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Summary

We consider an extension of Pearson measure of skewness to a
multivariate case and apply the proposed measure to a test of multi-
variate normality.

1. Introduction

For a test of multivariate normality several authors have introduced
the measures of multivariate skewness, which are constructed by the
8rd order central moments or equivalently the 3rd order cumulants of
the population (Malkovich and Afifi [4], Mardia [5]). In this paper we
shall define a measure of multivariate skewness of a different kind by
extension of Pearson’s measure of skewness, say

Skewness=(mode —mean)/oc

where ¢ is the standard deviation of the distribution under considera-
tion (see Kendall and Stuart [3]).

When for a given sample we attempt to construct a measure of
multivariate skewness, the inconvenience of determining a multivariate
mode arises. The estimation of the sample mode is carried out by the
use of a density estimator with respect to an appropriate kernel func-
tion.

In Sections 2 and 3 the distributional properties of the sample
mode are investigated. In Section 4 asymptotic distributions of the
proposed measure of multivariate skewness are derived under the null
and non-null cases. In Section 5 we give simple examples for a test
of normality.

Key words and phrases: density estimator, multivariate mode, multivariate skewness, test
for multivariate normality.
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2. Estimation and consistency of the multivariate mode

On estimation of the mode for a univariate case Parzen [6] has
considered in detail. In order to obtain an estimator of the multivar-
iate mode we have only to extend his procedure to a multivariate case.

Following Cacoullos [1], we define an estimator f,(x) of a p-variate
density function f(x) on the basis of a random sample X,,---, X, from
f(x). We consider f,(x) as the following form:

K2V )aF )=

(2.1) fulx)= S h*(n) (h(n)

é <w Xj>

where F,(y) is the empirical distribution function on a sample X,,---,
X, and a sequence of positive numbers {h(n)} satisfies

nh”(n)

2.2) lim A(n)=0 .

n-—00

Furthermore, a weighting function K(y) is a nonnegative Borel scalar
function on R? which is chosen to satisfy the following conditions, i.e.

(2.3) sup K(y)<oo,

@.4) [ K@ay=1,

(2.5) llyilrj}”lyl"K (»=0,

(2.6) Ky)=K(—vy) for all y

where the notation |y| denotes the norm of a vector y. We also as-
sume that the Fourier transform of K(y), i.e.

@.7) k)= e K @)dy
is absolutely integrable. This fact indicates that we may think K(y)
to be uniformly continuous.

We can also express an estimator of the form of (2.1) as weighted
averages over the sample characteristic function

(2.8) do(u)= S eVdF (y)=n"! é ey,

As is easily checked, we may write

2.9  fi®)= n;p _1K<” th> (23:)? Se-mk(hu)qs,,(u)du.
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We can see that f,(x) is continuous and tends to 0 as |#|—oo. Thus
there is a random variable 6, such that

(2.10) Jul0:)=max f(x) .

We call 6, a sample multivariate mode.

We suppose that the true probability density function f(x) is uni-
formly continuous in z. It follows that f(x) has a multivariate mode
defined by

(2.11) f(6)=max f(z) .

We assume that 6 is unique.
Under the above conditions the following Theorem 2.1 holds.

THEOREM 2.1. If a sequence h=h(n) satisfies
(2.12) lim nh*=o0 ,

N—00

then for all €¢>0

(2.13) - Plsup|fulx)— f(x)|<e]—1 as n—oo .

If {0,} are sample multivariate modes, then for every >0
(2.14) P[j6,—0|<e]l—1 as n—oo .

Remark. This theorem can be proved directly by the analogy of
Theorem 3a in Parzen [6], so we shall omit the proof.

3. Asymptotic normality of the sample multivariate mode

In this section we shall investigate the conditions on a sequence
{h(n)} and a weighting function K(y) such that the sample multivari-
ate mode is asymptotically normal.

We assume that a density f(x) has continuous second partial de-
rivatives. We shall write the gradient vector of f(x) as grad (f)=(af/
0xy,- -+, 0ffox,) and similarly the Hessian matrix of f(x) as H(f)=(2%f/
ox,0x,) (i, j=1,---,p). Then grad (f),=0 and —H(f), is positive defi-
nite, where suffices denote values of these quantities at a unique mode
x=4¢. Similarly, if the estimated density function is chosen to have
continuous second partial derivatives (i.e. the corresponding weighting
function has the same property), then grad(f,)s.=0 and —H(f.)s, is
positive definite at the sample mode 4,.

By use of Taylor’s expansion we have

(3.1 grad (f.)e.=grad (f2)o+ H(f,)i.(6.—0)=0
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where some random variable é,, lies between @, and #. If the matrix
H(f,) dose not vanish at é,, we can write

(3.2) 0,—0=—H"(f,)s, grad (fa)e
where H™! denotes the inverse of the Hessian matrix.

THEOREM 3.1. [Conmsistency of the Hessian matric H(f,).] If the
Fourier transform k(u) satisfies for all i, 5 (=1,---, p)

(3.3) S (tan () dow < 00

and a sequence {h{n)} satisfies
3.4) lim nh**=c0

and that the characteristic function ¢(u) satisfies
(3.5) S|uiuj¢(u)]du<oo for all 4, j=1,-+-,p,

then as n becomes large, for every pair of © and j (=1,--+, D)

@5) B [sup | 2 (=5 @)] |0
i0%; 0% 5

and

3.7 H(f)i,—H(f)s  im probability .

Proor. Note first that

(3.8) e (5)-E [ 2L ()|

o0x,0%, ox,0%,

=(2) | luae o)1) E [,()] e »
Thus

(3.9) E[supl i (x)—E[ﬁ_(x)m

ox,0x, 0x.0x,

= (20 | o) ol ()] du
< (27)~P(mhiPti)~12 S |wu k()| du—0 as n— oo

where the first inequality holds from Schwarz’s inequality. Similarly
it can be easily shown that
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0*f,

3.10 E n

(8.10) Sup‘ [ zom, )] ax{a z,

From (3.9) and (3.10), (3.6) holds. .
That (3.7) holds follows from (3.6) and the fact that 6, tends to

8, since it is between 6, and 4 and 6, tends to 6.

(x)l—»O as n—oo .

THEOREM 3.2. [Asymptotic normality of the sample multivariate
mode.] If in addition to all the conditions (3.3) to (3.5) (0K/oy.)(¥)
(t=1,---, p) satisfies the following conditions

(3.11) sup~ g;‘: |<oo, S| gf {dy<oo and lim |yP g;‘—: |=0,
then

(8.12) Vnh#¥ grad (f,),~ N0, f(6)J)

and

(8.13) vk (0,—0) ~ N0, f(O)H(f)eJH™(£)s)

where the pXp matric J is defined by

oK Vgy,..., | 2K 0K 4
S(a_yl R TR

S oK 0K g ... S(air{)zdy
w, dy, ' )\dy,

(3.14) J=

ProoOF. From (2.9) we can put for each i (=1,..-, p)
(3.15) gf,, @=n" 2 VR
t
where we define

(3.16) ms;>:—§—[h-rK{(x—X,)/hn=h-<f'+“£{(x—x,)/h}
X; ox;

and V& (s=1,--.,n) are independently and identically distributed as
Vin=h~®"P@K/[ox){(x—X)/h}. We remark that for ¢ (=1,---, p)

(3.17) E [V..]= —i(2r)® S e~ fo(huyup(u)du
and for 4 and j (=1,---, p)

(3.18) E [ViuVial=h"® S —( )—(y)f (x—hy)dy .
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From (3.11), (3.17) and (3.18) it follows that for ¢ and j (=1,---, p)
E[ Y @) @),
ox; ox;

nhP+? cov<afn afa)_, ) f@ )S

2, (y)dy

as n—oo where cov (-, -) denotes the covariances of 9f,/ox,’s.

To prove the asymptotic normality of the random vector grad (f,)
it suffices to show that for any real vector a=(a,,- -, a,)’ each linear
combination a' grad (f,)=> a,(0f./0x;) is asymptotically normal. Then
to check the sufficient conditions for the asymptotic normality of
a' grad (f,) it is enough to show that

3
(3.19) w2 E [her eV, 50 as n—oo.
=1

For (3.19) it is sufficient to prove that
nVPRPEE NV, LV, Vil —0 for all ¢, 5 and k

as n becomes large. This quantity is approximately equivalent to

oy | | SL W25 w)|dy

and converges to 0 by the use of (3.4) and (3.11) as » is large.
For the proof of (3.13) we have only to recall the relation (3.2).

4. Measure of multivariate skewness

In this section we shall generalize Pearson’s measure of skewness
to a multivariate case. First we define a measure of multivariate
skewness (which we shall call Skew in brief) by

(4.1) Skew=(0— p) 0~ (Z) (6 — p)

where 6 is the population mode, g is the mean vector and «(2) is an
appropriate function of the covariance matrix 3=(s;;). As for choices
of o(X) we can take, for example, (1) 0(2)=23, (2) wy(Z)=(2x)"2|Z|"2.
3JX (which is derived under the null condition that the population is
N,(p, 3)), or (3) w(2)=diag (011, ", 0pp)-

For a given random sample Xj,---, X, we shall take

(4.2) (0—X)o(3)(6.,—X) (=Skew, say)

as an estimator of Skew where 6, is the sample mode defined in Sec-
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tion 2, X is the sample mean vector and 3 is the sample covariance
matrix.

Now we consider the asymptotic distribution of (4.2). We notice
that the asymptotic distribution of

(4.3) nh?*¥(6,— X )0 (3)(6,— X)
is the same as that of
(4.4) nh?+(0,— p) 0™ (2)(0.—p) ,

because both X and 3 have higher order of consistency than 4,. Then
the following theorem holds.

THEOREM 4.1. [Asymptotic null distribution of Skew.] In addition
to conditions (3.3) to (3.5) and (3.12) to (3.14), if the true population is
a p-variate normal Ny, 2), then nh*+* Skew is distributed as

(4.5) > 2g4(1)
i=1
where 2, (1=1,---, p) are the latent roots of the following determinantal
equation
(4.6) |(27)??| 3|2 2T XY — Aw(2)|=0

and y¥1) (i=1,---, p) are independent y* variables with ome degree of
freedom.

ProOF. Since the population is N(g, Y), the population mode @
coincides with its mean g and hence the value at =4 of the Hessian

H(f) is
4.7) H(f),=— f(g) 3= —@ry#| 5|25

From (3.14) of Theorem 3.2 the asymptotic distribution of (4.4) is the
same as (4.5) and so the rest of the proof is straightforward.

We shall define some notations to deal with the non-null case. We

put Xy=f(O)H Y )JH(f),» Let 1, (1=1,---, p) be the latent roots of
the determinantal equation

(4.8) |2,— 2a(3)|=0

and also let P be some pXp matrix constructed by the corresponding
latent vectors, which satisfies

(4.9) PSw™(3) 3P =diag (A, -+, 4,) -

Then, using the same argument as Theorem 4.1 with above notations,
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the following theorem holds.

THEOREM 4.2. [Asymptotic non-null distribution of S’kew.] Under
the conditions (3.3) to (3.5) and (3.12) to (3.14), mh*** Skew is distrib-
uted as

@.10) = A

where 2’s are the latent roots of (4.8) and x:(1) (¢=1,---,p) are inde-
pendent non-central y* variables with one degree of freedom whose non-
centrality parameters are given by '

(4.11) e=VnRFg,  for i=1,---,p,
where ¢; is the ith element of the vector ¥ defined by
(4.12) T=P3;V(u—0) .

Remark. When we transform original observations X; (i=1,---, n)
to Z,=AX;+b with an arbitrary nonsingular pXp matrix A and an

arbitrary constant vector b, Skew is transformed to
(0,— XY Ao (ASANAWG,—X) .

It can be easily shown that Skew is not invariant under the affine

transformation. Nevertheless, if we demand invariant property of Skew
in any limited situation, we have to restrict both a class of weighting
functions K(y) and that of transformation matrices A. Such a choice as
satisfies our requirements is to choose a class of K(y) which leads to
J=clI, (where c is some constant number and I, is the identity matrix,
for instance, a class of K(y) is composed of N, (0, ¢I,) (0<s’<o0)) and
at the same time to restrict the affine transformation to the orthogo-

nal transformation. In this limited situation, Skew with «,(3) and
wz(ﬁ‘) proves to be invariant.

5. Test for multivariate normality

First we note that from the remark of Section 4, Skew is not
invariant under the scale transformation X'=(X,,---, X,)—>Y'=(a,X],
<+, a,X,) (ay,- -+, a, are nonzero scalars) and so we consider a standard-
ized random vector X with ¢[X;]=1 (=1,---, D).

With an optimum choice of a number h for a fixed n, we evaluate

(5.1) E [sup | fu(%)— f(2)]]
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which gives us the sufficient condition for the consistency of 4, as well
as the uniform consistency of f,(x) in Theorem 2.1.

Using Theorem 3a in Parzen [6] and Theorem 8.4 in Cacoullos [1],
we have the following result that

(.2)  Elsup|fue)— @)l
<@n) (k) | bw)ldu+ (R (=L(k), say)

where I=sup

2, & 32f()

The value h hlch mlmmizes L(h) is given by
(5.3) Ppin= {p(27r) SI Fe(u)|du/ I} Y+ —1/Ap+h |

If we choose h as above, then (5.1) tends to 0 as n V@D,

On the other hand, from the condition (3.4), it follows that if we
put h=0(n""), then (2p+4)™'>a>0. This range of a does not include
the optimum a*=(2p+4)~" corresponding to k., in (5.3). It suggests
choosing a just smaller than «*. However, from a practical point of
view, we put h=n"Y+ at first and examine the behavior of Skew.

We shall consider the physiological data given by Tabe [7], which
comprise 8 measurements on each of 107 patients of liver disease. We
take 2 measurements in the order: GOT, GPT. These variables are
related to the function of a liver. We apply Skew with wz(ﬁ‘) to the
data for a test of multivariate normality with respect to multivariate
skewness Skew.

To test the null hypothesis that Skew=0, we can use the result
from Theorem 4.1, that

(5.4) A=nh***Skew  with wy(5)

has a y* distribution with p degrees of freedom. As for a choice of
K(y) we take K(y)=N40, L).

Table 1. Physiological data on patients. First four moments.
Upper values, the original. Lower values, the transformed.

Mean St. dev. g1 g2
GOT 61.850 51.173 2.3460 7.7952

3.8583 0.7282 0.1120 —.2492
GPT 72.626 69.383 1.7942 2.9318

3.9038 0.8747 0.1983 —.7152

The upper estimates in Table 1 give the first four moments of the
marginal distributions. The estimate of the correlation coefficient was
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0.860. The large values of g, and g, suggest that the data have a
strong deviation from normality. The vector of the estimated mode

was (34.00, 37.50) and hence Skew=1.5414. From (5.4) we have A=
15.9 which is highly significant, because the 0.5% value of y; is 10.60.

The positive values of g, led us to apply a log transformation to
the data. The marginal moments for the transformed data with log
(GOT) and log (GPT) are recorded in the lower values of Table 1. The
estimate of the correlation coefficient was 0.881. These values indicate
the improvement of the data from non-normality. The estimated mode
was (3.6771, 3.6798) and hence Skew=.3197 which gives A=3.29. The
109 value of »% is 4.61. Therefore Skew is not significant.

As a final example we shall consider the well known iris data given
by Fisher [2] and examine the data on Iris virginica, which comprise
4 measurements on each of 50 plants. We take 4 measurements in
the order: sepal length, sepal width, petal length, petal width.

Table 2. Data on Iris virginica. First four moments.

Mean St. dev. g1 gz
Sepal length 6.588 0.6359 0.1144 —.0879
Sepal width 2.974 0.3225 0.3549 0.5198
Petal length 5.552 0.5519 0.5328 —.2565
Petal width 2.026 0.2747 —.1256 —.6613

Table 2 gives the estimated marginal moments. The values of g,
and g, are not significant. The estimated mode was (6.4798, 2.9770,

5.4305, 2.0362) and hence Skew=2.512, which gives A=17.70. This is
highly significant, because the 0.5% value of yi is 14.86. Note that
the estimated modes of the data on Iris setosa and Iris versicolor were
(4.9971, 3.4144, 1.4710, .2447) and (5.9569, 2.8040, 4.3135, 1.3388) respec-

tively which give Skew=.0883 and A=.624 for Iris setosa and Skew=
4.291 and A=30.34 for Iris versicolor. The last value of A is also
highly significant.

These results suggest that there is a strong evidence of multivar-
iate skewness on the data with Iris virginica and Iris versicolor respec-
tively, though the analysis of the marginal moments did not detect
non-normality on the data.
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