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1. Introduction

This paper deals with the problem of invariant prediction regions
of a future observation on the basis of a past observation when the
family of the joint probability distributions is invariant under a certain
group of transformations. In prediction problems Skibinsky [10] and
Takeuchi and Akahira [15] showed that the class of procedures based
on an adequate statistic is essentially complete among all procedures.
But it does not necessarily mean the essential completeness of the class
of invariant procedures based on the adequate statistic among the class
of all invariant procedures. If it is shown, we may confine our atten-
tion to those based on the adequate statistic for seeking the best in-
variant procedures.

For a fairly general prediction problem we [13] showed it under
several assumptions. But the result can not be immediately applied to
the problem of the prediction region treated in this paper. Hence, we
shall show that the class of invariant prediction regions based on the
adequate statistic is essentially complete in the class of all invariant
prediction regions.

In Section 2 some result about an adequate statistic is stated.
Using this result in Section 3, we shall prove the above result.

Ishii [7] obtained the best invariant prediction region among the
class of those based on the adequate statistic. But the result (Theo-
rem 1 in [7]) is not correct without an additional assumption (see Re-
mark 5 in Section 4). So we shall again consider this problem in Sec-
tion 4, though the assumptions we use are slightly different from those
in [7]. In Section 5 we shall consider the examples in [7] and show
that these examples satisfy the additional assumption and that they
are best not only among the class of invariant prediction regions based
on the adequate statistic but also among the class of all invariant pre-
diction regions.
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2. Adequate statistic

Let (¥,9%) and (4,C) be sample spaces of observable random
variable X and future random variable Y, respectively, and let (&, A)
=(X XY, BXC) be the sample space of Z=(X,Y). Suppose that the
distribution of Z belongs to a family of probability measures P ={P,:
0 € B} on (£, ), which is indexed by a set 6, called a parameter space.

Observing X, we are interested in the construction of a region in
which Y will fall. Such a region is called a prediction region. We
shall consider a randomized prediction region, which is constructed by
the following way. Let ¢ be an ./ measurable function defined on &
such that 0<¢<1. If X=u is observed, the prediction region is given
by a set {y: ¢(x, y)=u} where u is a realization of a uniform random
variable on [0, 1] independent of X. If ¢ takes only zero and one, it
is called a non-randomized prediction region. In this case set R(x)=
{y: ¢(x,y)=1}. Then the probability that Y is contained in the region,
which is called the size of the prediction region, is P(Y € R(X)). Let
& be some o-finite measure on (4,C). We define the desirability of
the prediction region by the average volume with respect to &, that is,
E, §(R(X)) where E, denotes the expectation under P,. For a random-
ized prediction region ¢ it is easily shown that the size and average

volume are given by E,¢(Z) and E, S #(X, y)¢é(dy), respectively. For
the details, see Takeuchi [14], pp. 24-25.

DEFINITION 1. A prediction region ¢ is said to have confidence
level 1—¢ if

E,¢(Z)=1—¢ for all 4€6.

We shall compare prediction regions of confidence level 1—e by the
average volumes.

Let ¢ be a measurable mapping from (X, $) onto (4, U) and B,
={t(U): UeU}. Set $'={B': B=BXY, Be B}, C'={C": "=XX
C, Ce(C}, and B,={B': B=BxY,Be $B,}.

DEFINITION 2. A statistic T=#(X) is said to be adequate for X
with respect to Y and @ if B, is sufficient for B, and P’ and C’ are
conditionally independent given 3.

ASSUMPTION 1. & is dominated by 2=2,X2, where 4, and 2, are
probability measures on (¥, $) and (¥, C), respectively.

By this assumption there exists a countable subfamily, {P,, P,
---}, which is equivalent to % (Halmos and Savage [6]). We define
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a probability measure g, on (¥, B) whose density function with re-
spect to 2, is iZci Sf%(“” Y)Ay(dy) where ¢,>0 (1=1, 2,--+), i‘.ci=1 and
=1 i=1

fo, denotes the density function of P, with respect to 1. Set A,=p,x
A;. Then it is easy to see that & is dominated by 4,. The following
lemma which is obtained by Sugiura and Morimoto [11] is a factoriza-
tion theorem for an adequate statistic.

LEMMA 1. If Assumption 1 holds, then a statistic T is adequate
of and only +f for any 0 € @ the density function of P, with respect to
A 18 BiINVC' measurable where BN C' denotes the smallest o- con-
taining B, and C'.

For any integrable function f with respect to 1, we denote the condi-
tional expectation given B/\VC' by E, (f|B/VC'). In particular, we set

(2.1) po=E, (4| BIVC)
for a prediction region ¢.
ASSUMPTION 2. ¢ is dominated by 2,.

LEMMA 2. If Assumptions 1 and 2 hold, and if T is adequate,
then it holds that for amy prediction region ¢

(2.2) E, $(Z)=E, ¢((Z)
and
(2.3) E, | $(X, 1)&(dy)=E, | (X, 1)é(@w)

where ¢, 1s (2.1).

ProOF. Denote the density function of P, with respect to 2, by
p,. Then for any Ae J

2.4) [, s@Puda=| s@p@udz)
={ B, 6pigvOr@1@)

=, seapi@)dz)

where the last equality follows from Lemma 1. Hence, by putting
A=%, we have (2.2). Now, we shall prove (2.3). By Assumption 2
we denote the density function of ¢ with respect to A, by ¢. Since

the density function of X with respect to y, is given by h,,(x):S (2,
Y)A(dy), we have



494 YOSHIKAZU TAKADA

2.5) E, S #(X, y)&(dy) =S S (2, Yh(2)e(y) p(dw) 2:(dy)
=B, Ghal BivCY@U2)
={ | o, @)@ m(d)aay)
=E, S (X, y)é(dy)

where we used the fact that A,=pg, X2, and h(x)e(y) is B VC' meas-
urable. This completes the proof.

Remark 1. Though Takeuchi announced the result of Lemma 2
(see Theorem 5 in [14], p. 140), we have given the rigorous proof.

3. Invariant prediction region

Suppose that T=#(X) is an adequate statistic with sample space
(Z,U). Let G denote a group of transformations on &, I x4 and
6. Here we suppose that if the action space is a measurable space,
the transformation is measurable. We define the mapping from & onto
IXY by

(3.1) s@)=(x), ), 2=(=,9).
ASSUMPTION 3. & is invariant under &, that is,
P, (gA)=P(A), Ac, geg, 6¢c@,
and @ satisfies that
(3.2) gs'=s(gz), geg,
for ' e I XY and z € & satisfying s'=s(z).
It follows easily from (8.2) that for any De U XC
9(s(D)=s"¢gD), geg.
Hence, since B/\VC'={s"(D); DeUxC}, we have
(3.3) 9BNC)=BNC', geg.

DEFINITION 8. (1) A prediction region ¢ is said to be invariant
with respect to & if for all z¢ £ and ge &

$(92)=9¢(2) .

(2) A prediction region ¢ is said to be almost invariant with respect
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to G if for all ge G
¢(gz)=¢(z) ’ (S Z_Nv ’

where N, is a & null set and permitted to depend on g.

LEMMA 3. If Assumptions 1 to 3 hold and ¢ is an imvariant pre-
diction region, then ¢, given by (2.1) is almost invariant.

Proor. It follows from (2.4) that ¢, is a version of the condi-
tional expectation of ¢ given BV’ under P,. Hence combining (3.3)
and Lemma 3.1 in Hall, et al. [5], it turns out that ¢, is almost in-
variant.

Remark 2. If the mapping s(z) given by (3.1) satisfies that s(gz;)
=s(gz,) whenever s(z,)=s(z,), the transformation of g€ & on ' X4 can
be defined gs'=s(gz) for '€ I XA and z e & satisfying s'=s(z). Then
(3.2) is satisfied if this transformation is measurable.

Now we shall show that the class of invariant prediction regions
is essentially complete with respect to average volume among the class
of almost invariant prediction regions which have confidence level 1—e¢
and are based on the adequate statistic.

ASSUMPTION 4. There exist o-field . of ¢ and o-finite measure »
on (&, L) such that for any set EeUXC the set {(s, 9); gsc E} be-
longs to UXCX_L and »(B)=0 implies Bge L and v(Bg)=0 for all
geg.

Then it follows from Assumption 1 and Theorem 4 in Lehmann
([8], p. 225) that for any almost invariant prediction region ¢ based

on T, there exists an invariant prediction region {5 based on T such
that

(8.4) #(2)=¢(z) a.e. [P].

ASSUMPTION 5. There exists an invariant set A e BV’ (gA=A
for all g € G) such that P,(A)=1 for all § €O and P is equivalent to A
on A.

Set

#(), ifzeA,
(3.5) P*(2)= )
0, otherwise .

Then it follows from (3.4) and Assumption 5 that ¢* is an invariant
prediction region based on T and
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(3.6) E, ¢%(Z2)=E, ¢(Z)
and that on A
3.7 o*(2)=¢(2) a.e. [1].

Hence from (2.5) and (3.7) we have that
E, | 6(X, )¢(dn) = | 4w, w)h=la@)(dz)idy)
z|| #*@ hEa@mEnLEy
=E, | X, vedw) ,

where the last equality follows from (3.5). Therefore we have the fol-
lowing result from (3.6) and Lemmas 2 and 3.

THEOREM 1. If Assumptions 1 to 5 hold, then the class of all in-
variant prediction regions based om am adequate statistic is essentially
complete with respect the size and average volume among the class of all
wmvariant prediction regions.

Remark 3. In Assumption 4, the requirement that for all ge &
and Be L, v(B)=0 implies »(Bg)=0 is satisfied in particular when there
exists a right invariant measure on (&, .£). For the existence of such
a measure, see Fraser [3].

Remark 4. Assumption 5 is satisfied whenever & is equivalent to 2.

4. Best invariant prediction region

In this section we shall seek the prediction region which minimizes
the average volume among the class of all invariant prediction regions
with confidence level 1—e. Such a prediction region is said to be the
best invariant. Then Theorem 1 implies that it can be found among
those based on the adequate statistic.

Ishii [7] obtained the best invariant prediction region among the
class of all invariant prediction regions based on the adequate statistic.
But Theorem 1 in [7] can not be obtained without an additional assump-
tion. For the details, see Remark 5 in this section. So we shall con-
sider this problem again.

Now we shall state several assumptions which are slightly differ-
ent from those in [7], but the method of the proof is almost the same.

Let & denote a group of transformations on 4j.

ASSUMPTION 6. & is a group of transformations on 4 such that
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(4.1) g, v)=(gt, [g;tly), ge&,ted, yeqy,
where [g;t] € G.

ASSUMPTION 7. ¢ is a relatively invariant measure with respect

to G, that is, &@C)=J(§)&(C), CeC, e G, and J([g; t]) does not depend
onted.

To simplify the presentation, from now on we shall write J(g) in-
stead of J([g; t]).

ASSUMPTION 8. & is transitive on 60, that is, for every 6 and ¢’ ¢
6, there exists a g € & such that gd=¢".

In the sequel, a point 6,¢€ 0 is fixed and by g,€ & we shall denote
the transformation such that g,6,=6 for any 8§ €®#. Then we have the
following lemma.

LEMMA 4. If Assumptions 3 and 6 to 8 hold, them for any invar-
iwant prediction region ¢ based on T, we have

(4.2) E,§(T, Y)=E, #(T, Y)
and
(4.3) E, | 4T.0)6@0)=J(0) B, | #T, 0)E@) -

PROOF. Assumption 3 implies that the family of probability dis-
tributions of (7, Y) is invariant under ¢. By (4.1) ¢ is invariant if

(4.4) #(gt, [9; tly) =9, v), ge&, ted, yeqy.

Since the distribution of g,(T, Y) under P, is equal to that of (T,
Y) under P,, from (4.4) we obtain (4.2).

The distribution of g¢,7 under P, is equal to that of T under P,
so that

E, g 8(T, )&(dy) =E,, S #(a,T, ¥)&(dy)
=J(g) B, | 4T, v)é(ay)

where the last equality follows from Assumption 7 and (4.4). Hence
we obtain (4.3).

This lemma implies that we have only to consider the size and
average volume of invariant prediction regions at 8=46,.
Suppose that #(x) is decomposed so that t(x)=(t(z), t,(x)). Let (<4,
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Uy and (I, U,) be the sample spaces of T,=t(X) and T,=t(X), re-
spectively.

ASSUMPTION 9. & is a group of transformations on 4, and &, and
satisfies that for any ge &

(4.5) gt=(gt,, gts) , t=(t, ).
AsSsuMPTION 10. & is transitive on .

In the sequel, a point ¢, € T, is fixed and by g, € & ;we denote the
transformation such that ¢,=g.t, for any ¢, €.

Setting g=g;' in (4.4), from (4.5) we have that for any invariant
prediction region ¢

(4.6) B(to, 95,18 (9515 1Y) =8(L4, £, ¥) -
Let w, be the mapping from I to <, such that
(4.7) wl(t)=g;llt2 ’ t=(tl,t2)

and let w, be the mapping from I X4 to 4 such that
wy(t, ¥)=[g;'; tly -

Since g, (t, wi, w)=(ts, ts, ¥), [9:,; toy wilwr=y. Therefore

(4.8) w(t, Y)=[ge,; o, w7y -
From (4.6) ¢ is a function of w, and w,. So we set
(4.9) #(t, y)=0(w,, w,) .

ASSUMPTION 11. There exist o-finite measures, &, and §&,, on (<.,
U,) and (I3, U,) such that &, is relatively invariant with respect to &G,
that is, &(gU)=4(9)5«(1r), g€ G, U, € U,, and the family of probability
distributions of (7T,Y) is dominated by &,X§&,X¢.

By q(t, y) we denote the density function of (7, Y) at =6, with
respect to &, X &, X¢&.

AssUMPTION 12. The mappings, wi(t), w.(t, ¥), J(g.) and 4(g,), are
measurable.

Setting W,=w(T) and W,=wy(T, Y), from (4.7) and (4.8) the den-
sity function of (T, W;, W) is given by

(4.10) q(t, 9. w5 [9:5 to, wiw,) (g, ) (9.)

and the marginal density function of (7T}, W;) becomes
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(4.11) ai(ts, g, w1)4(g:)

where q,(t;, t2)=S q(ts, By, Y)E(dy).
Hence, by (4.9) we obtain that

(4.12) E,, (T, Y)=E, O(W,, W,)
=S S Dy, wh(wr, ws)Ex(dw,)E(dw,)

and
@13) B, | o7 9= | | ot to w10, 018011 (A1IE)

=§ g g D(w;, wG(tr, 9,01 A(9.)T(9:,)E (A1)
X &y(dwy)&(dws)
:S g O(w,, ) f (wi)&x(dw,)E(dwy) ,

where & is the density function of (W, W;) and from (4.10) it becomes

(4.14) k(w;, wZ):S q(ts, 9,01, 19,5 to, wl]wZ)A(gtl)J(gtl)el(dtl)

and
(4.15) S (wl)=S ai(ty, 9., w)4(9.)J(9:,)€:(d,) -

Using (4.11), we can write
(4.16) fw)=E, (J(g Tl)l W) (wi)hy(w) ,

where E,, (J(gr))|Wy) is the conditional expectation of J(gr) given 1A
and hy(w,) is the marginal density function of W,.

AssuMPTION 13. J(gr,) and W, are mutually independent.

Then we obtain from (4.13) and (4.16) that

B, | o7, e =a | { 0w, wih(w)edw)edw)

with a=E, J(gr,)-
Hence, from (4.12) we have the following result by the method of
the proof of Neyman Pearson’s Lemma, Theorem 1 and Lemma 4.

THEOREM 2. If Assumptions 1 to 13 hold, then the best invariant
prediction region with confidence level 1—e is given by
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1 if h(w,|w)>c,
p()={ r  f h(w,|w)=c,
0 if Mw,|w)<e,

where h(w;|w,) is the conditional demsity function of W, given W,, and
r and ¢ are determined by E, §(Z)=1—c¢.

Remark 5. Ishii considered f(w,) given by (4.15) as the density
function of W, (see [7], (8)). But it is evident from (4.11) that it is
not the density function of W,. So from (4.16), to prove Theorem 1
in [7] it is necessary to add Assumption 18. If T, is null set, then it
is not necessary to treat W, and Assumption 18 is trivial.

5. Examples

Now we shall consider some examples in [7] again and show that
these examples satisfy Assumption 13, since other assumptions in The-
orem 2 are easy to verify. In the sequel, we suppose that &, & and
& are Lebesgue measures.

5.1. Multivariate normal distribution

Let X,, i=1,..-,n+1, be independently distributed (p+¢q)-dimen-
sional normal random vectors with unknown mean p and unknown
non-singular covariance matrix 3. Suppose n>p+q and let X/ , =
(Xah, X)) where X, is px1. We can observe X=(X,,---, X,, X},)
but can not observe Y=X?2, until a later time. Therefore on the
basis of X, we want to construct a prediction region of Y.

By G(m) we denote the group of m xXm lower triangular matrices
with positive diagonal elements. Let &={(b, B); b is (p+¢)x1 and
B e G(p+q)} and g=(b, B) € G operates on & as follows

(x4, + ) Tpir)=(0b+Bxy,- -+, b+Bx,,,) .

Using Lemma 1, it is easy to see that an adequate statistic is
given by

T=(X, S, X%,

where

=(F)=1ix, s=(§ J)-fE-mE-xy

and X, is px1 and S, is pXxp.
Set S=AA’ with A € G(p+q) and partition A as
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_(Au O
A—<An Azz> » AueG(p), An€Glq).

Then by putting T:=(X, S) and T,=Xz,, it can be shown that
W’leﬁl(anH_Xl) ,

(5.1) _ _
Wz = A;zl { na“ '—)(2—A21Aﬁl( n1+1'_' Xl)}

and

(5.2) J(gT1)=|A22| .

Since S;=A4,A4} and S;;—S;S;!S,=A4A}, A, and A, are mutually
independent (e.g. see Theorem 6.4.1 in Giri [4], p. 120), so that from
(56.1) and (5.2) Assumption 13 is satisfied. Therefore the best invariant
prediction region is obtained from the conditional density function of
W, given W;, which is calculated by Ishii (see [7], p. 151).

5.2. FExponential distribution

Let X;<X,<+--<X, be order statistics of size n from the expo-
nential distribution with density function o7'exp{—(x—p)/s}, 2>p,
6>0. Here we suppose that 6=(g, ¢) is unknown.

We shall consider the prediction problem of Y=X, for the situa-
tion where the first » (1<r<mn) observations X=(X,,.--, X,) have been

observed.
Let @={(a, b); b>0} and g=(a, b) € & operates on & as follows

9(@y,- -+, 2, y)=(a+bxy,- - -, a+ba,, a+by) .

Using Lemma 1, it is easy to see that an adequate statistic is given
by ’
T=(Xlr Sr, Xr) ’

where s,=§ (Xi—X)+(n—r)(X,—X). Set T,=(X,,S,) and T,=X.
Then it can be shown that
(5.3) Wi=(X\—X,)/S,, W,=(Y-X)/S,, J(g:)=S,.

Putting Z,=(n—i+1)(X,—X;_), 1=1,.---,n, with X;=p, Z’s are

mutually independent and have exponential distributions with z=0
(see Lemma 3 in Epstein and Sobel [2]). Using Z;’s,
(5.4) S,=22,, W=-— {z; Zi/(n—i+1)} /s,.

i=2 =2

It is easy to see that S, is complete and sufficient for the family of
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probability distribution of Z,, ©=2,---, 7, so that from Basu’s Theorem
(see [1]) and (5.4), it turns out that S, and W, are mutually independ-
ent. Hence by (5.3) Assumption 13 is satisfied.

Since Y——X,:fj ZJ(n—i+1), Y—X,, S, and W, are mutually in-

i=r+1

dependent, so that from (5.3) W, is independent of W,. Therefore from
Theorem 2 the best invariant prediction region is given by

1 ’ if h(wz)>0 ’
oz, y)= )
0, otherwise ,

where & is the density function of W, and ¢ is determined such that
its size becomes 1—e. The exact formula of & is obtained by Likés [9].

Remark 6. This problem can be also solved by the result given
by Takeuchi ([14], pp. 63-65) and it can be shown that the best in-
variant prediction region becomes interval (ef. [12]).
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