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Summary

Let X~ Ny (g, 0’L,) and let s/o’~y2, independent of X, where g and
¢® are unknown. This paper considers the estimation of g (by 8) rel-
ative to a convex loss function given by (8— g)[(1—a)l,/o*+aQ](3— )/
[(1—a)p/e*+atr (Q)], where Q is a known pXxp diagonal matrix and 0=
a<1. Two classes of minimax estimators are obtained for g when p=
3; the first is a new result and the second is a generalization of a re-
sult of Strawderman (1973, Ann. Statist., 1, 1189-1194). A proper
Bayes estimator is also obtained which is shown to satisfy the condi-
tions of the second class of minimax estimators. The paper concludes

by discussing the estimation of g relative to another convex loss func-
tion.

1. Introduction

Let X=(X,---, X,) be a single observation vector from a p-variate
(p=3) normal distribution N,(g, ¢’I,) with mean g and covariance ma-
trix ¢’I,, where ¢'>0 is unknown. Assume that s/c’~y, is available
and is independent of X. This paper will consider the problem of esti-
mating g by 8=8(X, s). The estimation problem has received consider-
able attention since Stein [5] showed that the maximum likelihood esti-
mator, X, is inadmissible, even though it is minimax, relative to the
loss function
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(1.1) L(3; g2, 0")=(3— p)' (38— p)/(pd?) .

To improve upon the maximum likelihood estimator, various authors
have looked into a Stein-type estimator for an answer. Successful re-
sults have been reported. Among others, we cite Lin and Tsai [4] for
a class of generalized Bayes minimax estimators and Strawderman [7]
for a family of proper Bayes minimax estimators. The loss function
given by (1.1) is a squared error loss weighted by the reciprocal of the
common variance. An advantage of using (1.1) is that it reduces the
risk function to a simpler form by a scale-invariance technique as is
done by Lin and Tsai [4]. More recently, considerable attention is given
to the following arbitrary quadratic loss function

(1.2) Ly3; p, 0")=(8— )’ Q(3— p)/[0* tr (Q)] ,
where Q is a known pxp diagonal matrix with diagonal elements ¢,>
0, t=1,---,p. See, e.g., Berger et al. [1] and the references contained

therein for the case of unknown covariace matrix J.

In this paper, we will consider the estimation of g relative to a
new quadratic loss function L(8; g, ¢?), which is a convex combination
of L(3; g, ¢%) and Ly(8; g, ¢, i.e., for 0<a=<1,

1.3 L@3; pt, 0")=(8— p)'[(1—a)],/o*+aQ](d— p)/C

where C=(1—a)p+ad®tr (Q). More specifically, in Section 2, a class of
minimax estimators of the form

(1.4) X, w)y=[I,—r(X, w)|| X| ;7w Q1 X

will be obtained, where || X||Z,=X"Q'X/w* with w=s/(n—2) and where
7(X, w) satisfies certain mild conditions. In Section 3, another class of
minimax estimators will be obtained. A typical estimator in this class
is given componentwise by

(1.5) d(F, s)=[1—r_i(FFT’i)]Xi, i=1,,p,

where F'=X'Q'X/s and r(F, s) satisfies certain conditions. It is noted
that the two classes of minimax estimators are not mutually exclusive
nor is one a subclass of the other. The primary difference lies in the
shrinkage factor. More specifically, the estimator (1.5) is more general
in that the »,(F, s) function is allowed to depend on the ith component ;
on the other hand, it is slightly less general in some sense since the
same function depends on X and s through F=X '@ 'X/s and s. In
Section 4, we will produce a family of proper Bayes estimators which
will be shown to satisfy the minimaxity conditions of Section 3. Finally,
in Section 5, another loss function, which is also a convex combination



PROPER BAYES MINIMAX ESTIMATORS 443

of L3; p, 6°) and Ly(3; g, ¢°), will be discussed.

2. A class of minimax estimators

For an estimator d(X, w) let R(3; g, 6*)=Eu, x L(3; g, o*) denote the
risk function. It is easily verified that the maximum likelihood esti-
mator, X, is minimax relative to the loss function given by (1.3) with
constant risk equal to 1. Thus an estimator 3(X, w) will be minimax
if and only if R(3; u, ¢*)<1 for all g and ¢*. In this section, the esti-
mator 3(X, w) given by (1.4) will be shown to be minimax by proving
that R(X; g, 6*)—R(3; g, ¢*)=0 for all g and ¢*. The following lemmas
are useful in evaluating the difference in risks; they are stated here
without proof. Assume all expectations exist and are finite.

LEMMA 2.1 (Stein [6]). Let Y~N(0,1) and let g be an absolutely
continuous fumnction, g: R— R such that g(y) exp (—¥%*/2)—0 as y— +co.
Then

Ey [¢'(Y)]=Ey [Yo(Y)] .

LEMMA 2.2 (Efron and Morris [2]). Let U~y: and let g be an ab-
solutely continuous function, g: R*— R* such that g(u)u* exp (—u/2)—
0 as u—0" or as u—oco. Then

E; [Ug(U)]=n Ey [9(U)]+2 E, [Ug'(U)]

COROLLARY 2.1. Let U and g be as defined in Lemma 2.2. Let
Z=cU[/(n—2), ¢>0, and WZ)=g[(n—2)Z/c]. Then

E; [(n—2)ZMZ)[c]=n E,; [MZ)]4+2E, [ZW(Z)] .

LEMMA 2.3 (Lehmann [3]). Let S be any random variable, and let
p(S) and p(S) map the real line into itself. If p(S) and p(S) are
etther both monincreasing in S or both mondecreasing in S, then

Es [D(S)p(S)IZE; [p:(S)] Es [2:(S)] -

The above lemmas have been frequently used to establish the mini-
maxity of an estimator for a multivariate normal mean; they are in-
cluded here for ease of reference.

The following theorem will prove the minimaxity of 3(X, w) given
by (1.4). In the theorem we will use tr (4) and ch,., (4) (or ch,;, (A))
to denote the trace and the maximum (or minimum) characteristic root
of a square matrix A.

THEOREM 2.1. Let X~ Ny, ¢’l,) and sja*~yZ:, independent of X.
Then, relative to the convex loss (1.3), the estimator
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(2.1) X, wy=[I,—r(X, w)|| X|;2w™'Q 1 X

18 minimax for p, where | X|%,=X'Q ' X/w* and w=s/(n—2), provided
that the following conditions hold :

(1) 0=r(X, w)=2[(n—2)/(n+2)][tr (Q7')/chue (@) —2] with tr (")
22 chpy (@79,

(ii) (X, w) s nondecreasing in |X;| for i=1,---, p, and

(iii)) r(X, w) is nonincreasing in w.

ProoF. Let 4=R(X; g, 6*)—R(d; g, ¢*). Then
(2.2) C4=2[(1—a)d,+ad,]
where
4,=(20")" Eu, x [(X— ) (X— p) — (38— 1) (3— po)]
and
4,=(1/2) Ew, x (X — ) QX — p2)— (38— p2)’ Q3 — )] .

In the following, appropriate lower bounds for 4, and 4, will be ob-
tained. These bounds, together with Assumption (i), will imply that
C4=0 for all g and ¢ establishing the minimaxity of the estimator
given by (2.1). Write r=r(X, w). Then

(2.3) 0241=Ew,x[m(x—p)’Q-lx—WX’Q'zx]
2B [ (X )@ X e e (@)
=d4y+4,, , say ,
where
@Y sy=Bux|g X’I’Iz (X—p)’Q“X]
=Eux| 2 3 Ll Xlex)( Sk )|
=Eox[251 % (ruXu;*Xo}
=Bux[ 53 ?zl‘< X Tl T X 9%
2Bux |70 ” an (b7 (@) —2 chane (@] -

The third equality in (2.4) is obtained by an application of Lemma 2.1
where, for each i=1,...,p, we have set Y,=(X,—u)/e and g(Y;)=
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rllo Y+ pllz¥0 Y+ p) with Y=(Y,,---, Y,)'~N,(0, I,); and the inequality
follows from Assumption (ii) since X,(dr/0X;)=0 for i=1,---,p. To
evaluate the expectation in the last expression of (2.4), we use Corol-
lary 2.1 by letting w=s/(n—2) and k(w)=70*/(|| X|j’w). Then, taking
the expectation first with respect to w and then with respect to X,
we have

nEx (B [ prs ]
=Ex (B, LTL_—L_;WW_)] 2, [wh'(w)]

EX{E,,, (n— 2)7'} 2Ew[ ra n a g‘_”

i

I X1 IXw X% ow

since (0r/ow)<0 by Assumption (iii). After collecting similar terms,
the above inequality reduces to

2 -2 r
P N )
(25) XTEw) = \n2 XS

Now, substituting (2.5) into (2.4) and (2.3), we have
(2.6)

2B (2R o 47 (@) =2 e (@] = gy O (@)

=Eu,x {(rI1 X113} {(%—J—r%) [tr (@) —2 ehue (@]~ (/2) s @)} -

Similarly, for a lower bound of 4,, we have

r r:
(X—py X——"
XEw 2||an]

2B, x (1 X1 (222 ) 0-2 -1 ||

@.7) 4,=Eu x [

The lower bounds in (2.6) and (2.7) will now provide an appropriate
lower bound for C4. More specifically, it follows from (2.2), (2.6), and
(2.7) that

C4J22Fu, x {1 X"

x{(%’})[(ﬁ_{_g)(tr (@) —2 Chies (@) —(7/2) Che (@ ‘)]
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o () -2 ]

=Fux {(rl| X )

x (22| (252 )r (@) =2 chowe (@) +alp—2)]

] (352) 1]

which is nonnegative if 7 is bounded inclusively by 0 and

(2.8) 2[(n—2)/(n+2)]{(Q —a)[tr (@7") —2 ch,u(@ )]/’ +a(p—2)}
' (1 —d) Chmax (Q—l)/0.2+a

It is noted that the upper bound given by (2.8) depends on the un-
known variance ¢®.. To avoid this dependence on ¢? Assumption (i) is
thus imposed. Under this assumption, it is clear from (2.6) that 4,=0
for all g and ¢*. Furthermore, since tr (Q7')=p chn. (Q™') for any pXp
positive definite matrix Q, it is also clear from (2.7) that Assumption
(i) implies 4,=0 for all # and ¢°. Therefore C4=0 for all g and ¢°
completing the proof of the theorem.

3. Another class of minimax estimators

In the previous section, the estimator (2.1) is shown to be mini-
max for g. It is noted that the function 7(X, w) in the shrinkage
factor of 8(X, w) is the same for each of the p components. In the
following theorem, we will obtain another minimax estimator for g,
relative to the loss function (1.3), where the function r(F, s) will be
allowed to depend on the ith component.

THEOREM 3.1. The estimator d(F, s) given componentwise by

3.1) d(F, s):{l—l.i(—F’i)]Xi, i=1,--,p,
Fy,
is minimax for p, under the loss function (1.3), where F=X'Q'X]s,
provided that the following conditions hold
(i) r(F,s)=0 for all F and s, i=1,---, p,
(ii) rd(F, s) is nondecreasing in F and nonincreasing in s, 1=1,
e Dy

(iia) 2 33 [r(F, s)/a] Zmax [4r(F, s)jai+(n-+2r(F, 9)/g] and

Gitb) 2 3} [ri(F, )]z max [4r(F, 5 +(n-+ 2riF, )]
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PrROOF. As in Theorem 2.1, let 4=R(X; g, 6')—R(d; p, *). Then

(3.2) Ca=(1—a)pd¥+adtr (Q)4¥, say,
where '
(3.3) 45 =E; x[L{(X; pt, )—Li(d; p, )}, i=1,2.

To show that the estimator (3.1) is minimax, it suffices to show that

4¥=0, v=1,2, for all g and ¢*. It is noted that Strawderman ([8],
Theorem 1), under the loss function

(3.4) L{3; p, 6")=(3—p) D(3— p)/’

where D=diag (d,,- -+, d,) is a known pXp diagonal matrix with d;>0,
1=1,---, p, obtains a minimax estimator given (componentwise) by

C,8T; [é (e;X})/s, s]

él (e;X})+gs+h

(3.5) 72X, 8)=1{1— X;
where

(a) {c} and {e;} are sets of positive numbers,
(b) g and h are nonnegative,

(e) ri(F,s) is nonnegative, and nondecreasing in F' and nonincreas-
ing in s, and

d) 23 cdr(F, s)=max [4c,.d,.r,,(F, 5)+Zddn+2) g s)} for all F
i=1 1sisp €;

and s.

It is clear that the estimator d,(F,s) given by (8.1) is a special
case of 7(X, s) with

Ci=e;=1/(h and g=h=0 .

Furthermore, the loss functions L«(3; g, ¢%), i=1, 2, are of the form
(3.4) with the weight matrix D properly identified, i.e.,

L(3; pr, 0)=L,3; pr, ) with  D=(1/p)L,
and
Ly3; g, 6°)=L,3; p, 0*) with D=Q/tr Q) .

Therefore, it is easily verified that 4¥=0 if Conditions (i), (ii), and
(iiia) hold, and that 4F=0 if Conditions (i), (ii), and (iiib) hold. This
completes the proof.

Remarks. (1) If r(F,s)=r(F,s)/(n—2) for all 1=1,..., p, and if
the function r(X, w) in (2.1) depends on X and w through F=X'Q ' X/w*
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and w, then the minimax estimators given by (2.1) and (8.1) are identical.
Moreover, Conditions (i), (iiia), and (iiib) of Theorem 3.1 reduce to
Assumption (i) of Theorem 2.1, and Condition (ii) of Theorem 3.1 is
essentially equivalent to Assumptions (ii) and (iii) of Theorem 2.1.

(2) Conditions (iiia) and (iiib) seem rather complicated. It would
be nice if they could be simplified. But, since

SHN(F, 9/a] 2[5 7dF, 9)] chuw (@)

and
max {[4r(F, 8)+(n+2)ri(F, 5))/q:}
Smax [47(F, s)+(n+2)r)(F, s)] chux (Q7Y) ,

a sufficient condition for (iiia) to hold would be

(3.6) 231 [r(F, 9]z max [4r(F, 8)+(n-+2r(F, )]
X Chie (@ )/chn (@) .

It is noted that (3.6) also implies Condition (iiib). Thus, Theorem 3.1
remains valid with Conditions (iiia) and (iiib) replaced by (3.6).

4. Proper Bayes minimax estimators

In this section, we will employ the same family of prior distribu-
tions as that of Strawderman [7] to obtain a class of proper Bayes
minimax estimators for g under the convex loss function (1.3). Since
the method of proof is the same as that of Strawderman [7], we will
also adopt most of his notations. Let 7'=1/¢’. Assume that

(4.1) 2|2, 7)~Ny0, V)

where V=diag (v,--,v,) with v,;=(¢;—2)/(29%), i=1,---, p. The joint
density of 2 and * is given by

(4.2) S, p)oca™(n") 7

where 0<2<chy;, (Q)=q (say), a<1l, 0<y<9’<oo, and K>1/2. Then
the proper Bayes minimax estimators of g will be obtained through
the following lemmas. (Note that Strawderman [7] assumes 0<y<%n<
oo, but for ease of integration we take 0<y=»'<oo; otherwise there
is no major difference.)

LEMMA 4.1. The conditional distribution of g, given X, s, 2, and
.
7%, 18
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N,(I,— Q™) X, (I,—2Q")n ™" .
Proor. Immediate.

LEMMA 4.2. The proper Bayes estimator of p with respect to the
above priors under the loss function (1.3) is given componentwise by

(4.3) e=|1— " {h]z[ a -(];Jp'fy)ziﬁi?@)] lX’ s}

%E {”2[ a —(t;:;)zfar :31@) ] ’ X, s}

Xi9

for i=1,---, p.

PrOOF. Under the loss function (1.3), it is clear that the Bayes
estimator of g is given componentwise by

» _ Elpn'd(e, 7’ Q|X, s] i—1...
(4.4) Ft E [an(a’ 7}2’ Q)IX, S] ’ v 1’

Py
where for convenience we have set

2 — (1—a)y*+ag,
4.5 , 0 Q)= .
*2) T = i gyt tr @

Using Lemma 4.1, the numerator in the right-hand side of (4.4) can
be further evaluated as

E{E [/“iﬂzJ(a! 7]2’ Q)IX! s, 4, 72]|X9 s}
=E {(1—1/(1¢)7)2J(a, 7]2! Q)le S}Xi ’

establishing the lemma.

LEMMA 4.8. Define, for i=1,---, D,

_ _EunJ(a, ", Q| X, s]
“9 = (e, 7 Q1K ]

where u=2F and J(a, %, Q) 1is given by (4.5). Then

4.7 r{F, 8)=0
and

o — ’)’,;(F, S)
(4.8) f= [1 g ]Xi .

PrOOF. Immediate.

LEMMA 4.4. The function r(F,s) given by (4.6) is nondecreasing
wm F for fixed s.
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PRrROOF. Since the joint probability density function (pdf) of X, s,
2, and 7? is given by

f(X, s, A, 772)ocZp/z—¢1(772)(1z+p)/2—Ksn/z—1 exp [—%7}28(1+1X’Q_1X/8):| s
it follows that the conditional pdf of u=2F and »? given X and s, is

UP/EO () HP-K exp [ _ _21_ s(1+ u)]
f(u’ 7]2]X9 3):

Su‘ S‘” up/z—a(,,}Z)(n+p)/z-K exp [_% 772 s(l +u):| dnzdu
0 r

Therefore, the function r,(F, s) given by (4.6) may be rewritten as
(4.9) r(F, 8)=G/G,
where, for each fixed i=1,---, p, and =0,1, we have set

qF
0

(4.10) G,=G,(F, s):S S“’uwn“J(a, 2, Q) exp [-—%n"’s(l-i-u)]dnzdu

with )
(4.11) A=(n+p)/2—K+1 and B=p/2—a ,

and J(a, 7%, Q) is given by (4.5). Now, a straightforward calculation
shows

2B i | 4T ) @ exp [~ L is(1-+aF)|doy

X S” S“’ Wt J(a, 7, Q)(@F)*(¢F—u) exp [—%n’s(1+u)]dn’du
0 T
which is nonnegative since qF =u.

LEMMA 4.5. The function r(F,s) given by (4.6) is nonincreasing
in s for fixed F.

PrROOF. It is clear that, for each i=1,..., p,

%: —% Cov [U, H(1+U)]= —% Cov {U, E [H)1+-U)|UT}

where the joint pdf of U and H? is given by
Go.m(, 7)=uByt4 I (a, 7, Q) exp [—%—ngs(l—l—u)] /Go ,

with 0=u=<¢F and 0<y<7’<co. To show that Cov {U, E [HX1+U)|U1}
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=0, it suffices to show, in view of Lemma 2.8, that g(u)=E [H*(1+U)}
U=u] is nondecreasing in u or (dg(u)/du)=0 for all #=0. But, this
follows immediately from the proof of Lemma 2 of Strawderman [7]
with obvious changes, completing the proof of the lemma.

We can now summarize the results in the following theorem.

THEOREM 4.1. The estimator g given componentwise by (4.8), with
the function r(F, s) specified by (4.6), is a proper Bayes minimax esti-
mator of g relative to the loss function (1.3) provided that Conditions
(ilia) and (iiib) of Theorem 3.1 hold.

In practice, the computation of the proper Bayes estimator p; or
of the function r(F,s) is not an easy task without the use of elec-
tronic computers. However, if the prior joint density of 2 and »* given
by (4.2) is suitably chosen, the computation may be much simplified.
For example, take

a=0 and K=(n—4)/2 if p is even
and

a=1/2 and K=(n—3)/2 if p is odd
in (4.2) where n>5. Then (4.5) becomes

J(@, 7, Q)=(1/p){1+alg:—)/[(1— )’ +aq]}
where g=tr (Q)/p, and the integral in (4.10) reduces to

qF (oo —

= B+t M__] [_l ’ ] .

PG SO Sr v [1+ (1—a)p*+ag P73 ws(l+u) |dy'du
=L+a(¢;—q)L, say,

where
qF (oo 1
L:S S uB+iypt4 exp [——2—7;’s(1 +u):|d772du
0 r
and
1={" | w41 - a)r+agl) exp [ — L ris(1+u) |dridu
0 r

with A=B+3 and B=p/2—a being positive integers. The integral I
may be evaluated as follows: Let
(4.12) v=7ysu and z=7's .

Then, after some simplification, we have
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(4.13) L:S nz‘[gq uB* exp <——;- 1;23u>du:| exp <—%nzs)day2
7 (1]

oo i 1 qF2 1
z'"7 exp (—-z) [S vE+ exp <———2-v>dv]dz .
0

—g—(B+D S
) 78 2

The bracket in the right-hand side of (4.13) is an incomplete gamma
function. Since B-+j is a positive integer, the incomplete gamma func-
tion may be expressed as a finite sum, upon repeated application of an
integration by parts, with a typical term (except constant factor) equal
to (qF2)* exp ((—1/2)qF%) for some positive integer k. Thus I, may be
written as a finite sum of simple integrals with a typical term taking
the form

§~E(gF) Sw 2517 exp [-_;.(1 +qF)z]dz

which, again, is an incomplete gamma function with (k+1—j) being
a positive integer. Therefore, the integral I, can finally be expressed
explicitly as a sum of a finite number of simple terms. As for the
integral I,, we may use the same change of variables (4.12) to obtain

=g | 27D ULDR [ s o (Lo )ao]az
s (l—a)z/s+ag Lo 2

In view of the above discussion, it is clear that we need only evaluate
a typical term of the form

I ZS‘” 277 exp (—1/2)2) 4,
s (1—a)/s+ag

where k is a positive integer. If a=1, then the evaluation of I, is the
same as that of I,. Now assume a<1l. Then

I,=—5 S“ 2 exp ((—1/2)2) dz .
l—a Jis z+ags/(1—a)

Making the change of variable w=z+ags/(1—a), we have

4.14) L= 1ia exp (2(;“?_30[)) S:" [w——dasl(;—d)]’“rl—! exp(—-é-w)dw

where t=[r+ag/(1—a)]s. After writing the factor [w—ags/(1—a)]**'~/
in terms of the powers of w, it is clear that the integral in the right-
hand side of (4.14) is equal to the sum of (k—j) incomplete gamma func-

tionsa nd exp ((—1/2)t)+ Sw w' exp ((—1/2)w)dw, except their coefficients

which are functions of F, s, @, and Q. Consequently, the integral I
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can also be expressed explicitly as a sum of a finite number of simple
terms.

5. Another convex loss function

Relative to the convex loss function (1.3) we have obtained classes
of minimax estimators and proper Bayes minimax estimators for g in
the previous sections. The convex loss function may be rewritten as

(5.1) L(3; g, 0")=[1—B(s")]L:(3; 2, 0*)+B(0*) Lo(8; 2, %)
where L(3; g, o°) and Ly(8; g, ¢*) are given by (1.1) and (1.2), and
(5.2) B(e*)=ad’ tr (Q)/[(1 —a)p+as’ tr (Q)] .

It is noted that the convex coefficient B(¢?) depends on the unknown %
In this section, we will consider another convex loss function which
takes the form of (5.1) except now the convex coefficient does not de-
pend on any unknown parameters, i.e.,

(5.3) LX3; p, ")=1—pB)Ly(3; g, 6*)+BLy(3; g, 0*)
—(3— Y D@ — p)/c*

where B is a known constant ranging between 0 and 1, and D=diag
(dy, -+, d,;) with

(5.4 di=(1-p)/p+pa/tr (@), i=1,---,p.

As noted in Section 3, Strawderman [8] obtains a wide class of
minimax estimators for g, under the new loss function (5.3), where
the shrinkage factor is allowed to depend on the ith component, 71=1,
..., p. But, for the purpose of verifying the minimaxity of a proper
Bayes estimator to be obtained in this section, we will need the fol-
lowing specialized result.

THEOREM 5.1. Let X~Nj(g, o’I)) and s/a*~y:, independent of X.
Then, relative to the loss function (5.3), the estimator given component-
wise by

. F*,s) .
5.5 T:(l—M-)Xi, —1,---,p,
(5.5) ¢ Fod, v P
is minimax for p, where F*=X'D™'X]/s, provided that

(i) 0=r(F*, s)=2(p—2)/(n+2)
and

(i) 7(F*, s) is mondecreasing in F'* and nonincreasing in s.

ProoF. The proof follows immediately from Theorem 1 of Straw-
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derman [8] by setting c¢;=e;=1/d;,, g=h=0, and r(F*, s)=r(F*,s) for
all 7=1,---, p.

Now consider the family of prior distributions of (g, 2, »*) having
the density

(5:6) F(pt 4, 7)ok =P DAL exp [ 2 2t (D—1L) )

where
(5.7 a<l, K>1/2, 0<1=Zd=ch,,(D) and 0<y=y’<co.

Using the procedure of Section 4, the following theorem can be es-
tablished.

THEOREM 5.2. Let X~ Ny(g, o’1,) and s/o*~y:, independent of X. De-
fine F*=X'D"'X/s where D is given by (5.4) and d=(1—8)/p+8 chu (Q)/
tr (Q), 0<B8=<1. Then, the estimator p*=(gt,---, p¥) given component-
wise by (5.5) where r(F'*, s)=G(F'*, s)|G(F*, s) with
58 G F* 5=\ | urerigprrixexp [ - Lats(ru)|dridu

0 T
j=0’ 1 ’

18 proper Bayes with respect to the prior distribution (5.6) and under
the loss function (5.3). The proper Bayes estimator is also minimax if
p>4+4(3+¢)/(n—4—2¢), £>0, and n=5.

PROOF. The first part of the theorem may be established follow-
ing the same steps as those of Lemmas 4.1 through 4.5. It is noted
that the proper Bayes estimator g* resembles a proper Bayes minimax
estimator 8(X), given by (3.1) of Strawderman [7]. A careful com-
parison between Strawderman’s estimator and ours, it is not difficult
to see that, for the minimaxity of z*, we need only verify Condition
(i) of Theorem 5.1. But, as in (3.4) of Strawderman [7],

0=7(F*, s)<lim [G(F*, 8)[Gy(F*, 5)] .

Change the variable 7* to v=7% in (5.8), we get

G(F*, s)=g tp/+K-1 S:F Sm upAmet iy PA-K exp [— -%— v(1+ ’u)] dvduw .

78

Hence the upper bound is
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© (oo _ 1
Pi2—a+1 et p)/2—K —— (1 ]dvd
. . SO So n v exp [ 2 v(1+u) u

1 =
o Go(F™, 9) Sw Sw uP-ey P~k exp [-—-;—v(1+u)}dvdu
0

0
_ B(n/2—K+a—1, p[2—a+2)
" B(mj2—K+a, pl2—a+1)
_ p—2a+2
T n—2K+2a—2

where we have used j(a, b) to denote the Beta function. Thus Condi-
tion (i) of Theorem 5.1 will be satisfied if

—2a+2 2(p—2)
5.10 p < )
( ) n—2K+2a—2 — n+2

Choose K=(1+¢)/2 for some ¢>0, and define

_ (n+2)(p+2)—2(p—2)(n—3—¢)
(5.11) a(n, p, €)= ST2(p—2) +n+2] .

Then (5.10) is equivalent to
(5.12) aza(n, p, €) .

If a(n, p, €)<1 for those p and n for which there exists an ¢>0, then
we will be able to find values of @ and K such that (5.10) holds and
hence gZ* will be minimax. But a(n, p, €)<1 is equivalent to

(5.13) p>4+4(3+e)/(n—4—2¢) and w5

For p=3 or 4, inequality (5.13) cannot hold for any n. For p=5, n=
17, for p=6, n=11, and so on. This completes the proof of the theorem.
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