ASYMPTOTIC PROPERTIES OF ESTIMATORS OF INTERCLASS CORRELATION FROM FAMILIAL DATA

SADANORI KONISHI

(Received Feb. 24, 1982; revised July 29, 1982)

Summary

Asymptotic properties of several estimators of interclass correlation from familial data are examined in the case of a variable number of siblings per family. After showing that the usual sib-mean estimator is not consistent, a modified sib-mean estimator is proposed. Asymptotic distributions of estimators are derived and a test procedure is provided for a certain testing problem concerning interclass correlation. Several estimators are compared in the various mean number of siblings per family, using asymptotic mean square errors.

1. Introduction

An important problem in the analysis of familial data is to estimate the degree of resemblance between a parent and siblings. Several estimators, the pairwise, sib-mean, random-sib and ensemble estimators, have been proposed for a parent-child correlation or interclass correlation. Rosner, Donner and Hennekens [8] have compared these estimators through Monte Carlo simulation, and showed that the pairwise and ensemble estimators are far superior to the sib-mean and random-sib estimators in terms of mean square errors. Furthermore, by the same approach, Rosner [6] has compared the pairwise and ensemble estimators with the maximum likelihood estimate obtained by using the Newton-Raphson methods. The maximum likelihood estimate can not be expressed in closed form.

In this paper asymptotic properties of these estimators are examined in the case of a variable number of siblings per family. It can be seen that the sib-mean estimator is not a consistent estimator, whereas the other estimators are consistent. A modified sib-mean estimator is proposed and compares favourably with previous estimators. Further, we

Key words and phrases: Interclass correlation, familial data, consistent estimator, asymptotic distribution.

derive asymptotic distributions of estimators and consider the testing problem concerning interclass correlations when one has familial data. Several estimators for interclass correlation are compared for various values of the mean number of siblings per family, using asymptotic mean square errors.

2. Model and estimates

2.1. Familial data

Suppose we have a random sample of N families each consisting of mother, in general, parent and her siblings. Let $x_{\alpha}=(x_{1\alpha}, x_{2\alpha}, \cdots, x_{k_{\alpha}+1,\alpha})'$ be the observed values of the α th family concerning a certain character where $x_{1\alpha}$ is the mother's score and $x_{2\alpha}, \cdots, x_{k_{\alpha}+1,\alpha}$ are the scores of her k_{α} siblings. That is, we consider a situation that there are a variable number of siblings per family. Assume that x_{α} have a $(k_{\alpha}+1)$ -variate normal distribution with mean vector $(\mu_{m}, \mu_{s}, \cdots, \mu_{s})'$ and covariance matrix

(2.1)
$$\Sigma_{\alpha} = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{12}' & \Sigma_{22} \end{pmatrix}$$

where $\Sigma_{11} = \sigma_m^2$, $\Sigma_{12} = (\rho_{ms}\sigma_m\sigma_s, \dots, \rho_{ms}\sigma_m\sigma_s)$ and $\Sigma_{22} = \sigma_s^2\{(1-\rho_{ss})I + \rho_{ss}ee'\}$ with I the identity matrix of order k_a and $e = (1, \dots, 1)'$ the k_a dimensional vector. We assume that the parameters do not depend upon sibship size and that sibships have a limited size and $k_a \ge 1$. On the basis of observations from N families, we wish to estimate the interclass correlation ρ_{ms} . Estimator is used to assess the degree of resemblance between a parent and his or her siblings.

2.2. Estimators of interclass correlation

Estimators discussed in the present paper are as follows:

(1) Pairwise estimator. The pairwise estimator is obtained by pairing each mother's score with the k_{α} sibling scores and assuming such pairs to be independent. This estimator is of the form

$$\hat{\rho}_{ms,p} = \sum_{\alpha=1}^{N} \sum_{i=2}^{k_{\alpha}+1} (x_{1\alpha} - \tilde{x}_m) (x_{i\alpha} - \tilde{x}_s) / \left\{ \sum_{\alpha=1}^{N} k_{\alpha} (x_{1\alpha} - \tilde{x}_m)^2 \sum_{\alpha=1}^{N} \sum_{i=2}^{k_{\alpha}+1} (x_{i\alpha} - \tilde{x}_s)^2 \right\}^{1/2}$$

where $\tilde{x}_m = \sum_{\alpha=1}^N k_\alpha x_{1\alpha} / \sum_{\alpha=1}^N k_\alpha$ and $\tilde{x}_s = \sum_{\alpha=1}^N \sum_{i=2}^{k_\alpha+1} x_{i\alpha} / \sum_{\alpha=1}^N k_\alpha$. As discussed in the Appendix, the pairwise estimator $\hat{\rho}_{ms,p}$ is a consistent estimator.

(2) Random-sib estimator. The random-sib estimator, say $\hat{\rho}_{ms,r}$, is obtained by choosing one sibling randomly from each family and computing the ordinary product-moment correlation based on samples paired with the mother of that family.

(3) Ensemble estimator. Rosner, Donner and Hennekens [8] proposed the estimator

$$\hat{\rho}_{ms,e} = \sum_{\alpha=1}^{N} (x_{1\alpha} - \overline{x}_m) (\overline{x}_{s\alpha} - \overline{x}_s) / \left[\sum_{\alpha=1}^{N} (x_{1\alpha} - \overline{x}_m)^2 \left\{ \frac{n}{N} \sum_{\alpha=1}^{N} \sum_{i=2}^{k_{\alpha}+1} (x_{i\alpha} - \overline{x}_{s\alpha})^2 / k_{\alpha} \right\} \right]^{1/2} + \sum_{\alpha=1}^{N} (\overline{x}_{s\alpha} - \overline{x}_s)^2$$

where n=N-1, $\overline{x}_m=\frac{1}{N}\sum_{\alpha=1}^N x_{1\alpha}$, $\overline{x}_{s\alpha}=\frac{1}{k_{\alpha}}\sum_{i=2}^{k_{\alpha}+1} x_{i\alpha}$ and $\overline{x}_s=\frac{1}{N}\sum_{\alpha=1}^N \overline{x}_{s\alpha}$. This estimator was obtained by computing the expected value of the random-sib estimator $\hat{\rho}_{ms,r}$ approximately over all possible choices of random sibs from each family. Following the same line of approach as discussed in Appendix, we may find that $\hat{\rho}_{ms,e}$ is a consistent estimator for ρ_{ms} .

(4) Sib-mean estimator. The sib-mean estimator is obtained by pairing each mother's score with the mean of her k_{α} siblings. So the estimator has the following form:

$$\hat{\rho}_{ms,s} = \sum_{\alpha=1}^{N} (x_{1\alpha} - \overline{x}_m) (\overline{x}_{s\alpha} - \overline{x}_s) / \left\{ \sum_{\alpha=1}^{N} (x_{1\alpha} - \overline{x}_m)^2 \sum_{\alpha=1}^{N} (\overline{x}_{s\alpha} - \overline{x}_s)^2 \right\}^{1/2}.$$

The sib-mean estimator seems, intuitively, to be more effective than the pairwise estimator which is obtained by treating the pairs of each mother's score and her k_{α} siblings' scores as if they are independent. We may, however, find that the expectation of $\hat{\rho}_{ms,s}$ is, noting that $N^{-1} \sum (1/k_{\alpha}) = O(1)$, asymptotically

$$\mathrm{E}\left[\hat{
ho}_{ms,s}\right] = \left\{\frac{1}{N}\sum_{a=1}^{N}\frac{1}{k_{a}} + \left(1 - \frac{1}{N}\sum_{a=1}^{N}\frac{1}{k_{a}}\right)
ho_{ss}\right\}^{-1/2}
ho_{ms}$$
 .

The sib-mean estimator is therefore not a consistent estimator for ρ_{ms} . (5) *Modified sib-mean estimator*. We modify the sib-mean estimator as follows:

(2.2)
$$\hat{\rho}_{ms,cs} = \{c_1 + (1 - c_1)\rho_{ss}\}^{1/2} \hat{\rho}_{ms,s}$$

where $c_1 = N^{-1} \sum_{\alpha} (1/k_{\alpha})$. This is a consistent estimator for ρ_{ms} . The intraclass correlation ρ_{ss} contained in (2.2) is in general unknown and has to be estimated from familial data. Several estimators have been proposed for the intraclass correlation. An obvious estimator for ρ_{ss} is given by

(2.3)
$$\hat{\rho}_{ss} = \left\{ \sum_{\alpha=1}^{N} \sum_{i\neq j}^{k_{\alpha}+1} (x_{i\alpha} - \hat{\mu}_{s}) (x_{j\alpha} - \hat{\mu}_{s}) / \sum_{\alpha=1}^{N} k_{\alpha} (k_{\alpha} - 1) \right\} / \left\{ \sum_{\alpha=1}^{N} \sum_{i=2}^{k_{\alpha}+1} (x_{i\alpha} - \hat{\mu}_{s})^{2} / \sum_{\alpha=1}^{N} k_{\alpha} \right\}$$

where
$$\hat{\mu}_s = \sum_{\alpha=1}^{N} \sum_{i=2}^{k_{\alpha}+1} x_{i\alpha} / \sum_{\alpha=1}^{N} k_{\alpha}$$
.

The usual sib-mean estimator can be markedly improved in terms of mean square error by using the modification (2.2) with $\hat{\rho}_{in}$. If all families are of the same size, (2.3) gives the maximum likelihood estimate for ρ_{is} and the pairwise estimator is equivalent to the maximum likelihood estimate for ρ_{ms} (Rosner, Donner and Hennekens [8]). In the case of a variable number of siblings per family, the maximum likelihood estimate does not exist in closed form. Recently, an iterative algorithm for calculating the maximum likelihood estimate was given by Mak and Ng [5].

3. Asymptotic results

3.1. Moments and distributions

As discussed in the Appendix, if we expand each estimator around ρ_{ms} and calculate expected values, then we can obtain the asymptotic moments of the estimators. The results for the first moments of the pairwise, ensemble and modified sib-mean estimators around ρ_{ms} are, respectively, given as follows:

$$\begin{split} & \text{E}\left[\hat{\rho}_{\textit{\tiny ms,p}}\!-\!\rho_{\textit{\tiny ms}}\right] \!=\! \frac{1}{n} \rho_{\textit{\tiny ms}} \!\left\{\! a_1 \!+\! (\sum k_a^2\!/\!\sum k_a) \! a_2 \right. \\ & \left. + \frac{1}{2} (1\!-\!\rho_{\textit{\tiny ss}}) (1\!-\!\sum k_a^2\!/\!\sum k_a) \!\right\} \left\{ n \sum k_a\!/\!\sum_{\alpha \neq \beta} k_a k_\beta \right\} \,, \end{split}$$

$$\begin{split} \text{(3.1)} \qquad & \text{E}\left[\hat{\rho}_{ms,\,e}\!-\!\rho_{ms}\right] \!=\! \frac{1}{n} \rho_{ms} (c_1 a_1\!+\!a_2) \; , \\ & \text{E}\left[\hat{\rho}_{ms,\,cs}\!-\!\rho_{ms}\right] \!=\! \frac{1}{n} \rho_{ms} \left[-\frac{13}{8}\!+\!\frac{1}{2} c_2^{-1} \rho_{ms}^2 \!+\!\frac{3}{8} c_2^{-2} \{3 \rho_{ss}^2 \!+\! 6 \rho_{ss} (1\!-\!\rho_{ss}) c_1 \right. \\ & \left. + (1\!-\!\rho_{ss})^2 (c_1^2 \!+\! 2 N^{-1} \sum k_\alpha^{-2}) \} \right. \\ & \left. + \frac{1}{2} c_2^{-1} (1\!-\!c_1) \rho_{ss} (a_3 \!+\! a_4 \!+\! a_5) \!-\!\frac{1}{9} c_2^{-2} (1\!-\!c_1)^2 \rho_{ss}^2 a_6 \right] \; , \end{split}$$

$$\begin{split} \text{where } c_1 &= N^{-1} \sum (1/k_a), \ c_2 &= N^{-1} \sum (1/k_a) + \{1 - N^{-1} \sum (1/k_a)\} \, \rho_{ss} \ \text{and} \\ a_1 &= -\frac{1}{4} + \rho_{ss} - \frac{3}{4} \, \rho_{ss}^2 \ , \qquad a_2 &= -\frac{1}{4} - \rho_{ss} + \frac{3}{4} \, \rho_{ss}^2 + \frac{1}{2} \, \rho_{ms}^2 \ , \\ a_3 &= 2(\sum k_a/n - 1)(1 - \rho_{ss}) \{n/\sum k_a + \rho_{ss}^{-1} n/\sum k_a(k_a - 1)\} + \rho_{ms}^2 (1 - \rho_{ss}^{-1}) \\ &+ c_2^{-1} \Big[(n/\sum k_a)(1 - \rho_{ss})(\rho_{ss} + c_2) + \rho_{ss} \Big(\rho_{ss} - \frac{3}{2} \Big) \end{split}$$

$$+ \left\{ n / \sum k_{\alpha}(k_{\alpha} - 1) \right\} \left\{ c_{1}(\rho_{ss} + \rho_{ss}^{-1} - 2) - 3\rho_{ss} - \rho_{ss}^{-1} + 4 + (\sum k_{\alpha}/n) \right\}$$

$$\times \left(\frac{3}{2}\rho_{ss}-2\right) + \frac{1}{2} \left(\sum k_{a}^{2}/n\right)\rho_{ss} \right] ,$$

$$(3.2) \quad a_{4} = -2(n/\sum k_{a})[1 + \left\{\sum k_{a}(k_{a}-1)(k_{a}-2)/\sum k_{a}(k_{a}-1)\right\}\rho_{ss}$$

$$- \left\{\sum k_{a}(k_{a}-1)/\sum k_{a}\right\}\rho_{ss}^{2} \right] ,$$

$$a_{5} = (n/\sum k_{a})[1 - \rho_{ss}^{-1} + \left\{\sum k_{a}(k_{a}-1)/\sum k_{a}\right\}(1 + \rho_{ss})$$

$$- 2\left\{\sum k_{a}(k_{a}-1)^{2}/\sum k_{a}(k_{a}-1)\right\} \right] ,$$

$$a_{6} = 2(n/\sum k_{a})[\left\{\sum k_{a}(k_{a}-1)/\sum k_{a}\right\}\rho_{ss}^{2}$$

$$- 2\left\{\sum k_{a}(k_{a}-1)(k_{a}-2)/\sum k_{a}(k_{a}-1)\right\}\rho_{ss} - 3\right]$$

$$+ 2\left\{n/\sum k_{a}(k_{a}-1)\left\{\rho_{ss}^{-2} + 2\left\{\sum k_{a}(k_{a}-1)(k_{a}-2)/\sum k_{a}(k_{a}-1)\right\}\rho_{ss}^{-1} + \left\{\sum k_{a}(k_{a}-1)(k_{a}^{2}-3k_{a}+3)/\sum k_{a}(k_{a}-1)\right\}\right\} .$$

Here \sum stands for $\sum_{\alpha=1}^{N}$. Because of a number of siblings being finite, it may be noted that in (3.2) $(n/\sum k_{\alpha})$, $(n\sum k_{\alpha}/\sum_{\alpha\neq\beta}k_{\alpha}k_{\beta})$, $\{\sum k_{\alpha}(k_{\alpha}-1)/\sum k_{\alpha}\}$, and so forth, are bounded as n tends to infinity.

The second moments of $\hat{\rho}_{ms,p}$, $\hat{\rho}_{ms,e}$ and $\hat{\rho}_{ms,cs}$ around ρ_{ms} are asymptotically

(3.3)
$$E[(\hat{\rho}_{ms,p}-\rho_{ms})^2] = \frac{1}{n} \rho_{ms}^2 \{a_7 + (\sum k_a^2 / \sum k_a) a_8\} (n \sum k_a / \sum_{\alpha \neq \beta} k_a k_\beta) ,$$

(3.4)
$$E[(\hat{\rho}_{ms,e}-\rho_{ms})^2] = \frac{1}{n} \rho_{ms}^2 (c_1 a_7 + a_8) ,$$

$$(3.5) \quad \mathrm{E}\left[(\hat{\rho}_{ms,\,cs} - \rho_{ms})^{2}\right] = \frac{1}{n} \rho_{ms}^{2} \left[-\frac{11}{4} + c_{2}^{-1} \rho_{ms}^{2} + c_{2} \rho_{ms}^{-2} + c_{2} \rho_{ms}^{-2} \right] \\ + \frac{1}{4} c_{2}^{-2} \left\{ 3 \rho_{ss}^{2} + 6 c_{1} \rho_{ss} (1 - \rho_{ss}) + (c_{1}^{2} + 2N^{-1} \sum k_{\alpha}^{-2}) \right. \\ \times \left. (1 - \rho_{ss})^{2} \right\} + (1 - c_{1}) c_{2}^{-1} \rho_{ss} \\ \times \left. \left\{ a_{3} + \frac{1}{4} (1 - c_{1}) c_{2}^{-1} \rho_{ss} a_{6} \right\} \right],$$

where

$$\begin{split} a_{7} &= -\frac{3}{2} + 2\rho_{ss} - \frac{1}{2}\,\rho_{ss}^{2} + (1-\rho_{ss})\rho_{ms}^{-2} \;, \\ (3.6) \\ a_{8} &= -\frac{1}{2} - 2\rho_{ss} + \frac{1}{2}\,\rho_{ss}^{2} + \rho_{ms}^{2} + \rho_{ss}\rho_{ms}^{-2} \;. \end{split}$$

From the results derived above, it follows that the pairwise, ensemble and modified sib-mean estimators are asymptotically normally distributed with means ρ_{ms} and variances (3.3), (3.4) and (3.5), respec-

tively. The accuracy of these approximations may be improved by the use of the results in (3.1) which give the approximate biases in the estimators. For $k_{\alpha}=k$, $\alpha=1,\dots,N$, the maximum likelihood estimate for ρ_{ms} derived by Rosner et al. [8] is approximately normal with mean ρ_{ms} and variance $n^{-1}\rho_{ms}^2(a_7/k+a_8)$ (see also Elston [1]).

3.2. Tests for interclass correlation

In practice it is of interest to test the hypothesis $H_0: \rho_{ms} = 0$ against $H_1: \rho_{ms} > 0$. For this testing problem under the familial data set-up, we consider test statistics of the following form;

$$\hat{
ho}_{ms,.}/\{\widehat{AV}(\hat{
ho}_{ms,.})\}^{1/2}$$

where $\widehat{AV}(\hat{\rho}_{ms,.})$ is a consistent estimate of $AV(\hat{\rho}_{ms,.})$, the asymptotic variance of each estimator $\hat{\rho}_{ms,.}$. For example, when $\rho_{ms}=0$, it follows from (3.3) that the asymptotic variance of the pairwise estimator $\hat{\rho}_{ms,p}$ reduces to

$$rac{1}{n} \Big\{ 1 +
ho_{ss} \Big(rac{\sum k_lpha^2}{\sum k_lpha} - 1 \Big) \Big\} rac{n \sum k_lpha}{\sum k_lpha k_eta} \; .$$

The unknown parameter ρ_{ss} is estimated by a consistent estimator $\hat{\rho}_{ss}$ given by (2.3). So H_0 is rejected if $\hat{\rho}_{ms,p}/\{\hat{AV}(\hat{\rho}_{ms,p})\}^{1/2}>z_{1-\alpha}$, where $z_{1-\alpha}$ is $100(1-\alpha)$ percentile point of a standard normal distribution.

For a one-to-one and continuously differentiable function f, an asymptotic distribution of $f(\hat{\rho}_{ms,.})$ for each estimator $\hat{\rho}_{ms,.}$ is

$$\{f(\hat{\rho}_{ms,.}) - f(\rho_{ms})\}/[\{AV(\hat{\rho}_{ms,.})\}^{1/2}f'(\rho_{ms})]$$

where $AV(\hat{\rho}_{ms,.})$ is given by (3.3), (3.4) or (3.5). It can be seen from the expression of asymptotic variance that the usual test procedure based on Fisher's [2] z-transformation for the estimator is not appropriate for testing problem concerning interclass correlation. In general, the variance stabilizing transformation for each estimator does not seem to be expressible as an elementary function even for a fixed ρ_{ss} . The relation between variance stabilizing and normalizing transformations of certain statistics was shown by Konishi [3], [4].

4. Numerical results

For various values of the mean number of siblings per family we compare the estimators for ρ_{m*} discussed in Section 2, using the asymptotic mean square errors (3.3), (3.4) and (3.5). For the random-sib estimator, we use the well-known asymptotic result that

(4.1)
$$E \left[(\hat{\rho}_{ms,r} - \rho_{ms})^2 \right] = \frac{1}{n} (1 - \rho_{ms}^2) .$$

As in Rosner et al. [7], [8], the sibship sizes k_{α} are randomly generated from a negative binomial distribution NB(k, p); $\{(x+k-1)!p^k(1-p)^x\}/\{(k-1)!x!\}$. In Table 1 the asymptotic results (3.3), (3.4) and (4.1) are examined by comparing with the simulation results due to Rosner et al. ([8], p. 183, Table 1), although slightly different random numbers for siblings seem to be used. In the present paper the mean number of siblings generated from a negative binomial distribution NB(2.84, 0.517) truncated so that $1 \le x \le 15$ is 3.18. In Table 1 the values in blackets are the mean square errors obtained from Monte Carlo simulation (Rosner et al. [8]). The notations PA, EN, RS and MS used in Tables 1, 2 and 3 refer to the pairwise, ensemble, random-sib and modified sib-mean estimators, respectively.

ρ_m	$_{is}/ ho_{ss}$.0	.1	.3	.5	.8	
	PΑ	.0065(.0060)	.0086(.0079)	.0128(.0120)	.0170(.0162)	.0234(.0232)	
.0	ΕN	.0094(.0093)	.0105(.0104)	.0127(.0125)	.0149(.0148)	.0182(.0183)	
	R S	.0204(.0208)	.0204(.0210)	.0204(.0212)	.0204(.0215)	.0204(.0218)	
	PΑ		.0083(.0081)	.0125(.0122)	.0166(.0164)	.0229(.0232)	
.1	ΕN		.0102(.0103)	.0124(.0125)	.0146(.0147)	.0178(.0181)	
	RS		.0200(.0204)	.0200(.0207)	.0200(.0211)	.0200(.0215)	
	PΑ		.0063(.0070)	.0099(.0107)	.0135(.0146)	.0190(.0206)	
.3	ΕN		.0083(.0089)	.0101(.0107)	.0120(.0128)	.0149(.0158)	
	R S		.0169(.0167)	.0169(.0174)	.0169(.0180)	.0169(.0185)	
	PΑ			.0057(.0069)	.0083(.0100)	.0125(.0148)	
.5	ΕN			.0064(.0069)	.0077(.0086)	.0099(.0111)	
	RS			.0115(.0115)	.0115(.0123)	.0115(.0130)	
	PΑ					.0023(.0033)	
.8	ΕN					.0020(.0024)	
	R S					.0026(.0030)	

Table 1. Comparison between asymptotic mean square errors and simulation results

The fit of approximations is quite good. Further, we find that the comparison of estimators based on asymptotic mean square errors gives the same result as that on the simulation.

Tables 2 and 3 compare asymptotic mean square errors ($\times 10^4$) of the estimators in the various mean number of siblings, for which MNS stands for the mean of sibship sizes k_{α} ($\alpha = 1, \dots, 50$) generated from a negative binomial distribution NB(k, p). The values in parentheses are asymptotic mean square errors of the modified sib-mean estimator hav-

Table 2.	Comparison of asymptotic mean square errors (×104) of
estim	nators in various mean number of siblings for $N=50$

MNS		ρ_{ss} =0.1	ρ_{ss} =0.3	ρ_{ss} =0.5	ρ_{ss} =0.7	ρ_{ss} =0.9	
			$\rho_{ms}=0.1$				
2.22	PΑ	111	154	197	240	283	
NB(3, 0.7)	ΕN	140	153	167	180	193	
1410(3, 0.1)	MS	140(139)	153(153)	167(166)	180(180)	193(193)	
3.30	PΑ	79	118	157	195	234	
NB(9, 0.7)	ΕN	97	120	143	166	189	
ND(3, 0.7)	MS	97(96)	120(119)	143(142)	166 (165)	189(188)	
5.74	PΑ	56	101	145	190	235	
NB(5, 0.5)	ΕN	62	93	123	154	185	
<i>IVD</i> (0, 0.5)	MS	62(61)	93(91)	124(122)	154(153)	185(185)	
8.08	PΑ	45	88	131	175	218	
NB(9, 0.5)	ΕN	54	86	119	151	184	
NB(9, 0.5)	MS	54(52)	86(85)	119(118)	151(151)	184(184)	
	R S	200	200	200	200	200	
			$\rho_{ms}=0.3$				
2.22	PΑ	87	123	161	199	237	
NB(3, 0.7)	ΕN	116	127	139	151	163	
<i>IVD</i> (3, 0.7)	MS	114(111)	127(123)	140(136)	152(149)	164(162)	
3.30	PΑ	60	93	127	161	197	
NB(9, 0.7)	ΕN	78	98	117	138	158	
1410(9, 0.7)	MS	77(69)	98(90)	118(112)	139(135)	160(157)	
5.74	PΑ	40	78	117	156	197	
	ΕN	48	74	100	127	155	
<i>NB</i> (5, 0.5)	MS	46(35)	75(63)	102(93)	130(123)	157(154)	
8.08	PΑ	31	68	105	144	183	
0.00 NB(9, 0.5)	ΕN	40	68	96	125	154	
1vD(8, 0.3)	MS	41(30)	69(57)	97(88)	126(120)	155(153)	
	RS	169	169	169	169	169	

ing a true value of ρ_{ss} . We select the combinations of (ρ_{ms}, ρ_{ss}) such that $\rho_{ms}^2 < \rho_{ss}$ so as to satisfy the condition that the covariance matrix Σ_{α} given by (2.1) to be positive definite. We note from (4.1) that asymptotic mean square errors of the random-sib estimator depend only upon the values of ρ_{ms} .

The tables show that for the lower mean sibship sizes the pairwise estimator is superior to the other estimators for $\rho_{ms} < 0.3$ and $\rho_{ss} < 0.3$. For $\rho_{ss} \ge 0.3$, the ensemble and modified sib-mean estimators are superior to the pairwise estimator. For the higher values of ρ_{ss} , the pairwise estimator is not so good, but as the mean number of siblings increases,

MNS		ρ_{ms} =0.5			ρ_{ms} =0.7			
		ρ_{ss} =0.3	ρ_{ss} =0.5	ρ_{ss} =0.7	ρ_{ss} =0.9	ρ_{ss} =0.5	ρ_{ss} =0.7	ρ_{ss} =0.9
0.00	PΑ	74	100	128	159	39	52	70
2.22	ΕN	83	92	100	110	40	44	50
<i>NB</i> (3, 0.7)	MS	82(74)	93(85)	103(96)	113(109)	43(31)	50(39)	56(48)
0.00	PΑ	54	78	104	131	29	42	58
3.30	ΕN	61	75	90	106	31	38	47
<i>NB</i> (9, 0.7)	MS	62(45)	78(63)	93(83)	109(104)	36(17)	44(29)	54(44)
F 74	PΑ	43	70	99	131	24	39	57
5.74	ΕN	43	61	82	103	23	33	46
<i>NB</i> (5, 0.5)	MS	47(22)	68(45)	88(72)	109(100)	35(6)	45(21)	56(42)
0.00	PΑ	36	62	91	121	21	35	53
8.08	ΕN	38	58	80	103	21	31	45
NB(9, 0.5)	MS	42(19)	62(42)	83(70)	106(99)	29(6)	39(20)	51(41)
	RS	115	115	115	115	53	53	53

Table 3. Comparison of asymptotic mean square errors ($\times 10^4$) of estimators in various mean number of siblings for N=50

its asymptotic mean square error is closer to those of the ensemble and modified sib-mean estimators. We compared the modified sib-mean estimator having $\hat{\rho}_{ss}$ estimated by (2.3) with that having a true value of ρ_{ss} . These two types of situation yield the differences between asymptotic mean square errors of $\hat{\rho}_{ms,cs}$ and those in parentheses. Taking another estimator for ρ_{ss} may improve the asymptotic mean square error of $\hat{\rho}_{ms,cs}$ for the higher values of ρ_{ms} . The random-sib estimator is not effective, because of the loss of information which arises from choosing only one siblings per family. Similar comparisons were made for N=100, 200 and we found the results described above to be unchanged.

Appendix. Derivation of asymptotic moments

The derivation of the asymptotic moments of the estimators is outlined in the case of the pairwise estimator $\hat{\rho}_{ms,p}$. Under the assumption that a sample is drawn from a (k_a+1) -variate normal distribution with mean vector $(\mu_m, \mu_s, \dots, \mu_s)'$ and covariance matrix Σ_a given by (2.1), we have

$$egin{aligned} & \mathbf{E}\left[\sum\limits_{lpha=1}^{N}k_{lpha}(x_{1lpha}\!-\! ilde{x}_{m})^{2}
ight]\!=\!N_{k}\sigma_{m}^{2} \;, \ & \mathbf{E}\left[\sum\limits_{lpha=1}^{N}\sum\limits_{i=2}^{k_{lpha}+1}(x_{ilpha}\!-\! ilde{x}_{s})^{2}
ight]\!=\!(\sum k_{lpha}\!-\!1)\sigma_{s}^{2}\!-\!\{\sum k_{lpha}(k_{lpha}\!-\!1)\!/\!\sum k_{lpha}\}
ho_{ss}\sigma_{s}^{2}\;, \end{aligned}$$

$$\mathrm{E}\left[\sum\limits_{lpha=1}^{N}\sum\limits_{i=2}^{k_lpha+1}(x_{lpha}\!-\! ilde{x}_{m})(x_{ilpha}\!-\! ilde{x}_{s})
ight]\!=\!N_{k}\sigma_{ms}$$
 ,

where $N_k = \sum_{\alpha \neq \beta}^N k_{\alpha} k_{\beta} / \sum k_{\alpha}$. Let

$$K_m = \sum_{\alpha} k_{\alpha} (x_{1\alpha} - \tilde{x}_m)^2 / N_k \; , \qquad K_s = \sum_{\alpha} \sum_{i=2}^{k_{\alpha}+1} (x_{i\alpha} - \tilde{x}_s)^2 / N_k \; , \ K_m = \sum_{\alpha} \sum_{i=2}^{k_{\alpha}+1} (x_{1\alpha} - \tilde{x}_m) (x_{i\alpha} - \tilde{x}_s) / N_k \; .$$

Noting that $\sum k_a/N_k=1+(\sum k_a^2/\sum k_a)/N_k$ and $\sum k_a^2/\sum k_a=O(1)$, the statistics K_m , K_s and K_{ms} converge to σ_m^2 , σ_s^2 and σ_{ms} , respectively, as N tends to infinity, that is, as $N_k\to+\infty$. So it is possible to write the pairwise estimator as

$$(A.1) \qquad \hat{\rho}_{ms,p} = \rho_{ms} \left(1 + \frac{K_{ms} - \sigma_{ms}}{\sigma_{ms}} \right) \left\{ \left(1 + \frac{K_{m} - \sigma_{m}^{2}}{\sigma_{m}^{2}} \right) \left(1 + \frac{K_{s} - \sigma_{s}^{2}}{\sigma_{s}^{2}} \right) \right\}^{-1/2}.$$

Expanding (A.1) gives

$$\begin{split} \hat{\rho}_{\textit{ms,p}} = & \rho_{\textit{ms}} \Big\{ 1 + \Big(K_{\textit{ms}}^* - \frac{1}{2} K_{\textit{m}}^* - \frac{1}{2} K_{\textit{s}}^* \Big) + \Big(\frac{3}{8} K_{\textit{m}}^{*\,2} + \frac{3}{8} K_{\textit{s}}^{*\,2} \\ & + \frac{1}{4} K_{\textit{m}}^* K_{\textit{s}}^* - \frac{1}{2} K_{\textit{ms}}^* K_{\textit{s}}^* - \frac{1}{2} K_{\textit{ms}}^* K_{\textit{m}}^* \Big) + \text{higher order terms} \Big\} \ , \end{split}$$

where $K_{ms}^* = (K_{ms} - \sigma_{ms})/\sigma_{ms}$, $K_m^* = (K_m - \sigma_m^2)/\sigma_m^2$ and $K_s^* = (K_s - \sigma_s^2)/\sigma_s^2$. Calculating each expectation of $\hat{\rho}_{ms,p} - \rho_{ms}$ and $(\hat{\rho}_{ms,p} - \rho_{ms})^2$, we can obtain the final results given in Subsection 3.1. Calculations are laborious, because of the complication of varying family size.

For the ensemble estimator $\hat{\rho}_{ms.e.}$, we may find that

$$\begin{split} \mathrm{E}\left[\sum_{\alpha=1}^{N}\left(x_{1\alpha}-\overline{x}_{m}\right)(\overline{x}_{s\alpha}-\overline{x}_{s})\right] &= n\sigma_{ms} \;, \qquad \mathrm{E}\left[\sum_{\alpha=1}^{N}\left(x_{1\alpha}-\overline{x}_{m}\right)^{2}\right] = n\sigma_{m}^{2} \;, \\ \mathrm{E}\left[\frac{n}{N}\sum_{\alpha=1}^{N}\sum_{i=2}^{k\alpha+1}\left(x_{i\alpha}-\overline{x}_{s\alpha}\right)^{2}/k_{\alpha}+\sum_{\alpha=1}^{N}\left(\overline{x}_{s\alpha}-\overline{x}_{s}\right)^{2}\right] &= n\sigma_{s}^{2} \;. \end{split}$$

By an argument similar to that discussed above, we obtain the expansion of $\hat{\rho}_{ms,e}$. Calculating each expectation of the resulting formula, we have the results given in Subsection 3.1.

The modified sib-mean estimator $\hat{\rho}_{ms,cs}$ contains the estimator $\hat{\rho}_{ss}$ given by (2.3). Expectations of the numerator and denominator of $\hat{\rho}_{ss}$, which we put K_{ss} and K_{0s} , respectively, are

$$\begin{aligned} \mathrm{E}\left[K_{ss}\right] = & \rho_{ss}\sigma_{s}^{2} - \sigma_{s}^{2}/\sum k_{\alpha} - \rho_{ss}\sigma_{s}^{2}\{2 \sum k_{\alpha}(k_{\alpha} - 1)^{2}/\sum k_{\alpha}(k_{\alpha} - 1) \\ & - \sum k_{\alpha}(k_{\alpha} - 1)/\sum k_{\alpha}\}/\sum k_{\alpha} \end{aligned},$$

$$\mathbb{E}\left[K_{0s}\right] = \sigma_s^2 - \sigma_s^2 \left\{1 + \rho_{ss} \sum k_{\alpha}(k_{\alpha} - 1) / \sum k_{\alpha}\right\} / \sum k_{\alpha}.$$

Hence we can expand $\hat{\rho}_{ss}$ around ρ_{ss} in the form of

$$\hat{\rho}_{ss} = \rho_{ss} \{ 1 + (K_{ss}^* - K_{0s}^*) + (K_{0s}^{*2} - K_{ss}^* K_{0s}^*) + \cdots \}$$

where $K_{ss}^* = (K_{ss} - \rho_{ss}\sigma_s^2)/\rho_{ss}\sigma_s^2$ and $K_{0s}^* = (K_{0s} - \sigma_s^2)/\sigma_s^2$.

Noting that the leading term of the Taylor series expansion of $\{c_1+(1-c_1)\hat{\rho}_{ss}\}^{1/2}$ is $\{c_1+(1-c_1)\rho_{ss}\}^{1/2}$, we can similarly expand $\{c_1+(1-c_1)\rho_{ss}\}^{1/2}\hat{\rho}_{ms,s}$. Combining these results yields the expansion of $\hat{\rho}_{ms,cs}$, from which we have, after a calculation of each expectation, the final results given in Subsection 3.1. Details are omitted, because of pressure on space.

Acknowledgement

The author would like to thank the referee for valuable comments and suggestions and Mrs. Sato for carrying out the computer analyses.

THE INSTITUTE OF STATISTICAL MATHEMATICS

REFERENCES

- [1] Elston, R. C. (1975). On the correlation between correlations, Biometrika, 62, 133-140.
- [2] Fisher, R. A. (1921). On the "probable error" of a coefficient of correlation deduced from a small sample, Metron, 1, 1-32.
- [3] Konishi, S. (1978). An approximation to the distribution of the sample correlation coefficient, *Biometrika*, 65, 654-656.
- [4] Konishi, S. (1981). Normalizing transformations of some statistics in multivariate analysis, Biometrika, 68, 647-651.
- [5] Mak, T. K. and Ng, K. W. (1981). Analysis of familial data: Linear-model approach, Biometrika, 68, 457-461.
- [6] Rosner, B. (1979). Maximum likelihood estimation of interclass correlations, Biometrika, 66, 533-538.
- [7] Rosner, B. and Donner, A. (1979). Significance testing of interclass correlations from familial data, *Biometrics*, 35, 461-471.
- [8] Rosner, B., Donner, A. and Hennekens, C. H. (1977). Estimation of interclass correlation from familial data, Appl. Statist., 26, 179-187.