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Summary

The results of Rosenblatt on quadratic measure of deviations of
density estimates have been generalized to a wider class of weight
functions. It is pointed out that the proof of Theorem 1 of Rosenblatt
is incorreet. A corrected version of the proof is also provided.

1. Introduction

Let X,, --+, X, be independent and identically distributed random
two-dimensional vectors with the common density function f(x), x=
(@, 2®). We consider a class of estimators f.(x) of f(x) determined
by a bounded weight function W(-, -) (not necessarily vanishing off
a rectangle).

(1) (D) — P) 1 x“’—X,‘" r®_X®
) A, ) =) S By k) )
— (B2 -1 r—Uu
— (W¥(m)) S W( e >an(u) ,

where F(u)=F,(u®, u®) is the sample distribution function determined
by Xi, -+, X,. Here h(n) is the band width such that h(n)— 0 and
nh¥(n) — o as m— oo. Rosenblatt [1] considered similar estimates
based on weight functions with finite support. In his paper Rosenblatt
used the technique of Poissonization to show the asymptotic normality
of some quadratic functional of the deviation of the density estimates.
The proof of the main theorem, Theorem 1, in [1] is not correct.

The purpose of this paper is to generalize the results of Rosenblatt
[1] to density estimates based on a wider class of weight function.
We also provide a correct version of the proof of Theorem 1 of Rosen-
blatt. In Section 2 the main theorems are stated. The proofs are
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given in Section 3.

2. Main results

The assumptions made in this paper are similar to those in [1]
except the first assumption, Al. We restate all the assumptions for
the sake of completeness.

(A1) The weight function W(-, -) is bounded and

( 2 ) S W(x(l)’ x(2))dx(l)dx(2):1 .

(Note: Rosenblatt assumed W(-, -) to be zero outside a rectangle.)

(A2) The probability density function f is bounded and is continuosly
differentiable up to second order with bounded derivatives in its
domain of positivity.

(A3) The weight function is symmetric (W(u)=W(—u)) so that the
first moment of W(., -) and W¥-, -) are zero and the matrix of
second moments of W(-, )

(3) S x(i)x(j) W(x(l), x(Z))dx(l)dxﬂ) , ,i’ j:1, 2 ,

is positive definite.

(A4) The function a(x®,z®) used in the definition of 7, below is
bounded integrable.
(A5) Let {¢(n)} 1 o and W(-, -) be such that

(i) d(n)=c(n)h(n) —0 as n— oo and

(i) S W(t,, t,)dt,dt,=O(hi(n)) .

1ty1>e(n)
or lt2|>c(n)

(A6) Let {c(n)} T oo and Wy(-) and Wy(-) be such that

(i) d(n)=c(m)h(n)—0 as n— oo and

(i) Swg(t)zo(hﬁ(n)), i=1,2.

[t]| >e(n)

Let
(4) T,= ki) | (£,2)— f@)al@)d

(5) “:S @) f (x)da S W(w)ds
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(6) S =2W®(0) S a(e)f (@)das .
THEOREM 1. Under assumptions (Al)-(Ab)

T,,—;A _9£)
(7) s N(0, 1)

if mhi(n) — oo and h(n)=o(n"?).

Suppose the components of X,=(X®, X®) are independent with
marginal densities g,(-) and g,(-). Let g,,(x®) and g,,(x®) denote the
estimates of g, and g, based on weight functions Wy(-), Wy(-) respec-
tively. Let

(8) gula®)=(ah)* 3}, 2
@y __ e r®—X®
(9) 0u(e®) = (k) 31 W LX)

(10) 7‘“=S F@)a(x)de+h S gl(oc“))gi(x‘”)a(x)dx[l+S W) Wz(uz)dulduz]
+h S gf(x“’)gz(x‘”)a(m)dx[l+ S Wi(w,) W;(uz)dulduz]

a(@)=a(z®, )

W(x) — W(m(l)’ x(Z))= W](x(l)) Wz(x(Z))

(11)

(12) i‘n:nh2 S (fn(x(l)’ x(i))_gln(x(l))an(x(2)))2a(w(l)’ x(?))dx(l)dxﬂ) .

THEOREM 2. Under assumptions (Al)-(A4) and (A6)

(13) L=t 2 N, 1)
ho
if nmh*— oo and h=o(n""7).

3. Proofs of the theorems

We state below two lemmas from [1] which are essential to the
proofs of main theorems.

LEMMA 1 (Rosenblatt [1]). Let W be a bounded integrable weight
Sunction with

(i) S zPW(a®, 2®)daCda® =0 for i=1, 2
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14) (i) ‘S B+ W(t,, t)dtdt,| < oo .

If assumptions (A2) and (A4) are satisfied, then

(15) R(n)=nh’ S {(fal(@)— ()= (fulx) —E fo(2))}} a(x)dee
=o(h(n)) if h(n)=o(n"'7).

Let N be a Poisson random variable with mean n independent of X,
X, oo, Set

(16) fr=uy s w(2 A0 SO XP)
j=t h h

LEMMA 2 (Rosenblatt [1]). Under assumptions of Lemma 1

(17) R(n)=mnh? S {(fF(@)—E fi¥=))— (fu(x) —E fu(@))} a(x)dz
=o(h(n))
if mh*— oo and h(n) | 0 as n — oo.

Lemmas 1 and 2 together imply that if we let h(n) |0 at the proper
rate, then

(18) S=nhin) | (£2(2)—E fr@)a()ds
can be considered instead of
nli(n) | (£.(@)—f @)V a(@)i

with small error as »— oo and h(n) | 0. Next lemma shows that if
the weight function satisfies certain conditions then in fact we can
truncate the weight function and replace f¥(x) by a truncated esti-

mator fX¥(x). Where

e _ et N . x(l)-—Xj(l) x(z)__Xl(z)
(19) @)= (k) 53 W( e )
and
(20) Wity t)=W(t, t;)  if |t,]|<c(n) and |t,|<c(n)
=0 elsewhere.

LEMMA 3. Under the assumption of Lemma 1 and (A5)

(1) R(n)=mnh’ S {(f¥(@)—E £X@))— (£(x)—E fX@) )} a(z)de
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=o(h(n)) .
ProOOF. Set
Win)= W(z)— Wiz)
(22) Fr@®, 2) = (k) 1 W ( ZO_X®  g®_X® )
P, x®)= b3 X, = .
Clearly
23) *Hw)=FH@)+ FH@)
and hence

@)  (FFO-Ef@f-(F@-Eff@r .
= (f¥@)—E FH@)}+2(Ff*(x)—E f¥(n)) (f¥(n)—E F*(n))
:Rln(m)+2R2n(x) , say.

Now

(25)  E Ri(2)=E (f*x)—E f*@)y

~ D (¢)) Q)__ [¢3] 2
=(nh4(n))-lE[W<“ hX , 2 hX )]

= (nh)! S W (t)f (o + hit)dt

111 >e(n)
or [ty]>e(n)

= (nh¥(n))-* SWz(t) F(@+ht)dt— S W) f(x+ht)dt}

161 =e(n)
Ity Se(n)

= (nki(n))~* f(x)SWZ(t)dt— f(z) S Wz(t)dt—!—O(hz)}

|yl se(n)
|tgl Se(n)

=@m){f@ | Wiedt+owm)) .

16y12¢(n)
or ItRIgc(n)

Hence
‘nhz(n) g ERm(x)a(ac)dml —O(h¥(n))  if (A5) holds,
=o(h(n)) .
Let
pra@)= pe—viaw)dy

denote the convolution of p and ¢ at . Then
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(26) E Ry (x)R.(2')
- (o (= 2] 22
—X

h
e Ll Bl ko]
=) [f@) W (£=2) +0gre(m)|

x @)W (222 o)

+ @) W W (2= o)

x @) e (22) - oge(m)| |

o w252 252

+ W (ZE ) W W (2 o(H( 22 ) ) o) |

h h
where
H(27E)= W (252 )+ (232
P ()
Hence

@7) E (nhz(n) S R2n(w)a(x)dx>2
=nhi(n) || E (Rl Bun(eNa()a(e)dads’

[ (5 e 25

+ W ﬁ(%) W W( m;x' ))a(x)a(m’)dxdw’

oo =52

— Ok (m) W* W+ W W(0))+O(h(n))
=o(hn)),  since (W*W)®(0)— 0 as n— o .

' >a(x)a(a:’)dxdx’+0(h‘(n))

This completes the proof.
Lemmas 1, 2 and 3 together imply that if we let A(n) | 0 at a prop-
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er rate and if the weight function does not have a heavy tail, then
(28) S,=nk | (F(w)—E fr(x)Ya@)de
can be considered instead of S,.

3.1. Proof of Theorem 1
Note that

(29) S,:=3 31 Unu(n)
where

(30) Uy(n)

S (j+l)d(n)S(k+1)d(n)

jaln) kd(n) %hz(ﬁ*(x) —E fn*(w))za,(x)dx

S(j+l)d(n)8(k+l)d(n) ( J% S ~ (x(n_ul m‘z’-—uz

JdFrw—Fw))

jacm k) h(n) h ’ h
Xa(x)dx ,
and
(31) d(n)=2h(n)c(n) , U= (Uy, Uy)
(32) nFr@) =2 F).

Since W(-, -) vanishes outside [—e(n), ¢(n)]X[—c(n), ¢(n)] and nF* is
a Poisson process on the plane, the random variables {ﬁ,k(n)} are 2x2
independent. Set

(39 Vam={"1 ubn)(Fr@)—E fr@)Yale)ds

J k

where
4;=(3+1d(n)+4(n) and 4;=(7+1)(d(n)+4(n))
with
d(n)=o0(4(n)) and 4(n)|0 as n— .
At this stage is should be mentioned that the claim
E [Vi(n)—S.|=0(b4)
in [1] is not true. In fact, in the notations Rosenblatt [1],

E [V;i(n)—S.|=0(b/4)
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and this approximation is not enough to replace S, by > >} V,(n) in
ik
the proof of asymptotic normality. A different approach will be given
here to show the asymptotic normality. Let Q(n) denote the rectangle
[—a(n), g(n)] X [—q(n), g(n)] with g(n) — o as n— 0. Set
(34) S@u)=nt | (F#(@)~EFfx@)a()s .
Let
I(j, k)=(Aj) Aj')X(Aln Alc’)
and let
Qn, H=U I, k),  Qn, H=Q(n)—Q(n, 1) ,

where the union is taken over all I(j, k) within Q(n, 4). Also let

Qn, )=Q(n)—Q(n, 4)

Q(n)=(—o00, 00) X (— 00, ) —Q(n) .
The following lemma shows that we can in fact replace S, by PPN V,,,(n)

ik

(35)

for large n.
LEMMA 4. Under the assumptions of Lemma 1

Var {(S,—E g,.)—(g,.(Q(n))—E S.Qn))} _, 0
Var (S,)

Var {(S.(Q(m) —E S,Q(m) (S 3 Via(m)— 53 S E Viu(m))
Var (S',.)

as n— oo,

(1)

(ii) —0

as m— oo
and

Var (; by V(n))
Var (S,)

—1 as m— oo .

(iii)
PrROOF. Observe that
(36) $—8.Qu =\ nh¥n)(F3@)~EfH@)a(e)ds

Hence

Var (§,—8.QuN = W) | a@)@im)fa) +n-if)da

Q¢
and
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Var (S,)~ W®(0) Snz a*(x) (2h*(n) fi(x) +n" 1 f (x))dx

where R?=(—o0, )X (—o0, o). Therefore

@7) Var (S,—S.(Q(n))) o Sa(n) a¥(x) f(x)da
Var (S,) Var (5,)

—0 as n—oco.

Since S a¥(x) f(x)< oo and Q(n)— ¢, this completes the proof of (1).
R2

Proceeding as before it can be shown that
Var GQm)-S S Vam) | aa)fiada

(38) =
Var (S,) SRz o(x) f(@)da

The numerator in the right hand side of (38) can be expressed as the
sum of integrals of the form

I, 0= S;jd::d(")sz a’(x) fHw)de .
But
1(3, k) _H( d(n)
(39) I(3, k) —O< A(n) )

and hence the right hand side of (88) is zO(%%)—»O as n— oo.

Since the numerator of (ii) is equal to Var (Sy(Q(n))—3) 33 V,.(n)), this
7 &

completes the proof of (ii).
Finally to show (iii) observe that

Var (S5 Vum) | ae)f(e)s

(40) -
Var (S,) | . P@) (@)

Sa(n) aX(x) fY(x)dx+ S . aX(x) fH(x)dx

=1__ a(n

sz () fY(x)da

—1

as n—oo.

The conclusion above follows from the arguments used in (ii).
This completes the proof of the lemma.

The final step in the proof of Theorem 1 is to show that the
Liapunov’s conditions are satisfied. Following the analysis of Rosen-
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blatt [1] it can be shown that

(41) E|V,un)—E ij(n)l‘=0(h4(n)42(n) Sm) a(x) fZ(ac)dx) .
Hence
(42) > %} E|V,(n)—E V,(n)' =0k (n)£(n)) .

This shows that
SISE|Vu(n)—E V()
(Var (33 33 Viu(m)))

=0(4'(n))— 0 as n — oo .

(43)

This completes the proof of Theorem 1.

3.2. Proof of Theorem 2
To prove Theorem 2 it is enough to show that we can replace (f,

(@, 8%)— 0, (3V)gu @) by (Fia®, #¥)—§i(@V)gu(@®)) with a small
error. The following lemma shows that in fact this can be done.

LEMMA 5. Under the assumptions (Al)-(A4) and (A6)

(40)  nhi(n) S (fo#) = 91u(8©)Gen &P — (ol @) — Gral#V)Fen(@®) P} o)l ()
=o(h(n)) .

Proor. The proof of this is similar to those given in Lemma 3.
The details are omitted.

4. Concluding remarks

The results of this paper provide a generalization of the results of
Rosenblatt to wider class of weight functions. Also a correct proof of
Theorem 1 of Rosenblatt is given. Theorem 1 and Theorem 2 can be
used to test goodness of fit and to test of independence for density
estimates based on a wider class of weight functions than those con-
sidered by Rosenblatt.
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