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Summary

Roy and Gnanadesikan [5] showed that inference for a general
multivariate variance components model may be carried out using the
standard multivariate F distribution under certain conditions. It is
shown in this note that the theory of zonal polynomials, and their
extension by the author to invariant polynomials in two matrix argu-
ments, provide a concise approach to the derivation of these conditions.
Relevant distributions are also derived for the general case.

1. Introduction

The multivariate Model II with a k-way classification has been
formulated by Roy and Gnanadesikan [5] as

(1) X=AE+€=[A1, A2,°--, Ak][é“{,--n Ez'c]'+5 ’

where X is an NXp observable matrix, A is the NXM design matrix

—

of rank r<M<N, the A, are Nxm, (i=1,2,---, k > m,=M), Z is
i=1
Mxp, and where
(i) & is an m,xp matrix whose rows are a random sample from
the p-variate nonsingular normal population N(g,, 2,), 1=1,2,---,k;
(ii) e is an NXp matrix whose rows are a random sample from
the p-variate nonsingular normal population N(0, 3); p<N—r. The &

and ¢ are mutually independent.
To present a precise treatment of problems of estimation and hy-

pothesis testing associated with the variance components &;, Roy and
Gnanadesikan imposed the restriction

(2) i=0320;

where the ¢ are positive scalars (1=1, 2,---, k). They then introduced
the statistics appropriate for testing the hypotheses H,, of equality of
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the rows of &, when (1) is interpreted in the Model I sense, i.e.
Hy: C.E=0
where C; is ¢;X M (¢,=m,;—1), and is partitioned like A in the form
¢.=[,0,---,C,0,---,0],

100---0 —1
(3) c=0 100 -1

000---1 —1
C, being g,Xxm,. Let A, be an Nxr matrix consisting of a selection of
r linearly independent columns of A, and let C;; be the ¢,xr matrix
containing the corresponding columns of C;. Then the sum of squares

and products matrix for the hypothesis H,, (assumed testable) is Y/Y,,
where

( 4 ) K =Bi—l/2Cu(A;A1)_1A;X Bizcil(AfAI)_l {1

are ¢;Xp and g¢;Xgq; matrices respectively (=1, 2,---, k). As usual, the
error matrix is

S=X"(Iy—A/(A1A,)"ADX ,

where I, denotes the N XN unit matrix. Under the Model II (1), S
has the distribution Wy(n, 3;), n=N—r, and is independent of the Y,’s.

It was shown by Roy and Gnanadesikan that, provided the condi-
tion (2) holds, and provided also that B, is of the form

(5) B,=v; (I, +J) ,

where v; is a scalar and J is the ¢;Xgq; matrix of ones, 1;'Y/Y; has the
p-variate central Wishart distribution W,(q;, 2;) with q, degrees of free-
dom and covariance matrix Y, where

21,:1)‘0'2_*‘1

(t=1,2,---, k). If ¢;<p the distribution is pseudo-Wishart. Further,
the Y/Y, are mutually independent if

(6) CiI(A;AI)_XC_;[:O 9’ iq&j:]_, 2’-..,]‘;_
From (5),
v;=2(m,—1)/trace (B,) .

An alternative expression given by Roy and Gnanadesikan ([5], p. 333)
follows from equation (12) below. The conditions (5) and (6) are satis-



MULTIVARIATE VARIANCE COMPONENTS 519

fied in particular by the multivariate analogues of the usual univariate
complete block designs. Their fulfilment enables inferences to be made
on the ¢! using the standard distribution theory for the latent roots
of the multivariate F' matrix.

In Section 2 we present expansions for the joint distribution of
the roots of Y, S~'Y/ when ¢,<p in the general case, and indicate the
corresponding result for ¢;=p. The conditions (2), (5) and (6) of Roy
and Gnanadesikan are shown to follow quite straightforwardly. Chak-
ravorti [1] has derived the distribution of (Y/Y,+Y/Y;)S™* and its trace

under the latter conditions.
Approximate confidence bounds for measures of dispersion associated

with random effects in univariate and multivariate mixed models were
derived by Roy and Cobb [4], both for the general normal case, and
for possibly nonnormal situations.

2. Some distribution theory, and derivation of the conditions

The subscript ¢ will be omitted throughout this section for con-
venience. Assuming that H, is testable, it follows from (1) and (4) that

Y=V+G¢,
where
V=B :C(A,A)"'Ae, G=B"C
are ¢Xp and gXm matrices respectively, and the rows of V are inde-
pendent N(0, 2y). Since the &’s are independent, condition (6) for in-
dependence of the Y'Y’s readily follows.
If ¢<p then, conditional upon ¢, the latent roots fi=f,=---=f,=0

of the ¢xg matrix F=YS 'Y’ have the multivariate noncentral F' dis-
tribution, derivable from James [3] equation (72),

etr (—12)F(L@+n) Lpi L0 AAFH )0,

where

(1) B)=|L T @+m)a /1, 2p)1 L@+n—p)| o +0)]

B |F[CP-q—l)/zlIq+Fl—<q+n)/2u-[;l; (fu_fv)

is the corresponding null distribution. Here F? denotes a hypergeo-
metric function of two matrix arguments, I, is the multivariate gamma
function, and the noncentrality matrix in the present situation is

2=Gm'G¢, p=E371%,
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From (3), the rows of the m X p matrix » may be regarded as a
random sample from N(0, ), where

T=37"35712,

Hence, in order to derive the unconditional distribution of F, it is
necessary to evaluate terms of the form

(8) (r) m|g| ™2 Sy etr (——é—!ﬂ’"%'wy——é—n'G'Gn) C. <—;— n'G'Gn)dﬂ ,

where etr (-)=exp (trace (-)), and C(-) is the zonal polynomial corre-
sponding to the ordered partition k=[k,, k,,- - -] of k into not more than
g parts (James, [3]). For a scalar «, define

4= '[,—-T, 0=a'I,+G'G .

Then (8) may be written
(9) @r)ymr|F|—m~r S” etr (—é—@nn') etr <% An'r})CK(—;—G'Gm]')dn .

We now transform to {=75H, where H is an arbitrary orthogonal
pXp matrix. Integration with respect to the invariant Haar measure
(dH) over the orthogonal group O(p) leaves the value of (9) unchanged,
and by James [3] equations (13) and (23) we obtain

(2r) ot | Sc etr (—%@cc)oF;m(A, %c&)a(é—G’GCC')dC .

Defining W to have the Wishart distribution W,(p, @'), the evaluation
of (8) thus reduces to calculating terms
EW{C,(—I-G’GW>C;<-1—W>} -5 (lp) 6:'C5(6-G'G, 67
2 2 see2 \2 " /9

by Davis [2] equation (2.6). Here 1 and ¢ denote partitions of I ({=0,
1,2,---) and k-+!, respectively; (p/2), is a multivariate hypergeometric
coefficient ; and ¢ € k-1 means that the irreducible representation of the
real linear group of nonsingular m Xm matrices indexed by 2¢ occurs
in the decomposition of the Kronecker product of the representations
indexed by 2« and 24. C%* is an invariant polynomial with two matrix
arguments, and 05*=C5(I,, I,)/C«I,). The joint distribution of the
roots of F' in the general case may now be written

n)/2).Cd,+F)™)
k!(p/2).CAL,)

< Ci(4) _l & 2V, 3( A= 1Y1 -1
t%") ; 1'C(1,) ¢ezx-z (2 p>¢0¢ C¥(67G'G, 67 -

) Ererge) 3 5 A4t
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If a value a=¢* can be chosen such that 4=0, whence ¥=¢*I, and
(2) is satisfied, then only terms with =0 are retained in (10). Write

0=1I,4+0GG’ .

Then the distribution reduces in this case to
(11) 019 F) FS®(+-(@-+m); L+ 7)™, 00766
= K07 F |02 T (f,~1.)
. SW I+ F.9 0 9| <+»d d[) ,

where K is the multiplicative constant in (7). Equation (11) thus pro-
vides the distribution of the roots when (2) holds, but not (5). Clearly,
17'F will have the standard ¢-variate F' distribution (7) provided that
0=21I,; that is, if

(12) GG'=B*CC'B"*=»I, ,

where 1=vo’+1. Condition (5) now follows using (3).

For g=p, the starting point is the noncentral latent roots distri-
bution of Constantine (James [3], equation (73)). The evaluation of
(8) remains unchanged, and a form corresponding to (11) is obtained
with the pXp matrix F=Y'YS™ bordered by zeros in the integral to
form a ¢XxXq matrix.
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