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Summary

Asymptotic properties of several estimators of interclass correlation
from familial data are examined in the case of a variable number of
siblings per family. After showing that the usual sib-mean estimator
is not consistent, a modified sib-mean estimator is proposed. Asymp-
totic distributions of estimators are derived and a test procedure is
provided for a certain testing problem concerning interclass correlation.
Several estimators are compared in the various mean number of sib-
lings per family, using asymptotic mean square errors.

1. Introduction

An important problem in the analysis of familial data is to estimate
the degree of resemblance between a parent and siblings. Several
estimators, the pairwise, sib-mean, random-sib and ensemble estimators,
have been proposed for a parent-child correlation or interclass correla-
tion. Rosner, Donner and Hennekens [8] have compared these estima-
tors through Monte Carlo simulation, and showed that the pairwise and
ensemble estimators are far superior to the sib-mean and random-sib
estimators in terms of mean square errors. Furthermore, by the same
approach, Rosner [6] has compared the pairwise and ensemble estimators
with the maximum likelihood estimate obtained by using the Newton-
Raphson methods. The maximum likelihood estimate can not be ex-
pressed in closed form.

In this paper asymptotic properties of these estimators are examined
in the case of a variable number of siblings per family. It can be seen
that the sib-mean estimator is not a consistent estimator, whereas the
other estimators are consistent. A modified sib-mean estimator is pro-
posed and compares favourably with previous estimators. Further, we
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derive asymptotic distributions of estimators and consider the testing
problem concerning interclass correlations when one has familial data.
Several estimators for interclass correlation are compared for various
values of the mean number of siblings per family, using asymptotic
mean square errors.

2. Model and estimates

2.1. Familial data

Suppose we have a random sample of N families each consisting
of mother, in general, parent and her siblings. Let z,=(%.., Zs,** ",
% 41,.) be the observed values of the ath family concerning a certain
character where z,, is the mother’s score and ,,---, % ,. are the
scores of her k, siblings. That is, we consider a situation that there
are a variable number of siblings per family. Assume that z, have a

(k,+1)-variate normal distribution with mean vector (gn, g, -+, )’ and
covariance matrix
3y 3
2.1 Ea___< 11 12)
@1 3 In

where X ,=0%, 35=(0m0n0s " * *» OmsTn0s) ANAd Sy =02{(1 — ps )+ p,ee’} with
I the identity matrix of order k, and e=(1,---,1) the k, dimensional
vector. We assume that the parameters do not depend upon sibship
size and that sibships have a limited size and k,=1. On the basis of
observations from N families, we wish to estimate the interclass cor-
relation p,,. Estimator is used to assess the degree of resemblance
between a parent and his or her siblings.

2.2. Estimators of interclass correlation

Estimators discussed in the present paper are as follows:

(1) Pairwise estimator. The pairwise estimator is obtained by
pairing each mother’s score with the k, sibling scores and assuming
such pairs to be independent. This estimator is of the form

kq+1

N kgt1
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where :’E,,L:é kaa:l,,/ é k, and =3 > %;,/> k.. As discussed in the

a=1 i=2 a=1
Appendix, the pairwise estimator p,, , is a consistent estimator.

(2) Random-sib estimator. The random-sib estimator, say p,,,,, is
obtained by choosing one sibling randomly from each family and com-
puting the ordinary product-moment correlation based on samples paired
with the mother of that family.



ESTIMATORS OF INTERCLASS CORRELATION 507

(3) Ensemble estimator. Rosner, Donner and Hennekens [8] pro-
posed the estimator

k,+1

a

n X =\
W E & (xia xsa) /ka
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N =1

where n=N-1, Z,=— % Liny Lgu=
N =1 .
estimator was obtained by computing the expected value of the random-
sib estimator p,,, approximately over all possible choices of random
sibs from each family. Following the same line of approach as dis-
cussed in Appendix, we may find that p,, . is a consistent estimator for
DOmse
(4) Sib-mean estimator. The sib-mean estimator is obtained by
pairing each mother’s score with the mean of her k, siblings. So the
estimator has the following form:

=2

Pras= % (%10—Tm) (&s,—'aa,)/ {i (@1 — %) é (Esa—w} i

The sib-mean estimator seems, intuitively, to be more effective than

the pairwise estimator which is obtained by treating the pairs of each

mother’s score and her k, siblings’ scores as if they are independent.

We may, however, find that the expectation of p,,, is, noting that

N3 (1/k,)=0Q), asymptotically
. 1 51 1 41 -1/2

E [pmS,s]—‘ {W agl E""‘ (1"‘7\,‘ E 'k_>pu} Pm, .

@

The sib-mean estimator is therefore not a consistent estimator for p;.
(5) Modified sib-mean estimator. We modify the sib-mean esti-
mator as follows:

(2'2) i)ms,cs: {cl+(1_cl)pss} lﬂi’ms,a
where ¢,=N"'31(1/k,). This is a consistent estimator for p,. The

intraclass correlation p,, contained in (2.2) is in general unknown and
has to be estimated from familial data. Several estimators have been
proposed for the intraclass correlation. An obvious estimator for p,, is
given by

@.3) pa={3 E, (=) @ 1) 33 e~ 1)} |
B E e[Sk
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N katl

where £,=3) 31 «,, 2‘. k..

a=1 =2

The usual 31b-mean estimator can be markedly improved in terms

of mean square error by using the modification (2.2) with p,. If all

families are of the same size, (2.3) gives the maximum likelihood esti-

mate for p,, and the pairwise estimator is equivalent to the maximum

likelihood estimate for p,, (Rosner, Donner and Hennekens [8]). In the

case of a variable number of siblings per family, the maximum likeli-

hood estimate does not exist in closed form. Recently, an iterative

algorithm for calculating the maximum likelihood estimate was given
by Mak and Ng [5].

3. Asymptotic results

3.1. Moments and distributions

As discussed in the Appendix, if we expand each estimator around
oms and calculate expected values, then we can obtain the asymptotic
moments of the estimators. The results for the first moments of the
pairwise, ensemble and modified sib-mean estimators around p,, are,
respectively, given as follows:

E [,sm.,,,—pmJ:%pm. {al+(z kS koay

+2 =) (I-S kIS k)] (0 S kIS Rk}

(3°1) E [ﬁms,e—' pms] = %pms(clal + aZ) ’

E [pms,cs pm]————pm[ %+—2—c{ s —622{3ps:+6.0u(1 — Pss)C1

F(1—p )Y +2N 3 koY)
+%c;1(1—cl)p‘.(aa+a4+a5)—%cgz(l—cl)zpzsas] ,

where ¢,=N"'3 (1/k.), ¢.=N"'> (1/k.)+ {1-N' X (1/k.)} p,s and

3 1 3 1
a'l="'-1"+Pn_ZP§s ’ A= — 4 — Psst+— Pu+—2-P3ns ’

=23 ko/n—1)1—p) (03 kot o5 3 k(b —1)} +phs(1—03")

et [(n/ 2 k) (1 —p,) (s +C2)+ Pﬂ("" - %)

+ (0] ellee= D} {eu(pu+ 03 —2) 300 —p3t + 4+ (S Kf)
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x(2 pum2)+ (S kiimpa) |

(8.2)  a=—2(n/3 k)[1+{X k.(k.—1)(k.—2)/3 ku(k.—1)} 0.,
- {2 ka(ka—l)/z ka} Pﬁ:] ’

a;=(n/3 k) [1—p5'+ {2 k(b — 1)/ b} (1+p4)
—2{Z ku(k,— 1)/ ku(k.—1)}]

ay=2(n/3 k) (X k(. — 1)/ 2 K.} ol
—2{X k(k.—1) (k. —2)/3 k.(k.—1)} p..—3]
+2{n/2 k(k.— D} o' +2{Z k.(k.—1) (k.—2)/ 2 k.(k.— 1)} oi!
+ {3 k(. —1) (ki —3k.+3)/ X k.(k.—1)}] .

Here 3 stands for sz‘. . Because of a number of siblings being finite,
it may be noted that in (3.2) (n/>X k.), (n X2 k./ Ep k.ks), {2 k(k,—1)/
a#*

Sk}, and so forth, are bounded as n tends to infinity.
The second moments of Pnp Pmse aNA Ppy ., around p,, are asymp-
totically

83) E [(ﬁm,p—pm)ﬂ:%p;, (@ (S K/ Ras(n STk 5 k)
84 E [(;»m,,e—pm,ﬂ=%pfns(cla7+as) ,

(3’5) E [(i)ma, s pms)zl = % ans [ - % + c{lpfn, +Czp;3

+ %cﬁ (8044 6010u(1—p,) +(c-+2N™ 3T kY
X (1 _p“)Z} + (1 - cl)cﬂ—lpn
x {as+%(1—c,)c;lp,,ae}] ,

where
= —_g"l'zpss—%‘!)zs'l_(l_ﬂu)P;zz ’
(3.6)
1 1
Qg=———2 ss T 5 gs :Ls 83, ;3 .
8 5 P + 5P + pmst O350

From the results derived above, it follows that the pairwise, en-
semble and modified sib-mean estimators are asymptotically normally
distributed with means p,, and variances (3.3), (3.4) and (3.5), respec-
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tively. The accuracy of these approximations may be improved by the
use of the results in (38.1) which give the approximate biases in the
estimators. For k,=k, a=1,---, N, the maximum likelihood estimate
for p,, derived by Rosner et al. [8] is approximately normal with mean
oms and variance n~'ol(a./k+as) (see also Elston [1]).

3.2. Tests for interclass correlation

In practice it is of interest to test the hypothesis H;: p,,,=0 against
H;: p,.,>0. For this testing problem under the familial data set-up, we
consider test statistics of the following form ;

Pt [ {AV (P )} 2

where fi\V(f)m,,.) is a consistent estimate of AV{(p,, .), the asymptotic vari-
ance of each estimator p,,.. For example, when p,,=0, it follows from
(3.3) that the asymptotic variance of the pairwise estimator p,, , re-
duces to

el S S

a*f

The unknown parameter p,, is estimated by a consistent estimator p,
given by (2.3). So H, is rejected if p,, ,/ {A\V(i;m,p)}1’2>z1_,,, where z,_,
is 100(1—a) percentile point of a standard normal distribution.

For a one-to-one and continuously differentiable function f, an
asymptotic distribution of f(p,,.) for each estimator p,,, . is

{f(Bns, )= F(0n)H [{AV (0s, )} 2f " (0s)]

where AV(p,,,.) is given by (3.3), (3.4) or (3.5). It can be seen from the
expression of asymptotic variance that the usual test procedure based
on Fisher’s [2] z-transformation for the estimator is not appropriate for
testing problem concerning interclass correlation. In general, the var-
iance stabilizing transformation for each estimator does not seem to
be expressible as an elementary function even for a fixed p,. The
relation between variance stabilizing and normalizing transformations
of certain statistics was shown by Konishi [3], [4].

4. Numerical results

For various values of the mean number of siblings per family we
compare the estimators for p,, discussed in Section 2, using the asymp-
totic mean square errors (3.3), (3.4) and (8.5). For the random-sib
estimator, we use the well-known asymptotic result that
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(4.1) E [(bm,,—p,,,.)ﬁ%a—pzn,) :

As in Rosner et al. [7], [8], the sibship sizes k., are randomly gener-
ated from a negative binomial distribution NB(k, p); {(x+k—1)!p*(1—
2"}/ {(k—1)!x!}. In Table 1 the asymptotic results (3.3), (3.4) and (4.1)
are examined by comparing with the simulation results due to Rosner
et al. ([8], p. 183, Table 1), although slightly different random num-
bers for siblings seem to be used. In the present paper the mean
number of siblings generated from a negative binomial distribution
NB(2.84, 0.517) truncated so that 1<x<15 is 3.18. In Table 1 the
values in blackets are the mean square errors obtained from Monte
Carlo simulation (Rosner et al. [8]). The notations PA, EN, RS and
MS used in Tables 1, 2 and 3 refer to the pairwise, ensemble, random-
sib and modified sib-mean estimators, respectively.

Table 1. Comparison between asymptotic mean square errors
and simulation results

OmslOss .0 .1 .3 .5 .8

PA  .0065(.0060) .0086(.0079) .0128(.0120) .0170(.0162) .0234(.0232)
.0 EN  .0094(.0093) .0105(.0104) .0127(.0125) .0149(.0148) .0182(.0183)
RS  .0204(.0208) .0204(.0210) .0204(.0212) .0204(.0215) .0204(.0218)

PA .0083(.0081) .0125(.0122) .0166(.0164) .0229(.0232)
.1 EN .0102(.0103) .0124(.0125) .0146(.0147) .0178(.0181)
RS .0200(.0204) .0200(.0207) .0200(.0211) .0200(.0215)
PA .0063(.0070) .0099(.0107) .0135(.0146) .0190(.0206)
.3 EN .0083(.0089) .0101(.0107) .0120(.0128) .0149(.0158)
RS .0169(.0167) .0169(.0174) .0169(.0180) .0169(.0185)
PA .0057(.0069) .0083(.0100) .0125(.0148)
.5 EN .0064(.0069) .0077(.0086) .0099(.0111)
RS .0115(.0115) .0115(.0123) .0115(.0130)
PA .0023(.0033)
.8 EN .0020(.0024)
RS .0026(.0030)

The fit of approximations is quite good. Further, we find that the
comparison of estimators based on asymptotic mean square errors gives
the same result as that on the simulation.

Tables 2 and 3 compare asymptotic mean square errors (x10%) of
the estimators in the various mean number of siblings, for which MNS
stands for the mean of sibship sizes k, (a=1,---, 50) generated from a
negative binomial distribution NB(k, p). The values in parentheses are
asymptotic mean square errors of the modified sib-mean estimator hav-
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Table 2. Comparison of asymptotic mean square errors (x 10¢) of
estimators in various mean number of siblings for N=50

MNS 04s=0.1 05:=0.3 05:=0.5 04:=0.7 04:=0.9
Oms=0.1

9 99 PA 111 154 197 240 283

NB(‘3 0.7) EN 140 153 167 180 193
Y MS 140(139)  153(153)  167(166)  180(180)  193(193)

3.30 PA 79 118 157 195 234

NB(!'; 0.2) EN 97 120 143 166 189
Y MS 97(96) 120(119)  143(142)  166(165)  189(188)

5.74 PA 56 101 145 190 235

NB(.5 0.5) EN 62 93 123 154 185
Y MS 62(61) 93(91) 124(122)  154(153)  185(185)

8.08 PA 45 88 131 175 218

NB«" 0.5) EN 54 86 119 151 184
T MS 54(52) 86(85) 119(118)  151(151)  184(184)

RS 200 200 200 200 200

oms=0.3

2 99 PA 87 123 161 199 237

NB('3 0.) EN 116 127 139 151 163
T MS 114(111)  127(123)  140(136)  152(149)  164(162)

3.30 PA 60 93 127 161 197

NB(;) 0.7) EN 78 98 117 138 158
Y MS 77(69) 98(90) 118(112)  139(135)  160(157)

574 PA 40 78 117 156 197

NB (’5 05) EN 48 74 100 127 155
Y MS 46(35) 75(63) 102(93) 130(123)  157(154)

8.08 PA 31 68 105 144 183

NB (;) 0.5) EN 40 68 96 125 154
T MS 41(30) 69(57) 97(88) 126(120)  155(153)

RS 169 169 169 169 169

ing a true value of p,. We select the combinations of (g, o) such
that p%,<p, so as to satisfy the condition that the covariance matrix
2, given by (2.1) to be positive definite. We note from (4.1) that
asymptotic mean square errors of the random-sib estimator depend
only upon the values of p,,.

The tables show that for the lower mean sibship sizes the pairwise
estimator is superior to the other estimators for p,,<0.8 and p,<0.3.
For p,,=0.3, the ensemble and modified sib-mean estimators are superior
to the pairwise estimator. For the higher values of p,, the pairwise
estimator is not so good, but as the mean number of siblings increases,
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Table 3. Comparison of asymptotic mean square errors (x10%) of
estimators in various mean number of siblings for N=>50

m =0.5 m =0.7
MN S Pms Oms
0s:=0.3 p,,=0.5 p,,=0.7 p,=0.9 £::=05 p,=0.7 p,=0.9
2.99 PA 74 100 128 159 39 52 70
. EN 83 92 110 4
NB(3,0.7) 100 40 4 50
MS  82(74) 93(85) 103(96) 113(109)  43(31) 50(39) 56(48)
3.30 PA 54 78 104 131 29 42 58
) EN
NB(©, 0.7) 61 75 90 106 31 38 47
MS  62(45) 78(63) 93(83) 109(104)  36(17) 44(29) 54(44)
5.74 PA 43 70 99 131 24 39 57
: EN 4 61 103
NB(, 0.5) 3 82 0! 23 33 46
MS 47(22) 68(45) 88(72) 109(100) 35(6) 45(21) 56(42)
8.08 PA 36 62 91 121 21 35 53
) 1
NB(9, 0.5) EN 38 58 80 03 21 31 45
MS  42(19) 62(42) 83(70) 106(%9)  29(6)  39(20) 51(41)
RS 115 115 115 115 53 53 53

its asymptotic mean square error is closer to those of the ensemble
and modified sib-mean estimators. We compared the modified sib-mean
estimator having p,, estimated by (2.83) with that having a true value
of p,;. These two types of situation yield the differences between asymp-
totic mean square errors of p,,. and those in parentheses. Taking
another estimator for p,, may improve the asymptotic mean square
error of p,, . for the higher values of p,,. The random-sib estimator
is not effective, because of the loss of information which arises from
choosing only one siblings per family. Similar comparisons were made
for N=100, 200 and we found the results described above to be un-
changed.

Appendix. Derivation of asymptotic moments

The derivation of the asymptotic moments of the estimators is
outlined in the case of the pairwise estimator p,,,. Under the assump-
tion that a sample is drawn from a (k,+1)-variate normal distribution
with mean vector (g, g,--+, ¢;)) and covariance matrix 3, given by
(2.1), we have

B[S k()| = Neah

ko+1

a

B[S 8 @) =(2 k- Do~ (S kb~ D/S kJoust
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N kg+t
E[3 5 @u—2)@—5)|=Niow ,

where N,= f‘. kko/> k,. Let
a#tp

kot

szz ka(wla_ﬁm)lek ’ K‘z 2 ‘ (wia_ﬁx)Z/Nk ’

=2

-

ko +1

Kmx 2 2 (xla m) (xia - i!)/Nk .

Noting that > k,/N.=1+(Z k2 k.)/N, and 3 kS k,=0(1), the sta-
tistics K,, K, and K,, converge to ¢%, o and o,, respectively, as N
tends to infinity, that is, as N,— +oo. So it is possible to write the
pairwise estimator as

(A.l) pm‘p pms<1+ K —Opg >{<1+ Km ><1+ K a, )}_1/2 '
Oms on o}

Expanding (A.1) gives

- pm,{1+(K:s——K*——K*)+(§-K:2+%Ks*’

+%KJK,*—§K;,K,*——;-K$,K;{‘>+higher order terms} ,

where K} =(Kn—0m)[0n, K}=(K,—0o%)[o% and KX=(K,—d?)/s}. Cal-
culating each expectation of pn,,—pom and (Pm,,—pom.)’, We can obtain
the final results given in Subsection 8.1. Calculations are laborious,
because of the complication of varying family size.

For the ensemble estimator p,,. we may find that

kg1 N
E[% 3 5 @5kt 3 @5 =nol
N =1 i=2 a=1
By an argument similar to that discussed above, we obtain the expan-
sion of p,,.. Calculating each expectation of the resulting formula, we
have the results given in Subsection 3.1.
The modified sib-mean estimator p,,. contains the estimator p,,
given by (2.3). Expectations of the numerator and denominator of p,,,
which we put K,, and K, respectively, are

E[K]=puoi—0i/2 k. —pu0:{2 2 k(b — 1)/ 3 k. (k.—1)
—X k(b1 Xk} X k.,
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E[Kyl=0i—0i{l+p., X k(k.— 1)/ 2k} Z k. .
Hence we can expand p,, around p,, in the form of
bss = Pss {1 + (Kff _Kof) + (Kof 2_K3TKO):)+ i }

where K;.-::(K:s—ps:af)/pna: and Kof=(Kos—03)/03-

Noting that the leading term of the Taylor series expansion of
{e:+(1—e)ps} 2 is {e;+(1—e)p.}?, we can similarly expand {c;+(1—cy)
05} /*Ppmss» Combining these results yields the expansion of pp,., from
which we have, after a calculation of each expectation, the final re-
sults given in Subsection 3.1. Details are omitted, because of pressure
on space.
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