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Summary

Let f be a recursive kernel estimate of f, the pth order deriv-
ative of the probability density function f, based on a random sample
of size n. In this paper, we provide bounds for the moments of ||f®

—f |, = [S [ (x)— f ‘P)(m)]zdx] v and show that the rate of almost sure

convergence of || fP—f®|,, to zero is O(n™°), a<(r—p)/@2r+1), if f,
r>p=0, is a continuous L,(— oo, o) function. Similar rate-factor is also
obtained for the almost sure convergence of || f&— f®||,=sup |fP(x)—

f®(x)| to zero under different conditions on f.

1. Introduction

Let (2, A, P) be a probability space on which we observe random
variables X, X,, -+, X,. Assume that the random variables are inde-
pendent and identically distributed with common distribution function
F and density function f with respect to the Lebesgue measure. For an
arbitrary given integer p=0 we in this paper consider a recursive kernel
estimator f® of f®, the pth order derivative of f, based on the ran-
dom sample. The recursive kernel estimator f® is given by

fP@)=n" 3 e K [(@—X)el

where K is some suitable kernel function and {c,} is a sequence of
nonincreasing positive constants converging to zero as n— oco. For p
=0, f,(x) is a nonparametric estimator of the density function f. This
type of estimators was first introduced by Wolverton and Wagner [22]
and Yamato [23]. In general, if the convergence of ¢, to zero is too
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slow then the estimator will be overly smoothed. On the other hand,
if ¢, converges to zero too fast, the noise level of the estimator be-
comes unacceptable. If ¢;=c,, i=1, .-, n, the recursive type estimators

become the ordinary kernel type estimators f,ﬁp)(x)zn“c;“" ﬁ K[(xz— X))/
i=1

¢,] of fP(x). From the computation point of view it is desirable to
use fP(x), since f» can be computed recursively.

To study the behavior of the estimator £, a global measure of
deviation of the function f{» from f® is given by

/27— f P l-=sup | f:"(@) = f (@) .

For p=0, the almost sure convergence of |f,(x)—f(x)| and || f,— f|l. to
zero were studied by Davies [3] and Deheuvals [5]. A law of the
iterated logarithm for f,(x) was established by Wegman and Davies
[21] using the almost sure invariance principle. Sequential procedures

for density estimation using f, and f,, were considered by Davies and
Wegman [4], Carroll [2], and Wegman and Davies [21]. Regarding the

kernel type estimators, the stochastic behavior || F—f |l. has been ex-
tensively investigated by Parzen [11], Nadaraya [9] and Silverman [12],

among others. For p>1, the almost sure convergence of ||f®—f @],
to zero has been studied by Singh [13] and Silverman [12]. Similar
result is also considered by Walter [18] when the estimator is obtained
by using Hermite series method. In this paper, we show that if f is
bounded, f” is bounded and continuous, r>p=0, and E|X|<co, for
some 3>0, then the rate of almost sure convergence of | f¥— f¥|. to
zero is o(n~ P/ DR log n), where B, is an arbitrary sequence of positive
constants tending to oo as m— oco. It is easy to see that this result
can also be generalized to the case when random observations X, X,,
--, and X, are g(n)-dependent. For p»=0, and ¢;=c¢,, ©=1,2, ---,n,
our result for the kernel estimator is better than the similar results
developed by Singh [13] and Walter [18] and comparable with the con-
clusion established in Silverman [12]. However, the generalization of
Silverman’s result to the recursive kernel type estimators, or q(n)-
dependent random observations is not obvious.
Along with the distance ||f{¥— f*®||.., another natural and useful
measure of the distance between f{» and f® is

||f75p)_f(p>||L2= [S:, [fép)(x)—f(p)(x)]zdx] 1/2 .

For p=0, attention has been devoted to the rates of convergence of
E| fa—=fllz, to zero (see review papers by Wegman [19], [20] and Fryer
[6]). Recently, for p=0, the exact asymptotic expression of E ( f,ﬁ”)(x)
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— f®(x))* has been characterized by Singh [16]. Also, the almost sure
convergence of || f,,— fllz, to zero has been studied by Nadaraya [10].

However, the almost sure behavior of IIfA,E")—f“”IIL2 remains unknown
for p=1. In the present paper, this question is explored. We show
that for general p=0, the rate of almost sure convergence of | f’—
S P, to zero is O(n™), a<(r—p)/@2r+1), if f, r>p=0, is a continu-
ous L,—oo, c0) function. Moreover, the moments E || f—f®|;, are
characterized. It will be seen that the rates of almost sure conver-
gence of ||fP—f®|% to zero are obtained as consequences of bounds
on the moments E || fi®— (%,

Estimation of density derivatives arises in empirical Bayes problems
(see Lin [8]) and also in the problem of estimation of Fisher informa-
tion (see Bhattacharya [1]). Other potential applications of nonpara-
metric estimators of derivatives of a density function can be found in
Singh [14].

2. Main results

Following Singh [13], we let K(p, r) be the class of real valued
Borel measurable bounded functions vanishing outside [a, b] (without
loss of generality let a=0 and b=1) such that

1 ) 1 if j=p,
@1 H)g(-ymymy:{ o

J: 0 if j#p, j7=0,1,---,r—1,
where r is a fixed integer and »>p. It is clear that K(p, ) contains
polynomials on [0, 1] satisfying (2.1). For example K(x)=I1 (0sx=1)
(4802 — 27002+ 43202 — 2100x*) € K (1, 3), and satisfies a Lipschitz condi-
tion of order 1, where I(.) denotes the indicator function. Other simi-
lar examples can be found in Singh [15].

Our first theorem characterizes the rates of strong uniform con-
vergence of the estimator f{(x).

THEOREM 2.1. Assume that

(i) f s bounded, f is bounded and continuous, K € K(p, r), and
K satisfies a Lipschitz condition of order 1;

(ii) B, is an arbitrary sequence of positive constants and y is a

n
positive real mumber such that B,— oo as n— oo, W'ck 3 " P/B, log n
=1

=o(1), n'¢;} B, log n=0(1), n¥ 'c;'=0(1) and W'=Zc,/4||K|. Sfor suffi-
ciently large n, where ||K|..=sup |K(x)|;

(ili) E|X[’<oco, for some 3>0. Then
(2.2) (wez/B, log m)|| fP— fP|. ~>0, as m— oo,
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In particular, let c;=di V¥ Y, for 0<d<d,<d<oo, i=1,2,---,n, and
r=7r/2r+1), then

(2.3) (n=2/er 08 Tog m)|| fP— fPl. 20,  as m— oo

where d and d are two constants.

ProOF. The proof of Theorem 2.1 is based on the conclusions de-
veloped in Lemmas 2.1 and 2.3. For convenience, we let ¢ denote a
generic constant which may not be the same at each appearance.

LEMMA 2.1. If f s bounded and continuous, K ¢ K(p, r) and B,
18 an arbitrary sequence of positive constants, then

@4)  (wetlg,log W|ESP—f)..=0(w'e; 31 PJp, log m).

Proor. Using Taylor expansion with integral form at the »th
term, and the orthogonality properties of K we obtain

IBSP—Fll=0(n" S er7).

Thus (2.4) follows immediately.

LEMMA 2.2. Suppose that f(x) and K(x) are bounded functions and
Ke H(p,r). If r is a positive real number such that (i) n¥ 'c;'=0(1)
and (i) w'=c,/4||K|.. for sufficiently large n, and B, is an arbitrary
sequence of positive constants, then for every ¢>0 and x ¢ R,

P [(net/B, log )| fP(x) —E fP(x)| > e] Sen™n .
PrROOF. Write
P [(wet/B, log n) (f{P(x)—E f{P(x)) > ]

=P [wei(fP(x)—E f{P(x)) > eB, log n]
sexp (—ef, logn)

X ;[:Tl E {exp [n""'cfer P [K[(x— X))/e.]—E K[(z—X,)/e 1]},

by using the Chebyschev inequality. For the random variables
Z;=c;'{K[(x— X))/e;]—E K[(x—X))/ci]} ,
|Z;|=2¢;|| K ||

we may use moment inequality of the exponential form (E exp (§(Z—
E Z))<exp (¢’ Var (2)), if |Z|<» and 0<£<1/(27) (see Lamperti [7] pp.
43-44)) in connection with the fact that Var (Z,)<cc;j'Zcc;! to obtain,
for each ¢1<n, the following inequality :
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E exp {n"~'cie; P [K[(x — X,)/c,]—E K[(z—X)/e.]]}
<exp (en*"Y¢;'), for large n, ¢=1,2,---,m.
Thus, for large =,

(2.5) P [(w'c3/B. log n)(f{P(x)—E f{P(x)) >e]
<n"**aexp (c-n¥'c;")
<c-ntn,

Similarly, we also have

P [(we}/B, log n)(—fiP(x)+E fiP(x)) > ¢]
<ecn~*n, for large n.

This in connection with (2.5) establishes the proof of Lemma 2.2.

LEMMA 2.8. Assume that the conditions of Lemma 2.2 are satisfied
and K satisfies a Lipschitz condition of order 1. If (i) E|X|’<c for
some 3>0, and (ii) B,— o as n— oo and w'c;*/B,log n=0(1), then

w.p. 1

(2.6) (n'er/B, log n)|| fP—E Pl — 0, as n— oo .

PrOOF. Define the set B,={x € R: |z|<n'”+1} and consider a set
E,CR such that for all x € B,, there exists ¢ € E, satisfying |z—§|<1/n
and E, contains at most N,=2n[n"4+1]4+1 elements. Here [y] denotes
the largest integer less than or equal to y. For any ¢ B, we let
y(x) be the corresponding element in E, such that |x—y(x)|<1/n. Thus

(we2/8, log m) sup | 7(z)—E £ ()]

<(wez)e, log m) sup | F9() P W@)|
ezl log n) sup | £ (u(e)~B £ W@
+(nrez/B, log m) sup |E £P(y())—EFP(@)]

=Tu+Tu+ Tas s ';ay-

By utilizing the conclusion of Lemma 2.2,
P (T,>¢) é.,g',,P [(n'e2/B, log n)| £iP(y)—E f2(y) 1> €]
<c-N,-n"*n, for large n.

Since N,-n~**» is essentially dominated by »~% thus by Borel-Cantelli
lemma we have

.p. 1
T, 250 asm—oo.

On the other hand, using the Lipschitz property of the function



484 K. F. CHENG

K and the definition of the set B,, we obtain, for each we 2,
TS (ve/gylog m) sup [n™ 317+ | Kl(e— X)fe] - Kl(y(x) — Xed|
<c-n'¢;*/B. logm,

which converges to zero as m — co. Similarly, it can be shown that
T.s— 0 as n— . Consequently,

2.7  (wepBlog m) sup | fP(x)—E fPx) =250 asm—o oo
xEBn

Since E|X|’<co, for some >0, it can be shown that there exists
a set £,C 2 such that p(2))=1 and for all w € 2, there exists a positive
integer N, and for all n>N,,

max | X (w)|En'” .
1gisn

Let N be a positive integer such that for all n=N, ¢,<1. Consider
¢ B, If wef then for all n=max (N, N,), |[z2—X,(0)|>1, 1<i<n,
and thus

K[(z—X(®))/e]]=0, n=i=N.
Accordingly,

(2.8) (wez/B, log m) sup | fP@) 2250 asn—oo.
x & By

On the other hand, if z ¢ B,, then for all i{>N,
K[(x—X)/c.( X:|=n')=0,
where I(-) denotes the indicator function. Consequently, for all =N,
Sup E | fAP@)= sup n Zj} et PP AB [K[(x— X)) e ]| I(| X, <n')
" +E K[z —X)/el(XJ> )
< sup {n™! 307+ B Kl — XJed |11 X 0]

x&Bn
+27 3 ;| K ||, E | X 't
i=1
:O(n—lc;(p+l)) , n— oco.
This shows that

2.9) (wezB, log m) sug) E|fP@x)|—0 as n— oo .
2&€Bn

Hence (2.6) follows immediately from (2.7), (2.8) and (2.9).
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PrOOF OF THEOREM 2.1. (2.2) follows easily from the conclusions
Lemmas 2.1 and 2.3.

Remarks. (a) Since B, is an arbitrary but fixed sequence of posi-
tive constants tending to oo as m — oo, therefore according to (2.3),
the rate of almost sure convergence of [ f{P—f®|. to 0 is close to
o(n= TP/ Jog ),

(b) If A is a bounded subset of R, the set of real numbers, and
conditions (i) and (ii) are satisfied, then

(wez/B, log m) sup | fP(x)— fP(x)| 20, as m—oo.
rEA

(¢) If c,=dn v+ for 0<d<d,<d<oco, and conditions (i) and
(iii) are satisfied, then
(nr—P/Arb /g log )| f@— f@|, 2250 as n — oo.

In what follows, the almost sure behavior of || f{¥— f®||,, is estab-
lished. To do this, we first develop order bounds for the moments of

|52 — P,
THEOREM 2.2. Assume that Ke K(p,r) and f is a continuous
Ly(— o0, o0) function. Let s be a positive integer, then

(2.10) B “fép)_f(p)”Zl:;:O((n—l i} c%(r_p)>“’> Fo(ntes @D

and in particular, for c;=d i Vb, 0<d<d,<d< oo,
(2.11) E ”fép)_f(p)”?]f :O(n—2(r—p)s/(21’+l)) ,
where d and d are two constants.

PrROOF. To prove Theorem 2.2 we use the following elementary
inequality :

(2.12)  E|fP—flz,=2HE 7 —E £, B L2 = FPL)

for any positive integer s. The right-most term in (2.12) is simply the
sth power of the integrated square bias for which the behavior is de-
veloped in Lemma 2.4. The first term on the right-hand side of (2.12)
is an sth order analogue of the integrated variance. Lemma 2.5 charac-
terizes the behavior of this term.

LEMMA 2.4. Assume that Ke K(p,r) and f 1is a continuous
Ly(— o0, ) function. Let s be a positive integer. Then

(2.13) IEf@— 2lz,=0((n Sy,
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Proor. Using Taylor expansion with integral form of the re-
mainder at the rth term and the orthogonality properties of K, we

have
E £7(s)
=@ =107 o7 (—eay K@) || -ty a—canidt dy.

Thus by virtue of Holder’s inequality and Fubini’s theorem we obtain

IE fiP— 2|2,
S((r—=1))n
x3 e |" 1| (—eark@) | a—trro@—catit dy} da

(=1 e | | K=ol K@)t dy
i=1
=((r—1)1)-2n-1 é c%(r—p)K*”f(r)“‘ng S: yz'IK(y)Idy S: (l—t)zr“zdt

n
=O(n—l Z c%(r—p)) , n— oo,
i=1

where K*:S:lK(y)ldy and || f<r>||12=g°° (f"(x)y'de. This completes the

proof of the lemma.

LEMMA 2.5. Assume Ke K(p,r) and let s be a “positive integer.
Then

(2.14) E |l fP—EfP|7,=0(n"" c;***) .

PROOF. Define Yya)=c;?**{K[(x—X,)/c]—E K[(x—X)/c:]}. Then

|” r@-Efe@yd=n2 5" (Y@ Y@)ds.

i=1 j=1

Here for each 7 and j,

(2.15) S: |Yoi(@) Y, y(@) | dae SAK*| K || o7 707 2+
SAKH|| K [|ocz 0
Furthermore,
(2.16) E|fP—EfP|Z,
o ;1 jz} .. tg jE_E {;n S: Y, (z,) Y,k(xk)dw,,}

and
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E{IT]" Y, Y, @)z =| - [B NRACN Y, (@)|da - da,,

by using the fact of (2.15) and Fubini’s theorem. By independence of
Yi(x)’s, 1=i=n, the expectation in the integrand is zero except in the
case that each index in the list 4,5, .-, 4,7, appears at least twice.
In this case, the number of distinct elements in the set {i}, i, - -, %,, 4.}
is =s. It follows that the number of ways to choose 4,7, ---, %, Js
such that the expectation in (2.16) is nonzero is O(n*). Moreover, these
nonzero expectations are uniformly O(c;®***). Hence

B[l ~ B A2, = 0(n~re; ).

PROOF OF THEOREM 2.2. The proof of (2.10) follows easily from
the conclusions of Lemmas 2.4 and 2.5 in conjunction with the relation
(2.12).

Remarks. (a) If ¢,=dn Y%+ and 0<d<d,<d<oo, then
E ”f:;gp)_f(p)”zzz=O(n~2(r-p)s/(2r+l)) .
(b) For s=1, the rate of convergence of the mean integrated

square error becomes n X/t if ¢ =g 7Y+ Walter [17] shows

that E|f®—f P||2,=0(n@m+6am-1) - if F® is an estimator based on Her-
mite series method, and r is some positive integer such that (x—D)f
€ Ly(—o0, ), and 0<p<r. Clearly, our rate-factor is better than

,n(lilr)-i-(S/Gr)—l.

By virtue of the conclusion of Theorem 2.2, it is easy to verify

THEOREM 2.3. Assume that K € K(p, r), £ is a continuous Ly(— oo,
o) function, and c,;=di V¥V, where 0<d<d,<d<o0, 1=1,2, ---, n.
Then for a<(r—p)/(2r+1),

(2.17) WP =P, 250,  as m—oo.

ProoF. Applying the Chebyschev inequality and Theorem 2.2, we
have, for any >0,

P (w9~ P> ) S n B\ S0 1,

=O(n23(u—(r-—p))/(2r+l)) ,

where s is any positive integer. Since a<(r—p)/(2r+1), thus (2.17)
easily follows by the Borel-Cantelli lemma and the fact that s may be
chosen arbitrarily large.

Remark. It is obvious that by utilizing the same argument we
also have
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w|| fP— P, 7220,  asm— oo,

for a<(r—p)/(2r+1), if ¢,=d,n Y+,
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