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Summary

In considering the problem of locating the point 6 at which a func-
tion f achieves its minimum (or maximum) using the Kiefer-Wolfowitz
(KW) stochastic approximation procedure, Abdelhamid [1] has shown
that if the density g of the errors obtained in estimating functional
values is known, then a transformation of observations leads to methods
which under mild conditions have desirable asymptotic properties. We
address the more general problem of locating the point of minimum of
a function when g is unknown to the experimenter. In the procedure
given in Theorem 4.1 we obtain the same asymptotic results as Abdel-
hamid in his version of the KW procedure.

1. Introduction

In many experimental situations, the experimenter is interested in
estimating the point ¢ at which a function attains its minimum (or
maximum). Often, the actual form of the function is unknown, but
at each point x the experimenter is able to obtain an estimate Y, of
the functional value f(x). Suppose that at each point x the error of
observation, Y,— f(x), has density g. If the error random variable
Y,— f(x) has mean zero and finite variance, the Kiefer-Wolfowitz (KW)
[11] procedure may used to locate the point 8. For certain known den-
sities, a procedure suggested by Abdelhamid [1] yielding smaller asymp-
totic second moment is applicable. It is for the case g unknown that
we propose here a procedure, given in (2.6.3), which has the same asymp-
totic second moment as the Abdelhamid procedure.

More formally, consider the stochastic approximation procedure
given by

(1'1) Xn+l:Xn—anc;lYn ’ n=1,2,...,
where X,, Y, are random variables and a,, ¢, are positive numbers.
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Included in (1.1) are both the KW procedure and the Robbins-Monro
[13] procedure (RM).

Abdelhamid and, independently, Anbar [2] investigated the possible
effect that transforming the observed random variables Y, might have
on the almost sure convergence and the asymptotic normality of {X,}.
Abdelhamid’s investigation included both the KW and RM cases; Anbar’s
only the RM case.

Specifically they studied the asymptotic behavior of the procedure
given by

1.2) Xon=X,—a.c;'mY,), n=1,2,---,

where h was assumed to belong to a class C of Borel measurable func-
tions which preserve both the almost sure convergence of X, to 4 and
the asymptotic normality of n?(X,—6), where in the RM case, 4 is the
unknown root of the function f and p=1/2, and in the KW case, 6 is
the point of minimum of f and B lies in the interval [1/4, 1/3], depend-
ing on the assumptions on f. Denote by F, the sigma-algebra gen-
erated by X, X,,---, X,. The following conditions were assumed for
the random variables V,=Y,—E"(Y,): V, are conditionally (given F,)
distributed according to a symmetric distribution function G admitting
density g; g has derivative almost everywhere with respect to G; 0<

I9)=| @ @)/g®)dG®)< +oo.

Within the class C, they sought a function A* which would mini-
mize the second moment of the asymptotic distribution. It was known
that in the case where g is normal, such an 2 was given by the identify
function, that is, when g is known to be normal, (1.1) cannot be im-
proved upon by transformation of observations. They found in general
that within the class C, h*(v)=(—g'/g)(v), unique up to multiplicative
constant. So for example if g is double exponential, then (—g'/g)(v)=
Csign (v) with a constant C>0, and the optimal procedure is

(1.3) X,n=X,—a,c;'sign (Y,), n=1,2,--.,

first suggested by Fabian [5], [6].

Abdelhamid also suggested improvements in some cases where G
is known but fails to satisfy all of the assumptions above.

Without assuming knowledge of the distribution G, Fabian [9] con-
structed an RM-type procedure which performs asymptotically as well
as the transformed RM procedure (1.2) does when G is known. With
a,=an’', ¢,=1 in the RM case and ¢n~" in the KW case, a and ¢ posi-
tive numbers, and 7 in the interval [1/6, 1/4], Abdelhamid had derived
values of @ and ¢ optimal in the sense of minimizing the second moment
of the asymptotic distribution. In the RM case the optimal choice of
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a is (f'(0)I(g))”'. Fabian suggested methods of estimating I(g), —g'/g,
and f’(4) and pointed out some of the problems inherent in such esti-
mation.

The main purpose of this paper is to achieve asymptotic results in
the KW case with G unknown which are as strong as those obtained
by Abdelhamid. Much of the motivation for this present paper was
provided by Fabian’s 1973 paper which we shall refer to henceforth as
I. In some places we were able to apply results obtained in I directly
to the KW case. These places are indicated in the text. For example,
much of the actual estimation of unknown parameters that is outlined
in our main result, Theorem 4.1 is carried out as in I.

The same speeds of convergence Theorem 2.11 and asymptotic nor-
mality result (Theorem 3.1) as those obtained by Abdelhamid (Theorems
4.4 and 4.5) are achieved. The main result, Theorem 4.1, is a real-
ization of the procedure suggested, indicating how to estimate the
optimal values of a and ¢, as well as I(g9), —g'/g, f"(6), and f""(9).
We show in Sections 2 and 3 that our procedure has the same asymp-
totic properties as those given by Abdelhamid in the case when g is
known.

In Abdelhamid’s treatment of the KW case, and in many of the
earlier treatments, the following two assumptions have appeared: First,
there exist constants A and B such that

(1.4) |[fx+1)—f(x)|<A|lx—0|+ B, for every z in R,
and, secondly,

EfR (VH<Ze®, for every natural number =,

for a number ¢ and V,=Y,—E"(Y,). The latter assumption may be
omitted here if in the truncation of the Y, given in (2.6.4), y, are chosen
to be (log (n\/2))'"*1. The use of truncation in (2.6.4) also enables us to
weaken the assumption (1.4) to f being bounded on bounded intervals.
Without the truncated term in the recursion relation (2.6.8) we would
need to assume not only (1.4) but also a similar type of condition for

Ef (—¢'[9)(Y,).

2. Almost sure convergence of the proposed stochastic approximation
procedure

2.1. Basic notation

All random variables are assumed to be defined on a probability
space (£2,, P). Relations between random variables, including con-
vergence, are meant to hold almost surely, unless specified otherwise.
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The set of real numbers is denoted by R, positive reals by R*, and
the class of all Borel subsets of R by 8. The indicator function of a
set S is denoted by X¥;. Let E denote expectation, and E¥ conditional
expectation, given the g-algebra &F. If Z,,---, Z, are random variables,
then F(Z,---, Z,) denotes the o-algebra induced by Z,,---, Z,.

If {b,} is a sequence of numbers and {Z,} a sequence of random
variables, then we write Z,=0O(b,) if lim sup |b;'Z,(w)|<+ oo for almost
all w. Similarly we write Z,=0,(b,) if there exists a K in R and an
integer n, with |b;'Z,|<K, for all n=n,.

If ¢ is a function on R and a is in R*, then for each z in R, ¢*(%)
denotes the difference p(x+a)—¢(x—a); if k is a natural number, D¥e(x)
denotes the kth derivative of ¢ at =.

2.2. Remark

The following assumptions are listed for reference later. Assump-
tions 2.6 and 2.7 appear in the convergence results in this chapter,
Assumption 2.8 in the asymptotic normality result, Theorem 3.1. Only
Assumptions 2.3 and 2.4 appear in the main result, Theorem 4.1.

2.3. Assumption

Both ¢ and 7 belong to B. We assume that f is a function on
R such that either

D*f exists, is continuous in a neighborhood of 4, and y=1/4,
or
Df exists, is continuous in a neighborhood of 6, and y=1/6.

We further assume that f is bounded on bounded intervals, that Df(6)
=M>0, and that for every natural number k,
2.3.1) sup Df(x)<0; inf Df(x)>0,

1/k<x—0<Kk

—k<z—-0<-1/k

where Df(x) and Df(x) denote respectively the upper and lower deriv-
atives of f at x.

2.4. Assumption

Assumption 2.3 holds. We assume that X, X,,--- and Y, Y, --
are random variables, that &, is a non-decreasing sequence of s-algebras
such that for each n, &, contains the s-algebra F(X,,---, X,, ¥3,---,
Y._)). For each n, C, is a positive & ,-measurable random variable with
¢,=Cn77, and f(X,) is the & ,-measurable random variable whose value
at o is

f(Xn(w) + cn(w)) - f(Xn(w) - cn(w)) .
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For each n, Y,— f*«(X,) is conditionally, given &,, distributed according
to a distribution function G which is symmetrie, has zero expectation,
has a density ¢ which has a continuous derivative Dg everywhere on

R. The density g is non-increasing on [0, o) and 0<I(g)=g (97*D(g))*-
dG < +oo.

2.5. Remark

The assumption of symmetry of G is a natural one in a Kiefer-
Wolfowitz type of procedure, where Y, is an unbiased estimator of
f°(X,). This requirement is satisfied, for example, if the errors in
estimating f(X,+c,) and f(X,—c,), respectively, are independent and
identically distributed, given &,.

2.6. Assumption

Assumption 2.4 holds and h, are measurable functions on (2XR,
F.XPB) such that for each w, h,(w, -) are odd, and are non-negative
on [0, +). For each n, D, is a non-negative & ,-measurable random

variable and
(2.6.1)  |ho, D|EN 1Y nw(t), (ogn)o=C,=(logn)e, D,=n"

with numbers e, ¢, satisfying 0<e,<7/2 and 0<ei<ey/2. Note that
for both possible values of 7y, we can (and will) select a g, such that

(2.6.2) 12—y —2e,>p,>0.

We shall write h,(t) for h,(-,t), and h,(Y,) for h.(-, Y.(-)).
The random variables X, X;,--- satisfy

(2.6.3) X,o1=X,—(ne,) ' [D,h(Y,) +log (n\V2)"+4Y,]
where
(2.6.4) Y=,V (—4) A¥n

with y,=n" if G has finite second moment and y,=(log (nV 2))'"*1 other-
wise.

2.7. Assumption
Assumption 2.6 holds. For almost all o, h,(0, -)— —g~'(Dg) on the
set {t; g(t)>0} and

@.17.1) D,—(2MI(g))™" .

2.8. Assumption
Assumption 2.7 holds and
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(2:8.1) | Uoutt-+ 2,8+ 97 (Dg)dG—0

for every sequence {7,} of functions on xR with |,|=|f(X,)| and
such that, for almost all w, h,(, t+7.(0,t)) are Borel measurable with

respect to . The random variables C,, C,,- - - satisfy
3 oy e if y=1/6 and
— (D*f(0))*I'(9)
e o[ s
C otherwise ,

where C is in R*.

2.9. Remark
Suppose Assumption 2.6 holds. In the proof of Theorem 2.10 we

shall require expressions for EFnh(Y,) and EF»Y,. If k is a Borel
measurable function, then the conditional expectation E#k(Y,), provided

it exists, is equal to K(EZ*Y,) where K(A):S k(t+ d)g(t)dt. For k=h,

and k(t)=(tV(—¥.)A¥. several properties of K were established in I
under the same conditions on g and h, as we assumed in 2.6. So us-
ing the results (I13.1.1), (I3.1.2) and (I3.1.9) we have

(2.9.1) EToh (V) =T(fn(X.), EFY,=fX)k,
where ¥, are functions satisfying

(2.9.2) 4T (4H=0 for all 4 in R,

(2.9.3) 47T (A Zknt with a k£ in R*, for all 40,

and k, (equal to ¢4(4,) in I) are non-negative F,-measurable random
variables with k,—1 on the set of all w for which {f(X,(w))} is a
bounded sequence.

2.10. Theorem
If Assumption 2.6 holds, then (log n)’(X,—0)—0, for every 8>0.

PrROOF. Assume without loss of generality that 6=0. Let ¢>0.
It is easy to see that there is a function ¢ on R such that ¢(x)=¢(—2x)
for all #, ¢=0 on [0, €] and ¢>0 on (e, +), ¢ has a bounded second
derivative and first derivative D satisfying «D(x)=0 and |D(x)|<|x| for
all z, and D(x)=2 for x>2e.

We have ¢,=C,n"<n4" by (2.6.1) and it suffices to consider n so
large that ¢,<e/2. Then by (2.9.1)

(2.10.1) D(X,) E¥Y, >0 ,
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since k,=0 and sign f*(x)=sign «# for |z|>¢, by (2.3.1). Define B,=(c;!
.D(X,) EF»Y, )2, Write (2.6.3) as X,,,=X,—U,, and N,=EZ»U,. Then
with a,=n"'(logn)'*1, we have D(X,)N,=A,+a,B: where by (2.9.2),
A,=0. So

(2.10.2) D(X,)N,=a,B: .
Also, by (2.6.1), (2.6.2), and (2.6.4)
(2.10.8) EFnU=0,(n"'"%r) with p,>0.

Relations (2.10.2) and (2.10.3) show that conditions 2, 3, and 4 of Lemma
3.3, Fabian [8], are satisfied with y,=e¢,=0, and 8,=k(log n)*o(n ')
with a k¥ in R*. Hence a subsequence {B,} of {B,} converges to 0
and the sequence {¢(X,)} converges to a random variable.

Let w be a point at which both properties hold. Since (X, (@))
converges, X, () is bounded, and then so is f ”"i(X,,t(m)). Therefore «, (w)
—1 and so ¢;(0)D(X,(w))f cni(X,Li(co))——>0. The latter convergence, the
properties of D, and (2.3.1) imply that lim sup|X, (w)|<e. But, since
o(X,(w)) converges, o(X,(w))—0 and lim sup|X,(w)|<e. The final rela-
tion holds for all w in a set of probability one. Since ¢ was chosen
arbitrary and positive, X,—0. (Note that as a consequence, x,—1.)

Now suppose that J7 is a neighborhood of x=0 in which D*f exists
and is continuous if y=1/4, and in which D)f exists and is continuous
if y=1/6. Expanding f*«(X,) in powers of ¢, in J] we obtain, with a
proper choice of &,, that

(2.10.4) e for(X,)=a, X, + &t
where «, and ¢, are & ,-measurable random variables, with

0 if y=1/4
(2.10.5) a,—2M, &,—&,= %{f’”(O) it =16
Using expression (2.10.4) we obtain
(2.10.6) No=n"Ha, X, +Eq0: 1)

* [Du(f (X)) T (X)) + (log m) ™' 1]

For ¢, as in (2.6.1), we obtain from (2.10.6) and (2.9.3) that
(2.10.7) N,=n""(log n)"**o(a,X,+&.c; 13, ,
with
(2.10.8) 0=<3,=0.((log n)'~*m*) , 3,— +oo.
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Then X,—N,=X,1—n"'(log n) '*va,d,)—R,, where R,=n"'(logn) **¢,.
c;ttv73,. Note that from (2.10.5), (2.10.8), (2.6.1) and (2.6.2) we have
that

(2.10.9) R,=0(n"""), 2, >0.

Now, eventually, depending on o, 0=<1—n"'(log n) **va,s,<1, (1—
n-Ylog m)1a,d,) < 1—n-(log m)+e,3,<1—n-log n)~+s, and

(2.10.10) (X,— Ny XA—n"Ylogn)'*0)+2|X.R,|+R2 .
Writing X,,,=(X,—N,)—(U,—N,) we obtain from (2.10.10)

(2.10.11) 2aS(1—A)X: -2V, +W,+ T,

with

(2.10.12) A,=n""(log n) '+,

(2.10.13) V.=(X,—N,)(U,—N,), W,=(U,—N,),

T.=2|X,R,|+R.
Suppose now B8, are positive numbers satisfying (eventually)

(2'10'14) .B;lﬁn-{-l(l——An)él ’ ﬂ,.HX,,:C?(n“r"’) , ﬂnég”r_”
for an 7>0.

We shall show that under these conditions
(2.10.15) i B W<+ o0, i Bui1Ta<+oo and i‘. Bri1 Vo< oo

This, (2.10.14), and (2.10.11) then easily imply
(2.10.16) 8.X2=0(1) .

The first relation in (2.10.15) follows from (2.10.3) since E W, <
EU?. The second relation follows since by (2.10.9), R2=0O(n"*"*+) and
Bat1| Xal| Ra| =O(n~")O(m™1711).

From (2.10.3), EZ»V?=(X,— N,)O.(n"'"*). But (X,—N,)'<X:+T,
by (2.10.10) and i BZ“T,,IOu(n“‘z“J')lgi Boi1 T < + o0 as we have already

n=1

shown. Conecerning the other term, we have
Brni X0 n 17y =0(n"17") .

This shows that i B EF" Vi< 400 and i Bus1V. converges by the

generalized Borel-Cantelli Lemma (Lemma 10, Dubins and Freedman [4]).
Thus (2.10.15) holds. .
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Choose now B,=(logn)* so that (2.10.14) is satisfied and (2.10.16)
holds. This proves the theorem.

2.11. Theorem

If Assumption 2.7 holds, then n*(X,—60)—0 for every 0<p<1)2—7
—‘251.

Proor. Relation (I3.1.16) can be rewritten as
(2.11.1) lim inf p,>I(g)

with p,=f"(X,)Z,(f(X,)). This relation holds also in our case with
=X)L f(X,)]. So we obtain from (2.10.6) and (2.7.1) a
strengthening of (2.10.7) to

(2.11.2) N,=n"k(a, X, + g1

with liminf k,=2(2M)™, k,=O,(n*1). Then, (2.10.11) holds with (2.10.12)
strengthened to
(2.11.3) A, =2n""a,k]
with k,—k,—0.

Now suppose n*eX,;)—0 for a 8, in [0, #,]. We know this is true
at least for §,=0. Choose a 8 in (B, p,) and set B,=n’*%. These 5,
satisfy (2.10.14) and thus, also, (2.10.16). Thus #°X,—0 for every g<

¢,; but since p, can be chosen as any number less than 1/2—y—2¢,
(see (2.6.2)), the assertion of the theorem holds.

3. Asymptotic normality of the proposed procedure

To obtain the following asymptotic normality result for the pro-
cedure proposed in (2.6.3) we use a one-dimensional version of Theorem
2.2, Fabian [7].

3.1. Asymptotic normality theorem
If Assumption 2.8 holds, then n'*~"(X,—6) is asymptotically normal
with

) mean=0,
) variance=[61(g)M*C*!, of r=1/4,
mean=0, of y=1/6
and
. variance=[(16/3)I(g)M*C*!, D¥f(6)=0,
W mean= —(Q/128)'7 , if y=1/6
nd

a
variance=(Q[2Y2)* , D’f(6)+0,
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where Q=3D*f(0)M~*1"'(g).

PrROOF. Assume without loss of generality that 6=0. Suppose
Assumption 2.8 holds. As in I, proof of Theorem 3.1, iii, use (2.8.1)
and the Schwarz inequality to obtain lim sup [f(X,)] ' @, [f~(X,)]=I(9).
This, along with (2.11.1) gives

(3.1.1) Lf (X L (X ) — 1(g) ,
and from (2.10.6)
(3.1.2) N,=n"Ya,X,+&.ea' )2, ,

with 2,=D,[f X )] ' T[f(X,)]+(log n)'*k,, where in the proof of
Theorem 2.10, it was shown that x,—1. So by (3.1.1) and (2.7.1) we
have

(3.1.3) A,—(2M)™.

Denoting conditional variance, given &,, by VarZ», we have
Var[h,(Y,)]= S bt + f(X,))AG(E) — LX) — 1(9)

by (2.8.1) and since Z,[f°«(X,)]—>0. Therefore
(3.1.4) D2 VarF»[h,(Y,)]— (2M)* I Yg) .

Now consider VarZ+[(log n)**1Y,]. If y, in (2.6.4) are (logn)~?1, this
variance is bounded by (logn)*:. On the other hand, if y,=n% then
G has finite second moment, say ¢!, and VarZ»¥, <EF»¥?<EF"Y:<q'+
[Ff~X,)}. So on the set {X,—0}, limsup VarZ»Y,<s*. In either case
then we have

(3.1.5) Var¥s[(log n)~'*¥,]1-0 .

The random variables 4(Y,) and Y, are not independent, but by the
Schwarz inequality it follows from (3.1.4) and (3.1.5) that

(3.1.6) (ne,) EFn(U,— N,y — I(g)(2M)* .

Now we set Z,=nc,(U,—N,) and suppose r is in R*. By (2.6.1),
Z,=0,(log n)m*). So {Z!>rn} is eventually empty and

(3.1.7) E Z,?X(z;zm)—’o .

Writing X, as (X,—N,)—(U,—N,) we obtain X,,,=(1—n"'a,1,)X,—n"
;' Z,—m e tVe¢g 2., Using this, (3.1.3), (3.1.6), (8.1.7), and the meas-
urability properties of «,, 2,, and £, we obtain the desired result by
applying Theorem 2.2, Fabian [7] with U, in Theorem 2.2 replaced by
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X, here, I', by a.1,, V. by Z,, ¢, by —C:', and T, by —C;'*Veg 2,.

For the case y=1/4, by (2.8.2), (2.10.5), and (3.1.3) we have, 0=
—C-' and T=0. Similarly for the case when y=1/6 and D'f(0)=0.
Finally, if y=1/6 and D*f(0)#0, @ is —[(2/3)[D*f(0)]’I(9)]”® and T is

—(6M)7(3/2)[D*f (O ()]
In all cases, I'=1, a=1, p=B.=1—2y, and by (3.1.6), ¥=I"%g)-
@eMm).

4. The main result

In this section we state and prove the main result given in Theo-
rem 4.1. The procedure given includes methods of estimation for all
unknown parameters. Only 2.3 and 2.4 are assumed to hold.

4.1. Theorem

Suppose Assumptions 2.8 and 2.4 hold with F, as defined below. Let
{k) be an increasing sequence of positive integers such that l/k,—O0.
Suppose {U,} and {V} are sequences of random variables such that with

Fo=F({X,, Yy, -+, Yoy U{Us; ki<n} U {Vi; ki <n}) ,
we have
EFul,=(2d)*(f4) (X)) »
EFu(U,—EF«U,);=0.d") ,
EFuV,=(2d,) " ((f*)")(Xs) »
EFu(V,—ETuV ) =0,d:") ,

4.1.1)

with d, of the form
(4.1.2) d,=dl™?, d im R*, 0<8<1/6.

Then the sequence {X,} as defined in 4.2 below converges to 6 and
t2-1(X,—0) is asymptotically mormal with mean and variance as given
in Theorem 3.1, (i) and (ii), where 2t,=2n+T card {l;k,<n} 1is the
number of observations meeded to comstruct X,.

4.2. The procedure
(i) Estimation of D*f(0):

Set U, equal to the arithmetic mean of all U, with k,<n. Then
set

(4.2.1) U, =0V U, .
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(ii) Estimation of D'f(6):

Set v, equal to the arithmetic mean of all V, with k,<n.
(iii) Estimation of I(g):

Let 8,>0 and choose ¢,=(logn)™%. Then this estimation is carried
out precisely as it is in (I4.2.b), that is by a sequence {w,} with

(4.2.2) w,,=S (k)G

where G, is the empirical distribution function of Y, Y;,---,Y,, and
kS is defined by

(4.2.3) R3i(8)= ——é%xon.m@t"(t))

for all ¢t in T,={(2j—1)4,; j=0,1, —1,--.} and let hS,, be constant on
the intervals ((2j—2)4,, 2j4,], where 4, and 3, are sequences of posi-
tive numbers such that 4,—0, ¢,4;'—0, 3,6;'—0 and %73 'e;'—0 for

an r<1/2.
(iv) The sequence C,:
Set
[((3/2)v:*wr')o\ (log m) =] A(log m)%,
(4.2.4) C,= if y=1/6 and D*f(g)#0

c, otherwise

with ¢, as in (2.6.1), C as in (2.8.2), v, as in (4.2.ii) and w, as in (4.2.2).
(v) The sequence D, :
Set

(4.2.5) D,=2uw,) ' An .

(vi) The functions h,:
Choose h; to satisfy (4.2.3) with e,2n % and 0<p,<1/2—7—2¢,,
with 7 as in Assumption 2.3 and ¢, as in (2.6.1). Then set

(1/2(h(®) —hA( =DV O A (M'igcnm(t)) ,  for 20,

4.2.6) h,()=
—h(—t), for t<0.

(vii) The sequence X, :
The recursion relation for X, is given in (2.6.3).

ProOOF OF THEOREM 4.1. We shall prove the theorem by verify-
ing Assumptions 2.8, 2.4, 2.6, 2.7, and 2.8.

First, Assumptions 2.3 and 2.4 are assumed to hold in the theorem.
The measurability conditions on C,, D,, and k, and condition (2.6.1) are
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obvious from their definitions. Relation (2.6.3) holds by assumption.
Thus Assumption 2.6 holds, and by Theorem (2.10), (log n)*(X,—8)—0,
for every 3>0.

To show that u, converges to Df(6), it suffices to show that U,

does. Let W,=U,—EFxU,. Then W, is an orthogonal sequence, i (log 1)?
=1

-l‘ZEWf§C,d“4§}(logl)zl“““’<—|-oo for a C; in R*. So by Theorem
33.1.B.ii, Lodve [12], we have I"' 33 W,—0. Also EFul,=D'f(X,+v.),
j=1

where |v;|<2d,. So eventually, depending on «, we obtain using As-

sumption 2.3 that EZuU,— D*f(6) and U,— D*f(6). The convergence of
w, to I(g) follows from Theorem 2.2, Fabian [10]. Verification of the
assumptions of this theorem are given in (I4.3.ii). Therefore Assump-
tion 2.7 holds, and by our Theorem 2.11, n/(X,—0)—0, for every 0<
B<1/2—y—2e,.

Finally, (2.8.1) follows from Extension 2.3, Fabian [10]. Details
and verification of the assumptions of this extension are given in (I14.3.iii).
The convergence of v, to D*f(6) follows by an argument similar to that

used to show U,— D*f(f). Therefore Assumption 2.8 holds, and by our
Theorem 3.1, X, has the properties asserted in Theorem 4.1 since t,/n
—1 because l/k,—0.
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