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Summary

Two examples of estimation problems are given. In the first ex-
ample, X,, X; and X; are independent random variables with X, having
a Poisson distribution with mean 64,, X; being N(4,, 1) and X,/d, having
a chi-square distribution with n degrees of freedom. Based on these
three observations, an estimator of (4, 6;, 6;), strictly better than the
standard one (X, X;, X,/(n+2)), is constructed by solving an inequality.
In the second example, we establish a counter-example to the assertion
that the lack of a nontrivial solution to a difference inequality (corre-
sponding to the problem of improving upon an estimator & through an
identity of Hudson’s (1974, Technical Report No. 58, Stanford University),
and Stein’s type (1973, Proc. Prague Symp. Asymptotic Statist., 345-
381)) implies the admissibility of . Implications of these two examples
are discussed.

1. Introduction

The controversial results of Stein [10] stated that, based on three
independent observations, X;, t=1, 2, 3, having normal distributions with
means 0; and variances 1, the standard estimator (X, X,, X;) for (4,, 6,,
;) is inadmissible under the sum of squared error loss, even though
X, is admissible for 4, under the squared error loss function. The first
reaction of many surprised statisticians was to think that the inadmis-
sibility of the standard estimator is linked closely to the sum of squared
error loss function. However, Brown’s [2] results confirmed that Stein’s
example is in fact a phenomenon that occurs for general loss functions
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and broad classes of distributions when the estimation problem is in-
variant under the location transformation.

Efforts have since been made to understand Stein’s phenomenon.
Using the empirical Bayes approach, Efron and Morris [4] derived the
James-Stein estimator (an estimator better than the usual one), thus
providing an appealing explanation of Stein’s phenomenon. Their der-
ivation, however, was based heavily on the symmetry assumption that
the observations all have normal distributions with the same variance.

As mentioned above, most previous authors (see the reference in
Hwang [7]) seemed to concentrate on the case in which the problem is
either invariant or symmetric in the coordinates. From the practical
point of view, these assumptions are of course reasonable, but it is also
theoretically interesting to look at the more general case. In an asym-
metric setting, where the observations have different distributions,
Berger [1] also observed the Stein phenomenon, that is, combination of
componentwise admissible estimators leads to an inadmissible estimator
for the whole problem. No such results have been obtained, however,
in the extreme case where some of the observations have discrete dis-
tributions and some continuous.

In Example 1 below, it is assumed that three independent obser-
vations have completely different distributions, namely Poisson, Normal,
and Chi-square shifted according to a scalar parameter 6,>0, and yet
an estimator that dominates the standard one can be constructed. This
example, which is very hard to explain using the empirical Bayes
method, shows that Stein’s phenomenon appears to be a property more
basic than invariance or coordinate symmetry. Additionally, the esti-
mator constructed is interesting in its own right. For the first and
second coordinates, this improved estimator corrects the standard one
by shrinking toward zero and, for the third coordinate, by expanding
toward infinity. This demonstrates a mixture of Stein’s and Berger’s
phenomena [1].

The improved estimator is constructed by using a technique paral-
lel to Stein’s [11]. Specifically, let 3° be an estimator that one wants
to improve under a loss function L(-, -). Write a competitor as 3*(X)
=3(X)+dD(X). It can be shown, (by integration by parts for contin-
uous exponential families and by change of variables for discrete ex-
ponential families), that

R(6, 3*)—R(0, 3")=E, D(X)

where R(6, 3)=E, L(6, 8(X)) is the risk (expected loss) of 3, and D(x)
is an expression independent of #. Typically, 9D(x) involves partial
derivatives of @ for the continuous case and partial differences of @
for discrete case. Clearly, if one can find @ such that 9(x)<0 for all
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x, then the corresponding estimator 3* dominates &°.

Stein’s technique, originally designed for normal families, has been
generalized to many other situations. Many authors have since suc-
cessfully solved a broad class of differential inequalities and difference
inequalities. (See Hwang [7] and its references.) In Example 1, the
inequality involved is a mixed type including both partial derivatives
and partial differences. This is because we are dealing with a case in
which two of the observations have continuous distributions and a third
has a discrete one.

As mentioned above, the existence of a nontrivial solution to the
inequality corresponding to an estimator &°, implies the inadmissibility
of 8. Some statisticians therefore speculated that the lack of a non-
trivial solution to the differential or difference inequality implies the
admissibility of the corresponding estimator. Example 2 below shows
that the statement is not true for the one dimensional discrete case
and therefore is probably not true for higher dimensions. Another
parallel example for the case when the observations are normally dis-
tributed was given in Brown [3]. While his inadmissible estimator, a
generalized Bayes rule, is more appealing than ours, we note that our
example is technically simpler, having arisen in a more natural context.

2. Two examples

Example 1. Assume that X;, X; and X; are independent random
variables: X, has a Poisson distribution with mean 6,, X; has a normal
distribution with mean 6, and variance 1, and X;/6; has a chi-square
- distribution with » degrees of freedom. We wish to estimate (4,, 6;, 0;)
under the loss function

L.(8,a)=Ly9,, a)+ Ly(6;, as)+ Ly(0,, ay)

Where L[(ﬂl, a1)=(01—a1)2, Lg(az, a2)=(02—-a2)2 and La(ag, a3)=0;1(03—a3)2.
The standard estimator is

X)) =(3%X), 8%(X), 33(X5))
where
NX)=X,, 1=1,2,
and
M Xy)=Xs/(n+2) .

It is known (see Hodges and Lehmann [5]) that 8)(X;) is an admissible
estimator for 4, under the loss function L,. Note that 33(X;)=X,/(n+2)
(rather than X;/n) is also the best linear estimator under L; (or the
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squared error loss function) for estimating 6,. However, a better esti-
mator under L, can be constructed as shown in Theorem 1 below.
Note that the loss function L. is chosen to simplify the following cal-
culation. Results similar to what follows can be established for the
sum of squared error loss function. In what follows, let

STkt if 3=1,2,---
hy(z)= !

0 otherwise ,
and for arbitrary real numbers «, and w;,,
hy(x;) =2, , hy(w3)= —(n+2)*/2z; .

THEOREM 1. Under L., 8° is dominated by an estimator 3* with
components,

FX)=0(X)+0(X) i=1,2,
1.1)

3 (X)= n"fz (14+0,(X))

where
P(X)=—c(XDh(X)/D(X) ,
1.2) D(X)=h(X))h(X;+ 1)+ X7+ | heo( X3)| and
2/(n+2) if 2,=1,2,..
o(Xy)=

if x1=0 .

PRrROOF. By change of variables (as in equation (2.1) of Peng [9])
it can be shown that

1.3) E, [(03(X) —0.)' — (04 X) — 01)"] =B [2X,4,0,( X))+ DY X)]

where for any function F(x), 4,F(x)=F(x)—F(x—e,) and e,=(1, 0, 0).
Similarly, integration by parts can be used to show, as in equation (14)
on page 6 of Stein [11], that

14) B, [(0H(X)— 0.y — (3AX)— 0] =E, [2 Z ¢2(X)+¢:(X)] ,

and, as in equation (2.2) of Berger [1], that

(1.5) %E, [(3H(X)— 6,7 — (3(X) — 0]
_ 4X; 0
=Fo [(n+2)’ ax, T + (X
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+— 2.6 04(X)

sy O X))

Let R, denote the risk function with respect to L,. Now by (1.3)
through (1.5) and the fact @4(x)(00y(x)/0x;)<0, it is clear that

(1.6) R.(0,0%)—R.(0, ) =2 E, D[P(X)]
where
ad) (X) , 2% 004(x)

1.7 [/ (] 2
(1.7) D[P(x)]=x,4,0,(x)+ z, + nt2 o,

d)(x)+ (D(x)+m DY x) .
We next show that
(1.8) D[P(x)]1<0 and E, 9[P(X)]<0,
which clearly completes the proof. By direct calculation,

30,(x) 223

1.9 o5X)
(1.9) o, o« ‘)[D(x) Dz(x)]

20} 00y(x) _ Ry ] < 2|hs(ma)|
110) 28D o] S H e s g+ g

and

(1.11) xlal@l(x)gmlc(wod,[:g(l(i)ﬁ]
_ A;hy(y) | hy(— 1)4,D(x)
_“10(“‘)[ D( Y D)Dx—e,) ]

2hy(%;—1)hy(1) ]
D(x) D(x)D(x—e) J°

The last inequality is trivial if «,=0, (for c(x,) is then zero). For
x,>0, it follows from the fact that 4,D(x)<2h(x,)/x,, Hence (1.9),
(1.10), and (1.11) together with the fact D(x)=D(x—e,) imply

0Dy(x) 2w  90yx) o —o(®)
0w, (n+2)* 2xy ~ D(x)

Sc(wl)[

(1.12) x,4,9(x)+

Meanwhile, it is clear that

113 ¢’(x) + ¢2(x) + m‘l’%(x) =c’(@)(n+2)/[4D(x)] .

Hence (1.7), (1.12), and (1.13) give
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(@) ((nt2)e@) ) _
D10 =-H (DAL 1) = ol (2D(x)]

which establishes (1.8). Q.E.D.

Example 2. Let X be a one-dimensional random variable having
logarithmic distribution, i.e.,

1 6°
PX=2)=——————— —, =1,2,--
E=0=—1=0) = v

)

where 6 is some unknown parameter, 0<8<1. It is clear that the
unbiased estimator,

_ X _ if x>2

0 if X=1,

is inadmissible under the squared error loss function, since it estimates
6 by some number greater than one, if X>2. Indeed 4°%X) can cer-
tainly be improved if, for X =2, one estimates 1 (rather than X/(X—1)).
However, we will consider the problem of improving upon 8° by solv-
ing a difference inequality derived by using Hudson’s identity [6]. Again
let R(6, 3) denote the risk function of 3 with respect to the squared error
loss function. One can derive (as in equation (2.9) of Hwang [7]) that

R(6, 3'"+0)—R(9, 3")=E, D[0(X)]
2.1) D[O(x)] =2v(x) [O(x) —D(x—1)] + P(x) , and
x/(x—1) r=2

v(x)=
otherwise .

The following lemma will show that the only solution to D(@)=<0 is
O(x)=0. Therefore the lack of a nontrivial solution to the difference
inequality does not necessarily imply admissibility.

LEMMA 1. If O(x) satisfies D[P(x)]=0, then I(x)=0, =1,2,---.

ProoF. First, we will show that &(-) is bounded. Clearly &(.) is
a nonincreasing function, since @(x)—@(x—1) must be nonpositive. Also
for x=1, P[O(x)]<0 implies ?*(1)<0 or &#(1)=0. Thus &(x)=<0, for z=
1,2,---. Since v(x)<2 for all positive integer x, it follows that

(2.2) 0= D[D(x)] = 4[P(x) — D(x — 1)] +D*(x) = 4D(x) + P*(x)
which, since #(x)<0, implies that

—4=0(x)=0 .
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Next, let [ be the limit of &(x) as x—oco. (This limit exists, since @
is bounded and nonincreasing.) We then complete the proof by show-
ing that [=0. Now clearly

—4=<1<0.

Suppose that [<0. Then there exists some N>0 such that @(x)<0
for x> N. By (2.2),

@2.3) 4@(”‘)(;%””—1” +O(2)=0 ,

whenever x> N. Letting « go to infinity, (2.3) implies that =0, which
is a contradiction. Q.E.D.
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