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Summary

The notion of discrimination rate of any unbiased estimator in the
sense of Lehmann is, as defined by the author (1982, Ann. Inst. Statist.
Math., 34, A, 19-37), extended to multi-parameter cases.

1. Introduction

For any L-unbiased (unbiased in the sense of Lehmann [2]) estima-
tor, the notion of its discrimination rate, which is an index of its
performance, has been introduced by the present author (Kuboki [1]).
Let g(6), 6 €@ (CR") be a parametric function to be estimated, and T
be an estimator of it. Let W(., T) be a loss incurred by 7. We as-
sume that 7 is L-unbiased with respect to W, that is,

E, W@, T)SE,W(, T), for all 4,7 €6.

The discrimination rate D(#; T, W) of T at 6 is a measure for evaluat-
ing the rate of change of E, W(zr, T) to small changes in r at 6, which
is defined by

D@O; T, W)=2lim A(z, 0; T, W)/|z—6],

T

where
Az, 0; T, W)=E, (W(z, T)—W (@, T)}/[Var, {W(z, T)—W(6, T)} 12,

The estimator is powerful to discriminate any wrong value of g(-) from
the correct one when the discrimination rate is large.

This paper is concerned with an extension of the notion of discrimi-
nation rate to multi-parameter cases. In Section 2, we discuss a method
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of extension and establish an upper bound of discrimination rates, which
is an intrinsic sensitivity of a family of distributions under considera-
tion. In Section 3, our extended result is applied to some typical loss
functions. We investigate the relations between risk functions and
diserimination rates when loss functions are of the quadratic form. As
an example, we consider the estimation of parameters of a simple nor-
mal linear regression model.

2. Extension to multi-parameter cases

Let X,,---, X, be independent and identically distributed random
vectors with common distribution Ps, 8=(6,,---, 6,) € O, where 6 is an
open subset of R*. Let f(-,8) be the density of Ps relative to a o-
finite measure . We assume that utilizing a statistic T to estimate
g(0) yields a loss W(@, T'), where T: X=(X,,---, X,)—>R™ and g: 8=
0y,---,0,)—R™, and that T is L-unbiased with respect to W, that is,

EoW(@, T)SEsW(z, T), for all 8,7¢6.

Our method of extension is simple: reducing the multi-parameter
to one parameter and applying the result of one-parameter cases to
the reduced parameter. For every € € @ and every h=(h,- -+, h;)’ with
unit length, we consider the case where = approaches 6 in the direc-
tion h, that is, z=60-+vh, where v is a scalar such that v—0. By this
restriction, we can reduce the multi-parameter to a one-parameter case,
that is, ve V(8, h)={v: 6+vhcO}. Then we naturally extend the defi-
nitions of discrimination rate and sensitivity as follows.

DEFINITION 2.1. For every @ € @ and every h € R* with unit length,
we shall define the discrimination rate of T in the direction h at 8 by

D@; T, W|h)=21lim A(@+vh, 6; T, W)/|v|,

where

A@+vh, 6;T, W)
—Eg {W(8+vh, T)—W(8, T)}/[Vars (W(@-+vh, T)—W(8, T)}?

and A(@+vh, 8; T, W)=0 whenever the numerator vanishes.

DEFINITION 2.2. For every 6 € @ and every h € R* with unit length,
we shall define the semsitivity of the family {Ps; 6 €} in the direc-
tion A at @ by

8(6| h)=2lim p(Ps-+vh, Po)]|v| ,
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where

o(Poon, Po)= | (VF(@, 0ok —VT(@, 0)}%‘1#}[/2 .

Similarly, the sensitivity of the family {Qs; @ € 6} of probability meas-
ures induced by T is defined as

s(6; T|h)=2 lim p(Qo-+s1, Qo)/|| -

We now establish an inequality similar to that of Theorem 3.1 of
[1]. In what follows, we assume the following conditions for every
6 €0 and every h e R* with unit length:

(i) E6+v,n WHO+v,h, T) is finite, for all v, v, € V(8, h).

(ii) W(@+vh,T) is twice continuously differentiable with respect

to v in V(8, h), for all values of T. The first and second deriva-

tives at each veV(@, h) will be denoted by W(@+vh, T|h) and

W(6+vh, T|h), respectively.
The following is a key formula in our discussion (Lemma 2.1 of [1]).

(2.1) Eg {(W(6+vh, T)—W(8, T)}
+Eo+on (W0, T)—W(@+vh, T}
<[Es (W(0+vh, T)—W(8, T)}*/2
+Eo1on {W(8, T)—W(0+vh, T)}*/2]"[404Q0+oh, Q6)]
<[Es (W(6-+vh, T)—W (8, T)}*/2
+Eo+0n {W(8, T)—W(0+vh, T)}/2]"[41n0*(Pé+vk, Ps)l"*,
for all 8 €6, hc R* with unit length and v V(8, h). Then, using (2.1),

we can establish the following theorem, which is straightforward from
Theorems 2.1 and 3.1 of [1].

THEOREM 2.1. Suppose that for every 6 ¢ ® and every h e R* with

unit length, both Egyo,n WHO+v:h, T|h) and Eeivn W(@+wvh, T|h) are
continuous functions of vy, v, € V(6, h). Then we have

(2.2) D@; T, Wh)<s(@; T\h)y=vns@|h),
and
D@; T, W|h)=Ee¢ W(8, T|h)/[Es WX8, T|h)]"* .

Note that the following condition (i)’ implies condition (ii):
(il W(0, T) possesses continuous partial derivatives of the second
order with respect to 8 at each 8 ¢, for all values of T.

Then it is easily seen that
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W(6+vh, T|h)=h'W(6+vh, T)

and
W(6+vh, T\h)=h'W(@+vh, T)h ,
where
W@, T)=0@wW (@, T)/06,,- -, oW (8, T)/26,)
and

W@, T)=[*W (6, T)[26,00,; i, j=1,---, k] .

Therefore, under conditions (i) and (ii), we have the following multi-
parameter version of Theorem 3.1 of [1].

THEOREM 2.1'. Suppose that for every 6 ¢ @ and every h < R* with
unit length, both matrices Eoion W(O+vh, TYW(O-+v,h, T) and Egio.n
W(0+v,h, T) are continuous functions of v, v, € V(6, h). Then

D@; T, W|h)=h Es W(8, T)h/[} Es W(0, T)W(8, T) h]"*
and inequalities of (2.2) hold.

Theorem 2.1 implies that the diserimination rate of any L-unbiased
estimator cannot exceed the intrinsic sensitivity of the family of prob-
ability measures under consideration. In [1], we have discussed the
attainability of the upper bound. We now extend the definition of
efficiency of an L-unbiased estimator as follows.

DEFINITION 2.3. For an L-unbiased estimator T with respect to
W, we shall define its efficiency in the direction h at 6 by

e@; T, Wih)y=D(6; T, W|h)/{¥/ns6|Rh)} ,

if s(@|h)+#0, where s(@|h) is the sensitivity of {Ps; 6 € 8} under con-
sideration.

Remark 2.1. We say that the family {Ps; 8 € 8} is smooth at 6
(Pitman [3], p. 50) whenever for every he¢ R* with unit length, the
one-parameter family {Ps+on; v € V(0, h)} is smooth at v=0, that is, if

2
41im p(Py o, Po)/qﬂ:S {%f(x, 0+vh)1”=0} / P, O)dp<oo .
Define
I1(0)=11I,;(6); 1, j=1,---, k]

E : i ielens
= [(5- @ 0= ftw. 011 O i 5=1,--, 1]
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the information matrix. Pitman gave the following sufficient condi-
tions for smoothness:
(A-1) f(x,8) is smooth with respect to each 6, i=1,---,k at
every point in 6,
(A-2) each partial derivative (0/24,)f(x,8), 1=1,---,k is loosely
continuous in @ (see p. 98 of [3] for definition of “loosely ”),
(A-3) each I,(0), i=1,---,k is a continuous function of € in 6.
Under these conditions, the following relation holds:

(2.3) s(@| h)=[h'I(6)h]"

(see Theorem in Chapter 6 of [8]). Using arguments similar to those
in Section 2, Remark (i) of [1] and pp. 50-51 of [3], we can prove
smoothness and (2.3) under conditions (A-3) and
(B-1) each partial derivative (3/24,)f(x, 8), i=1,---, k is continuous
in @ for p-almost all x.
Note that (A-3) implies (A-1) when (B-1) is satisfied.

3. Applications

In this section, we apply the result of the preceding section to loss
functions of quadratic form. Let g: 6=(6,---, 6,)) > R' be a para-
metric function to be estimated and let it be partially differentiable.
Let Wy(8, T)=a{T—g(0)}* be the loss incurred by an estimator T, where
a is a positive constant. Then we have the following result.

COROLLARY 3.1. Suppose that the estimator T is L-unbiased with
respect to Wy, and that Ee T ¢ {g(r); © €O} for all 8 6. If for every
6 <O and every h € R* with unit length, Eo+on T* is a continuous func-
tion of veV(8, h), then

(8.1) D(O;T, W,|h)=+a|h'79(8)|/[Es Wy0, T)]*<v/ns(6|h),
where we assume that
7 9(6)=(29(6)/00,,- - -, 09(6)[96:) #0 .

Furthermore, under switable conditions which yield s(6|h)=[h'I(6)h]"*
(see Remark 2.1), if I(6) is positive definite, then we have

al g(8) 1(6)~'7 9(6) ] v
n Eo Wy8, T) ’

(3.2) max o(6; T, Wo|h):[

and the maximum s attained at
h=21(6)"7g() ,

where 1 is a normalizing constant. Consequently, under suitable condi-
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tions, we have the Cramér-Rao inequality

Es W(6, T);%Vg(a)'l(o)-*Vg(a) .

PrOOF. The proof of (3.1) is similar to that of Corollary 3.1 in
[1]. This is also derived from Theorem 2.1’ if g(f) possesses partial
derivatives of the second order. Indeed, using the relations

Wy, T)=—2{T—g(6)}Fg(6) ,

W8, T)=2a7 g(6)7 9(8) —2{T—g(6)}
X [0’9(8)[06,00,; <, j=1,---, k]

and Eg {T—g(0)} =0, we can easily see that (3.1) holds. The result
(3.2) is readily obtained by the Cauchy-Schwarz inequality, that is,

|R'79(6)|<[h'I(6)R]"[F 9(6)' I(8)~'V 9(6)]"*,
with equality when hocI(8) '/ g(6). Thus we complete the proof.

Now we discuss several features of discrimination rates of multi-

parameter cases. Let T, 7=1,---, m be estimators of g,@), i=1,---,
m, respectively, where 8=(4,,---,0,). Put T=(T,---,T,) and g()=
(9:(0),:--, 9.(0)). We now consider the following two loss functions,

Wy, T)=c' M@, T)c
and
w6, T)=cD@, T)c,
for e=(cy,- -, ¢,)’ € R™ such that ¢#0, where
M6, T)=(T—g(6))(T—g(6)y
and
D6, T)=diag [{T:—g:(6)}", - -, {T—9gn(6)}'] .

We assume the following conditions :
(C-1) EoT.e{gir); T€b}, i=1,---,m, for all 66,
(C-2) E¢+wT.T,, 1, j=1,---, m are all continuous functions of v ¢
V(0, h), for every 8 ¢ ® and every h ¢ R* with unit length,
(C-3) g.6), i=1,---,m are all partially differentiable at every
6¢cb.
Suppose that T is L-unbiased with respect to both W, and W, for
every c€ R™. Then condition (C-1) implies that L-unbiasedness of T is
equivalent to Eg T;,=g,8), i1=1,---, m. Define
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G(0)=[09,(0)/30,; i=1,---, k, j=1,---, m].
Applying Corollary 3.1 to Wy(@, T)={c'T—c'g(6)}*, we have
(3.3) D@; T, W, | h)=|h'G(6)c)/[c' Es M(6, T)cl* <7 s(0|h) .
Moreover, if s(@|h)=[R'I(8)R]"* and I(8) is positive definite, it follows
from (3.2) that when h=21(8)"'G(8)c,

cG6YI1(6)'G(6)c ]1/2
nc' Ee M0, T)c )

m}z:,x e@; T, Wnlh).—_‘|:

From this, the Cramér-Rao inequality
¢ Eo M8, T)c=c'G(BYI(0)'G(O)c/n,  for all ce R™

is derived. Now we treat W@, T). Using an argument similar to

that in Corollary 3.1 of [1] (or using Theorem 2.1’ if each g¢,6), 1=1,

-+, m possesses the partial derivatives of order two), we have

(3.4) D(@; T, W, h)=h'G(6)CGOYR/[W'G(6)C Es M8, T)CG(8)h]"
=vns@lh),

where
C':diag [6?9 cgr Tty c?n] .

Let S=(S;,-:+,S,) be another L-unbiased estimator of g(@), which
satisfies conditions (C-1) and (C-2). Furthermore we assume that

rank G(@)=m , for every 0¢6.
Then from (3.3) and (3.4), we can easily see that

D@;T, W;|h)=D@; S, W;|h) ,
for every h ¢ R* with unit length

implies
Ee W0, T)<Es W6, S),

for each 7=0,1. It is obvious that the converse is also true when
2=0. In the case of 7=1, however, the converse does not hold in
general. The relation between discrimination rates and risk functions

under general situations is still open to research.
We now apply the above discussion to estimation of parameters of

a simple normal linear regression model.

Example 3.1. Let Y=(Y,,---,Y,) be a random vector distributed
according to N(X@, ¢*I), where
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X=<1""’1)' and  8=(a, f) € R".
Ly =y Ty

We assume that é ;=0 and V=é 22#0. Let T=(T,, T:) be an esti-
=1 i=1

mator of g(@)=6. For each z, we consider the following two loss
functions:

Wy(0, T)= {(Ti+ Tex) —(a+pz)}*

and
W0, T)=(T\—a)+2(T,—B)* .

Assume that E¢ T=6 and E¢ T?< o, 1=1,2 for all 8 ¢ 6, which guar-
antee the conditions (C-1) and (C-2). Let €U be a class of all such esti-
mators. We now consider the least squares estimator 5, that is,

A

e=<" Y./n, 2Yx/V>

i=1

’

Obviously, for each 1=0, 1,
Eo Wi, 6)=c*/n+ %V
and
E¢ W0, 0)<Es W.0,T), for all TeU.

On the other hand, using (3.3) and (3.4), two discrimination rates of o
are obtained as follows:

D(6; 6, Wy| h)=|hy+ hox|/[0*/n+ 2t V]2
and
D(6; 6, W,| h)=(h+ hia?)/[h2en+ Riata?| V]V,

where h=(h,, h,)’ and h’+hi=1. We can easily verify that for each
1=0,1,

D(8; 0, W,|h)=D@; T, W, k), forall TeU.

Thus for each ¢=0,1 the least squares estimator 6 is best in the sense
of both criteria, that is, risk and discrimination rate. Now we examine

the behavior of each D(6; 0, W.|h), i=0,1 in terms of efficiency. The
sensitivity s(@|h) of N(X@, ¢*I) is given by

s(@|h)=[hin/d*+hiV]a*]* .

From Definition 2.3, we have
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In Figures 3.1-3.3, we describe graphs of both efficiencies as functions
of h, under several situations. It is interesting to note the behavior
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Fig. 3.1. x=5.0, V=20.0
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Fig. 3.2. x=10.0, V=20.0
Fig. 3.1.-3.3. The efficiencies e(@; 5, Wo| k) and e(6; 6, Wi| k) when n=10.
Define ef(hs)=e(8; 8, Wi|h), when hy=vI—%}, —1<h:<1 and e;(hs)=e(8; b,
Wi|h), when hy=—+v1=h}, —1<h:<1, where i=0, 1.
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hz-axis
Fig. 3.3. x=10.0, V=100.0

of e(8; é, W.lh) when 2* or V changes. We can easily verify that as
a function of «%, e(@; é, W.|h) monotonically increases when 2*<V/n
and monotonically decreases when z*=V/n for every fixed h (Fig. 3.1
and Fig. 3.2), and that as a function of V, e(8; 9, W;|h) monotonically
increases when V<nx’ and monotonically decreases when V=mna? for
every fixed h (Fig. 3.2 and Fig. 3.3). When z’=V/n, e(0; é, W:h)=1
for all . On the other hand, Es W,(4, é) is an increasing function of
«* and is a decreasing function of V. The behavior of ¢(@; 8, Wil h) as
a function of x or V is not so simple as that of e(@; é, W, | h).

4. Concluding comment

For any L-unbiased estimator, we can consider two indices of its
performance, that is, the risk function and the discrimination rate.
The estimator is desirable when its risk function is small and its dis-
crimination rate is large. In general, these two indices are not equiv-
alent except when the loss is of the form Wy@, -)=a{-—g(0)}’. Every
discrimination rate is bounded by the sensitivity of the family {Pps;
6 ¢ 6} under consideration. The Cramér-Rao inequality is also inter-
preted as an inequality with respect to the discrimination rate when
the loss is W,.
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