

g £1

=E,,, . {6%,.(87'X, 87T, 07'Y, 07T,)}
(by the invariance property alluded to above)
= Eys,op/s,0y00 {¢2<0,30(X', T, Y, T,)}

(as the distribution of (37'X, 67%T,, 07'Y, 37*T,) under (6, 0., ¢,) is the
same as that of (X, T,, Y, T,) under (7', 67's,, 67's,)). Now this last
expectation exceeds that of ¢,, if |§/6|=¢,. But, for such points, [§|=
850:51. Hence,

ﬁﬁ,ux,ay(¢:z':,,¢l)>ﬁ(ﬁ/5,vz/6,ny/§)(¢0,a) ’ [0]=e,,
=> ‘B’»”zv”y(¢">":)"1)>Bo"’z"’y(¢o"') ’ lolgel ’

as the power of ¢,., depends upon 6 and ¢, only through +méb/s,.
Thus, the theorem is proved.

We now give a proof of the non-existence of a test based upon
both samples which simultaneously dominates the ¢-tests based upon
the X sample and Y sample. We shall let ¢,.. and ¢,., represent the
respective t-tests, and begin by giving a lemma which is not more than
a rephrasing of a result due to Stein [7] with a shift in emphasis.
Moreover, this lemma lends considerable insight into the functional

form of ¢,,.

LEMMA 3.1. Suppose Z is distributed as a k-parameter exponential
family with absolutely continuous distribution function. Let A be a
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closed, comvex subset of the sample space X and B a subset of the ad-
joint space X' (the linear space of all real-valued functions on X).
Suppose that for all & € B and real C for which

(%) {z: &2>CNnA=¢,

one can find w* € 2 (the natural parameter space) such that there exists
arbitrarily large 2 for which @*+18¢c Q,c2. Suppose, moreover that
the set A, C X 1s such that Ay,— A contains a set F of positive k-dimen-
stonal Lebesgue measure (m,) for which & ¢ B implies the existence of a
real C, such that (x) holds with m,{{z: &z>C}NF}>0. Then if we
define the two size a (with respect to some £2,C82) tests

0, if z€e A
¢D,a(z) = { .
1, otherwise
and
0, if z€ Ay
$x(2)= .
1, otherwise ,

éx does mot dominate ¢,, when testing Hy: @ € 2, vs. H,: @ € 2,.

Proor. See Stein [7].

The essence of this key result is captured in the following geo-
metrical interpretation: Let 2,c2 and 2,C 2 correspond to hypotheses
H, and H,, respectively. Consider the closed, convex subset of X cor-
responding to the acceptance region of the test ¢,., say 4, ,. Now
any “hopeful” competitor, say ¢4, with acceptance region A,,, must
be such that A, —A, , contains a set F of positive k-dimensional Lebes-
gue measure (lest ¢, have size exceeding a). Then there exists a hyper-
plane which separates F' from A, ,. Moreover, it can be shown that
for the exponential family, as one moves in the natural parameter space
orthogonal to, and arbitrarily distant from this hyperplane via a se-
quence {®,, n=1}, that Pe,(F)/Pae,(A,,,)— . In particular, there is a
point @, (say) such that Pa,(4,)>Pae.(4,,,). But, if @, €2, it im-
mediately follows that ¢, does not dominate ¢, ,.

Turning to the special case engendered by the separated hypothesis
problem we have been considering, we recall that we may take (by
sufficiency) X to be the space of points (X, T,, Y, T,) and 2 the space
of points (mb/s:, —1/20}, nb]s;, —1/25}). Observe that the value of T,
for which the hyperplane tangent to A, , . is orthogonal to the hyper-
plane described by 6=c¢ is ki ,me®’. We have chosen b, in ¢}, to be less
than this quantity, since if it were not and the acceptance region of
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a competitor “stuck out” from A, , . on a set of positive 4-dimensional
Lebesgue measure, then there would exist a separating hyperplane as
described in Lemma 3.1. (Note that the presence of the indicator func-
tion serves to equate ¢F, and ¢,.. when T, is large.) Then it would
follow that ¢,, does not dominate ¢,,. if we were able to exhibit a
sequence of parameter points {w,, n=1} as indicated in the lemma
(see Fig. 1).

1

T 9g2
x

ko, ome

Y

counterparts

Fig. 1

But, this is easily demonstrable, as any such separating hyperplane
in the above setting must be of the form Dg« c={&: &'6*>C}, where
&%=(£¥, £5,0,0), £f<0 and |&F/&¥|>1/(2me). Now if we choose @*=
(¥, &F, meX, me¥) € 2, then w,=w*+16* € 2, for arbitrarily large 21>0,
where 2,={(vy, 0y, w3, ®,): O;/MV,=wy/Nwy, ©,<0, ©,<0, |0Jw|=2me, |wsfw,]
=>2ne}. Hence, ¢F, would not dominate ¢, ..

We now may prove

THEOREM 3.3. There does mot exist a test of level «€(0,1) which
dominates both ¢,.. and ¢,., when testing H,: =0 vs. H,:|0|=e>0.

PrROOF. Let ¢ be a test whose non-existence is asserted in the
theorem. Then

(*) SgpP(¢=1)§a.

From Lemma 3.1, it follows that if T,>b,. and ¢,..=1, then ¢=1
(except, perhaps, on a set of zero 4-dimensional Lebesgue measure).
Here b, denotes the value of T, at the point of tangency to 4, , . as
per the discussion following Lemma 3.1. Similarly, if T,>b,, and ¢,.,,
=1, then ¢=1 (with the same obvious shift made to the Y sample).
But, Py, . (6=1)=P, .,({#0es=1, Ty>b. s} U {d00.=1, T.>b..}), which,
by the independence of the X and Y samples, equals
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P0.tfy(¢0,a,y=1’ Ty>bc,y)+P0,ax(¢0,a,x=1, Tx>bc,x)
_PO,vy(¢0,a,y=1¥ Ty>bs,y)P0,¢x(¢0,u,I=1’ Tx>bc,.r) .

Both probabilities involved in this expression —a as g,—co and g,— co.
(This follows in one case, for example, from observing that P, (T.=
bc,x)—')o as o;— . Hence, PO,V$(¢0,a,1'=17 Tx>bc,x)=P0,vx(¢0,a,x=1)_P0,¢x°
($o,0:=1, T;=b,)=za—P,,(T,<b,.)—a as o,— 0. But, Py, ($,..=1,
T.>b..)<a, giving the result. The other term may be identically dis-
pensed with.)
Hence,
lim P, .(¢=1)Zet+e—c’'=2a—a'>e,

Oy Oy =
for a € (0, 1) contradicting () and, thus, proving the theorem.

Remarks. (i) It can be shown that the test proposed in Theorem
2.1 also dominates ¢, . if ¢! is bounded away from zero, the restric-
tion imposed by Cohen and Sackrowitz [4]. Although their test is not
invariant in the appropriate sense mentioned earlier, it should be noted

that it can be made so.

(ii) The motivation behind the form of the test function ¢k, is
quite similar to that found in Cohen and Sackrowitz, the major excep-
tion being the introduction of an indicator function over a suitable
bounded set of T, values. Reasons for this “truncation” are essen-
tially those outlined in the discussion following the proof of Lemma 3.1.

(iii) No claim is made that ¢}, is itself admissible. Indeed, the
use of Y only through its sign (for relative tractability of computations)
would intuitively argue for inadmissibility.

4. Appendix

The object of this section is to prove Lemma 2.2 (which requires
seven preliminary lemmas) as well as to specify upper bounds for the
constants a@ and ¢, of ¢F.. Certain of these preliminary results are
given by Cohen and Sackrowitz [4], although it is the existence of,
rather than a needed specific form for certain bounds which is given

therein.
LEMMA 4.1. For the test ¢F, of Lemma 2.1, there exist functions
k; (T, Y, T,) and ki (T, Y, T,) such that
(4.1) CUT,, Y, T)=k; (T, Y, T)(T/m)"*, if Y<0
=kt (T., Y, T)T/m)*, if Y>0,

and
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(4'2) Cnf(Tz’ i-’, Ty)=—Cg(Tzl _179 Ty) .
Moreover, there exist constants k= and k* such that
(4.3) 0<k*<ki. <k;.<k <1.

PROOF. Define
kol Tor ¥, T,)=(m| T.)"Fy(1—(e/2)+aQu To) (¢ +8,/v 5.) ' T)
and
ki T., ¥, T,)=(m|T.)*Fi'(1—(2/2)—aQ(T:) (e +5,/v 5.) | T) -

Let a*=1—(a/2)+(a/2) max {Q,(T,): 0=T.<b,} and a**=1—(a/2)—(e/2)-
max {Q.(T,): 0= T,<b,}, where Q,<1 by choice of ¢, Then if we define
k™ and k* via

k- =t,_(m—1)/(m—1+t_.(m—1))"
and

kt*=t,_m(m—1)/(m—1+t_(m—1))"%,
the result follows directly.

LEMMA 4.2. There exists a constant K,>0, independent of 6, o,, o,,
and a, such that

kl:, a( T.t’ ?7 Tv) - ko,a é Kle( Tz) (cl + SV/JE: )_l o
ProOF. From (2.2), (4.1) and (4.4), and choosing a=0, we obtain

Skzl, a (1 . ,I)Z)(m—s)ﬂd,v/ S 1_1 (1 _ ,UZ)(m—a)/zdv =1— (a/2) + an( T.) (Cl + sv/ﬁ)—l

and
Srco, a a _vz)(m—sy/zdv/sl (1= dy=1—a/2 .
-1 -1

Subtracting the second ratio from the first and noting that a<1 and
k;.<k <1 from Lemma 4.1, we may obviously choose

Kl — Sl—l (1 — /UZ)(m—S)ﬂd,v/[l —_— (k—)Z](m—ﬁ)/Z ,

proving the lemma.

LEMMA 4.3. If n=4, there exists a positive constant K,, independ-
ent of 6 and o,, such that

E, {(ci+s,/vVD) Y oE, {(ets, /v b)Y 2Ky, for i=0,1. .
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Moreover, K, may be taken to be 1 if i=0 and min (1, b,(n—3)/(n—2))-
@+ E WV n—1)"")" if i=1, where V~yi(n—1) and

(z/2)” ‘"kf_‘f” (2k—1)/("f[’“ ©@k), if n=5 and odd,
E {‘/V} - (7!——2)/2 (n—2)/2 —
@y Tl (2k)/ T @k=1), if n24 and even.

Proor. That there exists a lower bound is shown in Cohen and
Sackrowitz [4]. To specify a bound we begin by observing that for i=
0, the fact that ¢,>(2/a)>2 assures that (c,+s,/vD.)'>(c,+s,/vD.)7?
establishing that we may take K;=1 when i=0. For i=1, consider
two cases:

Case (i). ¢,=1. That K, may chosen to be 1 is immediate.

Case (ii). o¢,>1. Multiplying numerator and denominator of the
ratio in the lemma by o,, then ¢,>1 implies the ratio is at least

VOB, {(ci+8,/(0,¥ 0.)) M E, ((sifa?) '} .
Clearly, the expectation in the denominator is (n—1)/(n—3), as (n—1)si/
a;~x(n—1) and E{V'}=(d—2)" if V~y%d) (see, for example, Mood,
Graybill, and Boes [6], p. 248). Applying Jensen’s inequality to the
expectation in the numerator, and observing that E {2} =2 I'(n/2)/
I'(n—1)/2) if V~x(n—1), as well as that for any positive integer k,
—_— k

I'(k+1/2)=W = |2%) j]:[ (25—1) (see Mood, Graybill, and Boes [6], p. 534),
we obtain the desired result.

LEMMA 4.4. If 6/0,<1, then [L—20(—0v7 [0,)]/6=Kyfs,, where K,
=(2n/x)"? exp (—n/2).

PrOOF. See Cohen and Sackrowitz [4].

LEMMA 4.5. If 6/s,21, then [1—20(—60+ % [0,)]=K,, where K,=1
—20(—+'1n). :

PROOF. See Cohen and Sackrowitz [4].
LEMMA 4.6. If 0=2¢>0, and m=4, there exists a positive comstant
K;, wndependent of 0, o, and o,, such that
[1—20(—0vn [o,)]E, {(c:+s5,/vD.) ™}
¢( _ﬂm/av)Evy {(01+S,,/1/ b. )_2}
ProOF. We consider two cases.
Case (i). 6/o,=1. Lemmas 4.3 (with i=0) and 4.5, and the fact

that &(—6+'n [s,)<1/2 for >0 indicates that choosing K,=2K,K, suf-
fices. .

(4.4)

2K;.
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Case (ii). 6/s,<1. Multiplying by 6 both numerator and denomi-
nator of (4.8), bounding &(—6+v 7 [s,) by 1/2 and 6 by e, and applying
Lemma 4.3 (with 7=1) indicates that we may choose K; to be 2:K;K;
for this case.

Hence, taking K;=min {2K;K,, 2¢K,K;} completes the proof.

LEMMA 4.7. Let Z~N(Wmk, .0, d%), 0<r<1, ¥'b, =rvVmk,.e, ¢;>0,
and Q(Y)=c,|z|(¥' D, —|2|). Then for suitable choice of the comstant c,,
there exists a comstant Ky>0 independent of 6, a,, and o, such that for
any positive constant K we have

E,. \Z"'QZ*) (1—exp (—2v'mki,0Z]o2)]v5:1(Z)}
(0]02)Ei . \Z™Q(Z") exp (KO ZAZ") 02 ] v51(Z)}

for all =¢>0.

(4.5)

;Ks ’

ProOF. We consider two cases.
Case (i). 2vmk,.0/s2=1. Denoting the L.h.s. of (4.5) as R and
observing the positivity of the integrand in the numerator as well as
that u<e*, we get
Vi S
| 2@ exp (—(e— vk, .00/20) (1—exp (—2)d2
(4.6) Rz——"
|, 2"1Q(&") exp (K+1)020()/02) exp (—(z— Mk ) 202)d

for all h€ (0, ¥'b,). Constraining ¢, to lie in (0, 4/b,) so as to assure
that 0<Q(2))<1 for 0<z=<+'D,, the definition of Q(-) implies

4.7
Rz (01— | ™ 2/, —2) exp (—(@— v mh 0202 dz)

(@32 (V. —2) exp @0/ B~ 2)ja2) exp (— e~V ks O [202)d2) ,

where a,=(K+1)c,b, may be chosen arbitrarily small by taking ¢, suf-
ficiently close to zero. Multiplying numerator and denominator of (4.7)
by exp (Wb, —vmk,.0)}20s2), and noting that +b, +z is bounded above
and below by 2v'b, and +'b, +h, respectively, for z€[0,4/D,] and z¢€
[k, ¥'b,], respectively we obtain

(WVB.y"(L—exp (=) | ™ (VB —2) exp (n(vB, —2))dz

(4.8) R= o

S:’T (V'b, —2) exp (r*(v'b, —2))dz

where
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= IB A2 =Yk VB — (a0

ol o3

and a,=a,/vmk,,. We note that a, may be chosen arbitrarily small

by choosing ¢, (and, hence, a,) sufficiently close to zero. It follows from

the definition of +/b, that both r, and r, are negative if a, is chosen

less than 1—y, 0<h<#b,, and 6=c. Following the substitution u=

v/'b, —z, integration in (4.8) yields

(4.9)  Rz=((h/vD.)"(1—e ™) (ryfr)*{[ry(¥'D, —h)—1] exp (r(v'D, —h)+1})
[((re/'b, —1) exp (r¥/'D,)+1) .

By choice of a,, it easily follows that
(4.10) (re/r)=z(1—7r—ay))>0,

and the bound is independent of 4, ¢,, and a,. It now suffices for case
(i) to show that if we define R, via

_ [r(¥'b, —h)—1] exp (r(v¥d, —h))+1
(r:v'b, —1) exp (/' b, )+1

(4.11)

then R, is bounded away from zero by a constant for all choices of

(ry, 7)) satisfying 6=¢. Now by definition of r, and 7, and letting y=

71/1y, it follows that dy/d6<0, for all 4, and lim y(8)=(1—a,)~!. Hence,
6400

[A—ay)/r]—1
(4.12) (1—a)r,<r,=s [CL/r)—1/2]—h2, 7

from which, in conjunction with the positivity of the numerator and
denominator of R,, it follows that

(4.13) R,= (ari—1) exp (k) +1

(feyry—1) exp (Fgr)+1 =or)

where k,=+'b, —h and ky=(1—a,))v¥'d,. Clearly, lim g(r,)=1, hm g(ry)

r——

=(k:/k)’>0 and g is both continuous and positive on (— oo, ). Hence,
g is bounded away from zero, establishing case (i).
Case (ii). 2vmk,.0/c:<1. We begin by writing R as

{Z™'QZ*) (1 —exp (—2v'mky,.0Z|02) Lo, 5. Z)}
2/mby.E,., 2vV'mk, 0/o?
B, . \Z"Q(Z") exp (KOZQ(ZY)o2) Iy, s5(Z)}

Now letting U(z)=[1—exp (—2vmk, .02/d2)]/(2v mk,.0/s2) and following
along the lines of the proof of case (i), we easily get

(4.14) R=
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2mk
4.15) R==—"F2=
(415) Rz Vb,

[." 2@ exp (—(e— vk, .07 /202N

S :5: Z"71Q(2") exp (K02Q(2Y)/a2) exp (— (2 — v mk,, 0)}/20%)dz ,

as Q(z)<1 on (0,4d,) by choice of ¢,, We observe that the ratio of
the two integrals in (4.15) is identical to the ratio in (4.6), except that
K and [(z) are replaced therein by K+1 and (1—exp (—=z)), respectively.
The former change surely does not affect the boundedness of R, and
it therefore suffices for case (ii) to show that I(z) is bounded away from
zero over the region [k, ¥/ b,]. Letting d=2vmk,.0/s%, we consider I,(d)
as a function of d for fixed z, with d € (0,1) and z €[k, ¥b,]. Itis easy
to see that [,(1)=1—e™?, [(d) is continuous in d over (0, 1), lﬁlﬂl l(d)=z,

lim i(d)=0 (extending the domain of I(-)), lim L(d)=+oco (again, ex-
d—oo ——00

tending the domain), and dl(d)/dd<0 for all d. It follows that [ (d)=
1—exp (—h), for all d €(0,1) and z €[k, vb,], proving case (ii).

Note. The specification of a value for the positive constant ¢, may
be achieved by observing that it is subject to the constraints that it
be both less than 4/b, (to assure Q,<1) and less than [Vmk,.(1—7)]/
[(VmKe/2)+1]b, (to assure a;<1—7). This implies that

(4.16) e<(L—7)/IV b, re(VmKa/2)+1)]

where K, is specified in Lemmas 4.1 and 4.2 via

@.17) Ki=| a—vy=ordof1—Gy1,
(4.18) E~=t,_{m—-1)[Vm—1+t_.(m—1),
and

(4.19) a*=1—(a/2)+ach,/8 .

It is, moreover, easy to show that k- is increasing in ¢,. Hence, for
any 7 €(0,1), if we define

_ 1-7
(4.20) D)= i mKa 1’

then we may choose
(4.21) 0< ¢, <min {4z/b,, D(47/b,)} .

We finally are in a position to prove Lemma 2.2.
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LEMMA 2.2. Let m=3, n=4, and a€(0,1/2). Then there exists a
positive constant M, not depending 0, a,, a,, or a*, such that 183,0,,4,(0)/
Bilop,o (@™ ZM, for all a* ¢ (0, 1) and (9, o, a,) for which |0|=e.

ProOF. We have from (2.2) and (2.4) that
Boope@=1—Ey, . {F, (CUT,, ¥, T)IT.)— F, (CXT., ¥, T,)|T,)} .
Thus,
Booy @)= —Ey.._ ., 13 (CEITICY — £, (CHT)CEY ,
where f; (-) is given in (2.1). Then

oCY
da

Bt @)=~ Bu o || 100U S22 ) 7, (010 2%

Ji-

]

~ [ ruccumy (LY 1, ceim) 2CE

From (2.1) andfthe form of ¢¥, we have

°CY _ (QQ.) . m(m—3)CY

9@ fACY|T) (T,—m(CP)) '

with an identical relationship obtaining with CZ replacing CY, from
which it follows that

fo,(CIIT:) _ fi(CZIT.)

Blegpe (@)= —"E{[ fICIT)  fICEIT.)

|@ay] .
Thus,
(422) Bl (@=(=0/0)K (0, )| | (1—v)y=ordn]

X S: t77% exp (—t./202)QX(t,)

X By, {[(t:—m(CZ)")~ """ exp (mOCT[?)
—(t.—m(CE))~"¥" exp (mOCE[42)]Q:} dt, .

Letting Q(t,)=c,V't, (Vb —v%,), 2=+1,, and taking note of (2.7) and
(4.22), we have

(4.23) 18, (0)/B.,..(a*)] |
= <2«/§w, exp (md°ki, ./20%)
% <~/% Sl_l 0! —vg)(m'a)/zdv>—lE,,,z {Z"QZY)
X (1—exp (—2vmk, .0Z/02)) ], 5::(Z)
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X [L=20(—0v7 [a,)1E. (0 8,/¥B) )
+ <0/a: Sb‘ tr " exp (—1./202)Q (L)
]

X Ey o, {[(t:—m(CZ)) ="~ exp (mOCgq/0z)
—(t,—m(CE))~ ™" exp (mOCE[a2))(ci+5,/+/D.)*} dt.

where Z~N(Wmk,.0,02). From Lemma 4.1, we may define constants
m;=1—(k™)? and m,=1—(k*)?, both in the interval (0, 1), such that

“4.24) mT.=T,—m(CYy¥<m,T,, m, T, < T,—m(CEYP<m,T, .

By (4.24) Lemma 4.1, letting z=+%,, noting the independence of ¥ and
s,» and conditioning on the sign of Y, we have

(4.25) |Bé,.,,,.,,,(o)/ﬂf’a’«m(“*)[ZA/ 2 B
where

A=m-R[1—20(— 037 [,)]( V7 I, (1—om->rdo)

X E, {(ci+8,/V'b.) "} By, \Z"HQUZ?)
X (1—exp (—2v mky,0Z[o2)) i, 5(Z)}

B,=(0/ayul0, 0,) E, ., {Z™QZ") exp (—ki, .V m0Z]c2)
X Ep,a,, {exp (JTn—ﬂkiZ/ﬂ';) (01+3,,/1/F‘)—2|Z} I[o,a/bi](z)} ,

w0, 0,)=u8, 0,)=0(—0v n [a,) ,
(8, 0,)=u0, 0,)=1—0(—0vn [a,) ,
k1= J— k2: - (;“,a y k:i:k;—‘,a ] and k4= —k;;,a ’

and Z— N mk, .0, 2).

Thus, it suffices to show A/B;=M,>0, i=1,2,3,4, for |#|=¢ and
where M, is independent of 4, g,, 0,, and a*. Moreover, we need only
treat the case of positive 6, since (2.7), (4.22), Lemma 4.1, the defini-

tion of Q(Y, T,), the eveness of K (6, s,) as a function of 6, and the fact
that the distribution of Y under —@ is identical to the distribution of
—Y under 4 assure that 8, . (0)=8,,,.,(0) and B7, . (a*)=8",,,.(a%).

Term 1. A/B,. From Lemma 4.2, the fact that ¢,;>2/e, the in-
dependence of the X and Y samples and Lemmas 4.6 and 4.7, we have
that

(4.26) A|BzK;:K;K;=M,  (say),
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-1

where K,=mm9/2py-12 ( S t 1— 1)2)(’”'3’/sz>
-t

Term 2. A|B,. From (4.25) it is clear that A/B, differs from
A/B, only in that 1—@(—6vn [s,) replaces &(—6+v % [o,) and —kz,, Te-
places kZ . in the interior expectation. Observing that Lemma 4.6 holds
with K, halved under the former change, while the latter alteration
serves only to increase A/B;, we obtain M,=M,/2.

Term 3. A/B,. Noting that k. .<k.., it is apparent that we may
choose M;=M,/2.

Term 4. A/B,. Here, we may choose M,=M,. Thus,

4.27)  185,.,0,(0)/Blle ., (@) Z[(X/ M) +(2/ M)+ (2/ M)+ (1/ M)]
=M\/6=M,

completing the proof.

Note. We may give an interval within which we can choose the
constant a of Theorem 2.1, by observing that from (2.8) and (4.27) we
may specify that a € (0, M;/3). Reference to the proofs of Lemmas 4.2
and 4.7 indicates, after some computation, that ¢ may be chosen in
0, K; K; K,/3), where K;=min {K{, K/},

K{=(h/vD,)"(1—exp (—h))[1—r—(VmKa[2)+1)csb,) |V mk,.] ,
and

K{'=(2mk,, /v b,)(h/vD,)"(1—exp (—k))(1— 7y —(Kiac:b.)/2K: )},
for any h € (0, aw'b,) .

Acknowledgment

The author wishes to thank the referees for their comments in
improving the presentation and correctness of these results.

RUTGERS UNIVERSITY

REFERENCES

[1] Brown, L. D. and Cohen, A. (1974). Point and confidence estimation of a common
mean and recovery of interblock information, Ann. Statist., 2, 963-976.

[2] Cohen, A. and Sackrowitz, H. B. (1974). On estimating the common mean of two
normal distributions, Ann. Statist., 2, 1274-1282.

[3] Cohen, A. and Sackrowitz, H. B. (1976). Correction to ‘On estimating the common
mean of two normal distributions’, Ann. Statist., 4, 1294.

[4] Cohen, A. and Sackrowitz, H. B. (1977). Hypothesis testing for the common mean



HYPOTHESIS TESTING FOR THE COMMON MEAN 577

and for balanced incomplete blocks designs, Ann. Statist., 5, 1195-1211.

[51 Matthes, T. K. and Truax, D. R. (1967). Tests of composite hypotheses for the mul-
tivariate exponential family, Ann. Math. Statist., 38, 681-698.

[{6}] Mood, A. M., Graybill, F. A. and Boes, D. C. (1974). Introduction to the Theory
of Statistics, 3rd edition, McGraw-Hill, New York.

7] Stein, C. (1956). The admissibility of Hotelling’s T-test, Ann. Math. Statist., 27, 616-
623.



