ON A RESULT OF ROY AND GNANADESIKAN CONCERNING MULTIVARIATE VARIANCE COMPONENTS

A. W. DAVIS

(Received Jan. 14, 1982)

Summary

Roy and Gnanadesikan [5] showed that inference for a general multivariate variance components model may be carried out using the standard multivariate F distribution under certain conditions. It is shown in this note that the theory of zonal polynomials, and their extension by the author to invariant polynomials in two matrix arguments, provide a concise approach to the derivation of these conditions. Relevant distributions are also derived for the general case.

1. Introduction

The multivariate Model II with a k-way classification has been formulated by Roy and Gnanadesikan [5] as

(1)
$$X=A\Xi+\varepsilon=[A_1,A_2,\cdots,A_k][\xi_1',\cdots,\xi_k']'+\varepsilon,$$

where X is an $N \times p$ observable matrix, A is the $N \times M$ design matrix of rank $r \leq M \leq N$, the A_i are $N \times m_i$ $(i=1, 2, \dots, k, \sum_{i=1}^k m_i = M)$, \mathcal{E} is $M \times p$, and where

- (i) ξ_i is an $m_i \times p$ matrix whose rows are a random sample from the p-variate nonsingular normal population $N(\mu_i, \Sigma_i)$, $i=1, 2, \dots, k$;
- (ii) ε is an $N \times p$ matrix whose rows are a random sample from the p-variate nonsingular normal population $N(0, \Sigma_0)$; $p \le N r$. The ξ_i and ε are mutually independent.

To present a precise treatment of problems of estimation and hypothesis testing associated with the variance components ξ_i , Roy and Gnanadesikan imposed the restriction

$$\Sigma_i = \sigma_i^2 \Sigma_0$$
 ,

where the σ_i^2 are positive scalars $(i=1, 2, \dots, k)$. They then introduced the statistics appropriate for testing the hypotheses H_{0i} of equality of

the rows of ξ_i when (1) is interpreted in the Model I sense, i.e.

$$H_{0i}: C_i \Xi = 0$$

where C_i is $q_i \times M$ $(q_i = m_i - 1)$, and is partitioned like A in the form

$$C_i = [0, 0, \cdots, \tilde{C}_i, 0, \cdots, 0]$$

(3)
$$\tilde{C}_{i} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & -1 \\ 0 & 1 & 0 & \cdots & 0 & -1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & -1 \end{bmatrix}$$

 \tilde{C}_i being $q_i \times m_i$. Let A_I be an $N \times r$ matrix consisting of a selection of r linearly independent columns of A, and let C_{iI} be the $q_i \times r$ matrix containing the corresponding columns of C_i . Then the sum of squares and products matrix for the hypothesis H_{0i} (assumed testable) is $Y_i'Y_i$, where

$$(4) Y_i = B_i^{-1/2} C_{iI} (A_I A_I)^{-1} A_I X B_i = C_{iI} (A_I A_I)^{-1} C_{iI}'$$

are $q_i \times p$ and $q_i \times q_i$ matrices respectively $(i=1, 2, \dots, k)$. As usual, the error matrix is

$$S = X'(I_N - A_I(A'_IA_I)^{-1}A'_I)X$$
,

where I_N denotes the $N \times N$ unit matrix. Under the Model II (1), S has the distribution $W_p(n, \Sigma_0)$, n = N - r, and is independent of the Y_i 's.

It was shown by Roy and Gnanadesikan that, provided the condition (2) holds, and provided also that B_i is of the form

(5)
$$B_i = \nu_i^{-1}(I_{q_i} + J)$$
,

where ν_i is a scalar and J is the $q_i \times q_i$ matrix of ones, $\lambda_i^{-1} Y_i' Y_i$ has the p-variate central Wishart distribution $W_p(q_i, \Sigma_0)$ with q_i degrees of freedom and covariance matrix Σ_0 , where

$$\lambda_i = \nu_i \sigma_i^2 + 1$$

 $(i=1, 2, \dots, k)$. If $q_i < p$ the distribution is pseudo-Wishart. Further the $Y_i Y_i$ are mutually independent if

(6)
$$C_{ii}(A'_iA_i)^{-1}C'_{ji}=0$$
, $i\neq j=1, 2, \cdots, k$.

From (5),

$$\nu_i = 2(m_i - 1)/\text{trace}(B_i)$$
.

An alternative expression given by Roy and Gnanadesikan ([5], p. 333) follows from equation (12) below. The conditions (5) and (6) are satis-

fied in particular by the multivariate analogues of the usual univariate complete block designs. Their fulfilment enables inferences to be made on the σ_i^2 using the standard distribution theory for the latent roots of the multivariate F matrix.

In Section 2 we present expansions for the joint distribution of the roots of $Y_iS^{-1}Y_i'$ when $q_i \leq p$ in the general case, and indicate the corresponding result for $q_i \geq p$. The conditions (2), (5) and (6) of Roy and Gnanadesikan are shown to follow quite straightforwardly. Chakravorti [1] has derived the distribution of $(Y_1'Y_1 + Y_2'Y_2)S^{-1}$ and its trace under the latter conditions.

Approximate confidence bounds for measures of dispersion associated with random effects in univariate and multivariate mixed models were derived by Roy and Cobb [4], both for the general normal case, and for possibly nonnormal situations.

2. Some distribution theory, and derivation of the conditions

The subscript i will be omitted throughout this section for convenience. Assuming that H_0 is testable, it follows from (1) and (4) that

$$Y=V+G\varepsilon$$
.

where

$$V = B^{-1/2}C_I(A_I'A_I)^{-1}A_I'\varepsilon$$
 , $G = B^{-1/2}\tilde{C}$

are $q \times p$ and $q \times m$ matrices respectively, and the rows of V are independent $N(0, \Sigma_0)$. Since the ξ 's are independent, condition (6) for independence of the Y'Y''s readily follows.

If $q \leq p$ then, conditional upon ξ , the latent roots $f_1 \geq f_2 \geq \cdots \geq f_q \geq 0$ of the $q \times q$ matrix $F = YS^{-1}Y'$ have the multivariate noncentral F distribution, derivable from James [3] equation (72),

$$\operatorname{etr}\Big(\!-\!rac{1}{2}arOmega\Big)_{\!\scriptscriptstyle 1}\!F_{\!\scriptscriptstyle 1}^{\scriptscriptstyle (q)}\!\Big(\!rac{1}{2}(q\!+\!n);rac{1}{2}\,p;rac{1}{2}arOmega,(I_q\!+\!F^{\scriptscriptstyle -1})^{\scriptscriptstyle -1}\!\Big)\!\phi(F)$$
 ,

where

(7)
$$\phi(F) = \left[\Gamma_{q} \left(\frac{1}{2} (q+n) \right) \pi^{q^{2}/2} / \Gamma_{q} \left(\frac{1}{2} p \right) \Gamma_{q} \left(\frac{1}{2} (q+n-p) \right) \Gamma_{q} \left(\frac{1}{2} q \right) \right]$$

$$\cdot |F|^{(p-q-1)/2} |I_{q} + F|^{-(q+n)/2} \prod_{u < v} (f_{u} - f_{v})$$

is the corresponding null distribution. Here ${}_{1}F_{1}^{(q)}$ denotes a hypergeometric function of two matrix arguments, Γ_{q} is the multivariate gamma function, and the noncentrality matrix in the present situation is

$$\Omega = G\eta\eta'G'$$
, $\eta = \xi \Sigma_0^{-1/2}$.

A. W. DAVIS

520

From (3), the rows of the $m \times p$ matrix η may be regarded as a random sample from $N(0, \mathbb{F})$, where

$$\Psi = \Sigma_0^{-1/2} \Sigma \Sigma_0^{-1/2}$$
.

Hence, in order to derive the unconditional distribution of F, it is necessary to evaluate terms of the form

$$(\,8\,) \ \ \ (2\pi)^{-m\,p/2} |\varPsi|^{-m/2} \int_{\eta} \mathrm{etr} \left(-rac{1}{2} \varPsi^{-1} \eta' \eta - rac{1}{2} \eta' G' G \eta
ight) C_{\epsilon} \! \left(rac{1}{2} \eta' G' G \eta
ight) \! d\eta \; ,$$

where etr(·)=exp(trace(·)), and $C_{\epsilon}(\cdot)$ is the zonal polynomial corresponding to the ordered partition $\kappa = [k_1, k_2, \cdots]$ of k into not more than q parts (James, [3]). For a scalar α , define

$$\Delta = \alpha^{-1}I_n - \Psi^{-1}$$
, $\Theta = \alpha^{-1}I_m + G'G$.

Then (8) may be written

$$(9) \quad (2\pi)^{-mp/2} |\varPsi|^{-m/2} \int_{\mathbb{R}} \operatorname{etr} \left(-rac{1}{2} \Theta \eta \eta'
ight) \operatorname{etr} \left(rac{1}{2} \varDelta \eta' \eta
ight) C_{s} \left(rac{1}{2} G' G \eta \eta'
ight) d\eta \; .$$

We now transform to $\zeta = \eta H$, where H is an arbitrary orthogonal $p \times p$ matrix. Integration with respect to the invariant Haar measure (dH) over the orthogonal group O(p) leaves the value of (9) unchanged, and by James [3] equations (13) and (23) we obtain

$$(2\pi)^{-mp/2} |\varPsi|^{-m/2} \int_{arsigma} \mathrm{etr} \left(-rac{1}{2} artheta \zeta \zeta'
ight)_{0} F_{0}^{(p)} \! \left(arLambda, rac{1}{2} \zeta \zeta'
ight) \! C_{arkappa} \! \left(rac{1}{2} G' G \zeta \zeta'
ight) \! d \zeta \; .$$

Defining W to have the Wishart distribution $W_m(p, \Theta^{-1})$, the evaluation of (8) thus reduces to calculating terms

$$E_{W}\left\{C_{\iota}\left(\frac{1}{2}G'GW\right)C_{\iota}\left(\frac{1}{2}W\right)\right\} = \sum_{\phi \in \iota^{-1}}\left(\frac{1}{2}p\right)_{\phi}\theta_{\phi}^{\iota,\lambda}C_{\phi}^{\iota,\lambda}(\Theta^{-1}G'G,\Theta^{-1})$$

by Davis [2] equation (2.6). Here λ and ϕ denote partitions of l ($l=0,1,2,\cdots$) and k+l, respectively; $(p/2)_{\phi}$ is a multivariate hypergeometric coefficient; and $\phi \in \kappa \cdot \lambda$ means that the irreducible representation of the real linear group of nonsingular $m \times m$ matrices indexed by 2ϕ occurs in the decomposition of the Kronecker product of the representations indexed by 2κ and 2λ . $C_{\phi}^{\epsilon,\lambda}$ is an invariant polynomial with two matrix arguments, and $\theta_{\phi}^{\epsilon,\lambda} = C_{\phi}^{\epsilon,\lambda}(I_m,I_m)/C_{\phi}(I_m)$. The joint distribution of the roots of F in the general case may now be written

(10)
$$|\mathcal{F}|^{-m/2} |\mathcal{\Theta}|^{-p/2} \psi(F) \sum_{k=0}^{\infty} \sum_{\varepsilon} \frac{((q+n)/2)_k C_{\varepsilon} ((I_q + F^{-1})^{-1})}{k! (p/2)_{\varepsilon} C_{\varepsilon} (I_q)}$$

$$\cdot \sum_{l=0}^{\infty} \sum_{\lambda} \frac{C_{\lambda}(\Delta)}{l! C_{\lambda}(I_p)} \sum_{\phi \in \varepsilon, \lambda} \left(\frac{1}{2} p\right)_{\phi} \theta_{\phi}^{\varepsilon, \lambda} C_{\phi}^{\varepsilon, \lambda} (\mathcal{O}^{-1} G' G, \mathcal{O}^{-1}) .$$

If a value $\alpha = \sigma^2$ can be chosen such that $\Delta = 0$, whence $\Psi = \sigma^2 I_p$ and (2) is satisfied, then only terms with l=0 are retained in (10). Write

$$\Phi = I_q + \sigma^2 G G'$$
.

Then the distribution reduces in this case to

(11)
$$\begin{split} |\varPhi|^{-p/2} \psi(F)_{1} F_{0}^{(q)} \Big(\frac{1}{2} (q+n); (I_{q} + F^{-1})^{-1}, \sigma^{2} \varPhi^{-1} G G' \Big) \\ = K |\varPhi|^{-p/2} |F|^{(p-q-1)/2} \prod_{u < v} (f_{u} - f_{v}) \\ \cdot \int_{\mathcal{O}(q)} |I_{q} + F \mathcal{H} \varPhi^{-1} \mathcal{H}'|^{-(q+n)/2} (d \mathcal{H}) , \end{split}$$

where K is the multiplicative constant in (7). Equation (11) thus provides the distribution of the roots when (2) holds, but not (5). Clearly, $\lambda^{-1}F$ will have the standard q-variate F distribution (7) provided that $\Phi = \lambda I_q$; that is, if

(12)
$$GG' = B^{-1/2}\tilde{C}\tilde{C}'B^{-1/2} = \nu I_q,$$

where $\lambda = \nu \sigma^2 + 1$. Condition (5) now follows using (3).

For $q \ge p$, the starting point is the noncentral latent roots distribution of Constantine (James [3], equation (73)). The evaluation of (8) remains unchanged, and a form corresponding to (11) is obtained with the $p \times p$ matrix $F = Y'YS^{-1}$ bordered by zeros in the integral to form a $q \times q$ matrix.

CSIRO

REFERENCES

- [1] Chakravorti, S. (1968). On the analysis of variance test in multivariate variance components model, Calcutta Statist. Ass. Bull., 17, 57-78.
- [2] Davis, A. W. (1979). Invariant polynomials with two matrix arguments extending the zonal polynomials: applications to multivariate distribution theory, *Ann. Inst. Statist. Math.*, 31, A, 465-485.
- [3] James, A. T. (1964). Distributions of matrix variates and latent roots derived from normal samples, Ann. Math. Statist., 35, 475-501.
- [4] Roy, S. N. and Cobb, W. (1960). Mixed model variance analysis with normal error and possibly non-normal other random effects, I. The univariate case, II. The multivariate case, Ann. Math. Statist., 31, 939-957, 958-968.
- [5] Roy, S. N. and Gnanadesikan, R. (1959). Some contributions to ANOVA in one or more dimensions: II, Ann. Math. Statist., 30, 318-339.