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Summary

In canonical correlation analysis a hypothesis concerning the rele-
vance of a subset of variables from each of the two given variable
sets is formulated. The likelihood ratio statistic for the hypothesis
and an asymptotic expansion for its null distribution are obtained. In
diseriminant analysis various alternative forms of a hypothesis concern-
ing the relevance of a specified variable subset are also discussed.

1. Introduction

In canonical correlation analysis McKay [9] has formulated a hy-
pothesis concerning the relevance of a subset of variables from one of
the two given variable sets. The test of the hypothesis is designed to
examine whether or not a subset of variables provides additional infor-
mation about the relationships between the two variable sets. Such a
hypothesis is useful in the problem of variable selection. In this paper
we formulate a hypothesis concerning the relevance of a subset of var-
iables from each of the two given variable sets, resulting in a general-
ization of the hypothesis formulated by McKay [9]. We obtain various
alternative forms of the hypothesis. A form of the hypothesis is given
in terms of the coefficient vectors of the canonical variates. Using a
characterization of the hypothesis in a conditional set-up we shall ob-
tain the likelihood ratio criterion for testing the hypothesis. Its null
distribution is studied and an asymptotic expansion for the distribution
is obtained.

In discriminant analysis Rao’s [12] additional information hypothesis
is known as a hypothesis concerning the relevance of a specified vari-
able subset. McKay [8] has given an alternative form of the hypoth-
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esis and proposed simultaneous procedures for variable selection, based
on the hypothesis. In this paper we give a new interpretation of the
hypothesis in terms of the coefficient vectors of the canonical variates
due to Fisher [3].

2. The hypotheses for additional information

Let x, and x, be two vectors of p, and p, (p,<p;) components, re-
spectively, with means g, and g,, respectively, and a nonsingular co-
variance matrix

Z‘uu Euv
(2.1) 3= .
Z‘vu EU’D

When we are concerned to summarize the relationships between x, and
X, in terms of only a few variables, the canonical variates (a;x,, a,;x,)
due to Hotelling [6] are used. The coefficient vectors a,, and a,; are
defined by

(2'2) ZuvZ;vlzvuauj:p_:;z‘uuauj ’ az/tiz'uuauj = aij ’
(2'3) Evuz';ulzuvavj:p;z‘vvavj ’ a;izvvavj:aij

where p} are the characteristic roots of X,,3;'%,.25, o= -2p, 20
and 4,,=1 for i=j, 0 for i#j. Let m be the number of non-zero
canonical correlations p,. Then m=rank (3,,)<p, and the relationships
between x, and x, can be summarized in terms of the first m canoni-
cal variates (a,;x,, a@,;x,), j=1,---, m. In order to formulate a hypoth-
esis concerning the relevance of a subset of variables from each of x,
and x, we partition x, and x, as x,=(x], x}), x.:7 X1, x,=(xi, xi),
x;:r,x1, and a,;, @,;, t #,, 2 conformably:

a,; M 3y Yy Ay 2y

(2.4) (auj): a,; ’ ('uw): Hej ’ 5= Sy Zn T u )
@, a;; e M Iy Yy Jy 2y
a,; My Sy o s 2y

We use the notation Xy, =235—23,35 2, 2u=0C4, X)), etc. Then it is
natural to consider that in the interpretation of the relationships be-
tween x, and x, the variates x, and x, are irrelevant, in the presence
of x, and x; if and only if

(2.5) H:a;=0, a,;=0 (j=1,---,m).

If H, is true, we can say that the subset (x], x;) has as much infor-
mation about the relationships between x, and x, as the full set (x., x.).
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Following Rao’s terminology as in a multivariate linear model, the sub-
set (x}, x;) may be said to supply no additional information about the
relationships between x, and x,, independently of (x, x{). It may be
noted that the effect on the canonical correlations by adding extra var-
iates to one of the original two sets of variates has been discussed in
Laha [7], Siotani [18], McKay [9]. Let p¥>=---=p* be the non-zero
population canonical correlations between x; and x; i.e., the positive
square roots of the non-zero characteristic roots of ;,3;'3;35!. Then

it holds that

(2.6 0;=pF, j=1,--.,m*, and m=m*.
J J

This follows by applying a Lemma in Gabriel [4] to
23302035 = Do {3, DD 3, D) D2y} DYD, 2, D)™
where D,=([,,0) and D,=([,, 0). Intuitively, the condition
2.7 0;=p%, j=1,--., m*, and m=m*,
also means that the subset (x, x;) has as much information as the full

set. In the following Theorem 1 we show that (2.5) and (2.7) are
equivalent, and (2.5) is also equivalent to (2.8) and (2.9):

(2.8) tr 3,200 3,25 =tr 2y 3513, 35!,
(2-9) 24u-3=0 y 220.1:0 (01‘ 223.120) .

THEOREM 1. The four statements (2.5), (2.7), (2.8) and (2.9) are
equivalent.

ProOOF. The equivalence of (2.7) and (2.8) follows from (2.6). It
is easily seen that

(2.10) tr 3, 3013, 20 =tr 2o, 2nl 225t Dl St -

and
(2.11) tr 35, Sl S Snt =tr Sy S5t S IE 4 tr 2y 350 50, 35 .

Using (2.10) and (2.11) we have the equivalence of (2.8) and (2.9). To
complete the proof we need only show that (2.5)<=(2.9). If a,,=0
(j=1,-+-, m), then from (2.3) we have 33, 375./3.:a:;=p;Zut;;, and hence
tr 3, 2ol STt =tr 33,571 5,,55". The last equality and (2.10) imply
3,..5=0. Conversely, assume that %,,=0. Then premultiplying both
sides of (2.8) by (—3425", I,-,,), We obtain pj¥,.a,;=0, i.e., a,;=0 (g=
1,---,m). Similarly we can show the equivalence of a,;=0 (j=1,---,
m) and 3,,,=0. This implies the equivalence of (2.5) and (2.9).

As a special case of H, the hypothesis that the subset (x/, xi) has
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as much information as the full set (x/, x}) can be expressed as

(2.12) Hy:ay=0 (j=1,---,m).

From Theorem 1 we obtain the following alternative forms of H,:
(2.13) tr 2o, 2l 225 =tr 20,30 3635,

(2.14) 2us=0.

The equivalence of (2.13) and (2.14) has been established by McKay [9].

3. The likelihood ratio test

In this section we assume that x=(x}, x})’ is normally distributed.
Then the conditional distribution of (x}, x]) given (x], x}) is a (p—7)-
variate normal distribution with mean vector

By [x,—
31 B2 )] =)+ (5 Bt
3.1) X, X3 J7A By By X3— MU
<x1>]=<222.1a 224-13)
X3 242.13 244-13
where p=p,+1:, r=71+7,

<Bn st) — (221 223) <211 Zu.)—l ,

and covariance matrix

(3.2) \ [(x=>

Xy

B41 B43 ‘241 243 231 283
(222-13 E24-13> — (2‘22 ZZA) _ <221 228) <2‘11 218) _1<212 214> .
242-18 24‘.13 ‘242 EM 241 243 231 238 232 284
The hypothesis H, can be expressed in terms of the conditional set-up as
(3.3) By=0, B,=0, Su=0.

This result follows from (2.9) and the identities
Byy=2354.2%, , B, =243,
2oy =2ous— 291837 g

Suppose that a random sample of size N=n+1 (>p) of x is avail-
able. Let »7'S be the sample covariance matrix formed from the sam-
ple. Then, using the conditional distribution of (x}, xi) given (xI, x})
and (8.3) it can be shown that the likelihood ratio criterion for H, is

822-13 824»18

4213 SM-13

(3.4) A==

JUSullSual
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= {|Sp2.18— Seee 1885158 sz 131/ Szt [} {| Siaes /| Suaesl}
=Ay X 4y

where the method used previously to describe submatrices of X is used
here to describe submatrices of S.

THEOREM 2. If H, is true, the statistics A, and A, in (3.4) are
wndependently distributed according to the A distributions A(p,—7i, D,
n—ri—p) and A(p,—1s, 7, n—1—71;), respectively. Here we denote the
distribution of A=|A|/|A+B| by A(p,q,n), where A and B are inde-
pendently distributed according to the Wishart distributions Wy(n, X)
and Wy,q, 3), respectively.

PROOF. We can write S=Y'Y, where each row of Y:nX(p,+p;)
is independently distributed according to N(0, 3). Let Y partition as
Y=(%,Y,Y,Y) with », p,—r,, 15, p,—7, columns, respectively. Then
we can write 4, as

An:le,RYzm Yz,F1Y2+Yz,F2Y2|

where Fi=I,—P.y—(I,— Pi)Y{Y/(I,— P.s)Y,} ' Y/(I,— P.s), F,=I,—P—
Fy, P.=, Y)Y, Y)Y, Y)}'(Ys, Y,) and P=Y(Y/Y,)"'Y/. It is
easily seen that F?!=F,, F}=F, and F\F;=0. Noting that the condi-
tional distribution of Y, given (Y3, Y; Y,) is normal with means Y,Bj
when H, is true we obtain that the conditional distribution of 4, is
A(py—11, Do, n—711—D,). Therefore, Ay~A(p—7y, oy n—7,—Dp,), and Ay
is independent of (Y}, Y3, Y,) and hence of 4,,=|Y/G,Y,|/|Y/G\Y,+Y/G,Y,|,
where G,=I,—P,; and G,=I—P;—G,. Similarly, noting that the con-
ditional distribution of Y, given (Y;, Y;) is normal with means Y,Bl
when H, is true, we obtain that Ay~ A(p,—7y, 7, Bn—7,—7)).

From Theorem 2 we can express the characteristic function of
—nlog 4; in terms of I-functions (cf. Anderson [1], p. 193). By ex-
panding the characteristic function as in Box [2] and Anderson [1]
we can obtain the approximation to the null distribution of 4, given
in the following Theorem 3:

THEOREM 3. The null distribution of the likelihood ratio criteriom
(3.4) for H, can be approximated asymptotically up to the order m™ by

(3.5) P(—mlogAéw)=P(x§§x)+%{P(x§+éw)—P(x§§w)}+0(m““),
where p=p;+p;, T=",+7: S=DDi— 1T,

m=n—-%(p+1)——;—7'17’z(p—"')/¢ ’
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=711-8—[{"'f+(p1—”'1)2+"‘§+(1’z—"'2)2“5}¢+2ﬁ(p1—'r‘)p2

+2p 1D —12) +2(0s — 1) (D — T (D1 — 1)
+ 7y (pp— 1) — 811} —3(riry) (p—7) /9] -

As a special result of the above we obtain that the likelihood ratio
criterion 2, for H, is

(3.6) 2?’/2_—_- z=|S44~u3V|S44.3|

and the null distribution of 4, is the A distribution A(p,—7: P, n—D1
—7,). An approximation to the null distribution of 4, is given by the
formula (3.5) with p,=r,. The statistic 4, has been also obtained by
McKay [9] and in the complex normal case by Hannan [5], p. 300.

4. The case of discriminant analysis

Consider g+1 p-variate populations I, (¢i=1,---,¢+1) with means
#, and the same covariance matrix 3. Let x'=(z,---, z,) be the col-
umn vector of the p variables. Suppose that N, samples from II; are
available. Let 2 be the population between-groups covariance matrix

defined by

4D 2=5 (NJN)(pe— ) (2~ Y

where N=N;+---+N,;; and ﬁz(l/N)%lN,-pi. We are interested in

a hypothesis indicating that a specified variable set has as much in-
formation about the differences between the populations as the full set.
Now, consider the partitions x’'=(x/, x}), %,=(%,,--+, «;), and

4.2) #j=<ﬂu), 2=<Zu 212) , Q:(Qll 912)

Hai Sy 2n Dy Oy
conforming with the partition of x. Considering the conditional dis-
tribution of x, given x;, Rao [12] formulated the hypothesis that x;
provides no additional information about departures from nullity of the

hypothesis of equality of g, (i=1,---,¢+1) independently of x;. The
hypothesis is defined by

(4.3) Hy: #21‘22121—11#1&= cee =[l2-(q+1)‘—221zﬁlﬂx-<q+n .

McKay [9] proved that the hypothesis H, is equivalent to each of the
following statements:

(4.4) 0,=6%, j=1,---,m* and m=m*,
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(4.5) tr 371Q2=tr 302,

where 6,=-.--2>6,, and 0¥=...=0* are the non-zero characteristic roots
of 37'Q and 3;'9Q,, respectively.

In this section we give an alternative form of H; in terms of the
canonical variates due to Fisher [3]. The canonical variates method is
used to summarize the differences between the populations in terms of
only a few transformed variates. If rank (2)=m, then the differences
between the populations can be expressed in terms of the first m canon-
ical variates ajx, j=1,---, m, where a, are the solutions of

(4.6) La;=0;2a; , ala;=d;; .

THEOREM 4. FEach of the two statements (4.3) and (4.5) is equiva-
lent to

(4'7) aZj:O’ j=11'°':m
where a;,=(al;, a;;), a;: kx1 and m=rank (2).

PRrROOF. It is sufficient to show the equivalence of (4.5) and (4.7)
since the equivalence of (4.3) and (4.5) has been established by McKay
[9]. We use the identity

(4.8) tr Q3 '=tr 2,55 +tr (— 2y 35, L) 2A— 202, I,_1) Zaa

where 3., =23p—3, 253, If (4.5) holds, from (4.8) we have (—2,37},
I,_)2=0. Using this result and premultiplying both sides of the first
equation of (4.6) by (—23,37', I,_,), we obtain 6,%3,.,a;,=0, j=1,---,m
and hence (4.7). Conversely, if (4.7) is true, from (4.6) we have 2,a;;
=0,3ya;, j=1,---, m and hence (4.5) holds. This completes the proof.

The statement (4.7) means that for the description of the differ-
ences between the populations x, may be considered irrelevant, in the
presence of x;. It is known (Rao [11]) that in the case of ¢g=1 the
statements (4.3), (4.5) and (4.7) are equivalent. The likelihood ratio
test of H; has been used by Rao [10].
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