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Summary

A quasi Bayesian procedure is developed for the detection of out-
liers. A particular Gaussian distribution with ordered means is assumed
as the basic model of the data distribution. By introducing a definition
of the likelihood of a model whose parameters are determined by the
method of maximum likelihood, the posterior probability of the model
is obtained for a particular choice of the prior probability distribution.
Numerical examples are given to illustrate the practical utility of the
procedure.

1. Introduction

The problem of outlier detection attracted much attention because
of its practical and conceptual importance. Numerous papers treated
this problem from the traditional testing point of view. However, in
the detection of unknown number of multiple outliers, a severe diffi-
culty is caused by the so-called masking effect (Tietjen and Moore [15])
and none of the solutions hitherto proposed is considered to be entirely
satisfactory (Hawkins [12]). The work by Box and Tiao [7] demon-
strated the importance of formulating the problem explicitly in terms
of a Bayesian modeling. Recently Freeman [8] reviewed three Bayesian
models of outliers in data from the linear model discussed by Box and
Tiao [7], Abraham and Box [1] and Guttman, Dutter and Freeman [11].
In the paper Freeman noticed the difficulty of handling improper prior
distributions of parameters when the numbers of the parameters are
different among the models. Box and Tiao [7] and Abraham and Box
[1] avoided this difficulty by considering only the models with a fixed
number of parameters. In Guttman, Dutter and Freeman [11], an ad
hoc procedure is developed to get information on the number of outliers.

Although Freeman [8] tried to avoid the difficulty by using proper
priors throughout, the difficulty of choosing an appropriate set of priors
is clearly demonstrated by his numerical examples. In the discussion
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of his paper it is mentioned that it might be that attempts like the
AIC criterion to produce a standard way of answering a wide variety
of questions regardless of their different contexts are doomed to failure.
This comment sounds rather out of place as it is the importance of
proper modeling and objective criterion for model selection that has
been stressed by the introduction of AIC.

The purpose of the present paper is to show that by developing an
appropriate family of models and using the concept of the likelihood of
a model obtained by properly extending the basic idea of the AIC cri-
terion (Akaike [4]) we can in fact develop a procedure which practi-
cally avoids the difficulty discussed by Freeman. The predictive log
likelihood of a model determined by specifying the set of assumed out-
liers and applying the method of maximum likelihood, is defined as an
approximately unbiased estimate of the expected log likelihood of the
model. A quasi Bayesian procedure is then realized by using the pre-
dictive likelihoods and appropriately chosen prior probabilities of the
models. Numerical results are given to show that the procedure pro-
duces reasonable results for some of the examples frequently discussed
in the literature.

2. The model and its predictive likelihood

Let «*=(x,---, x,) be a vector of n observations. J is an ordered
set of k integers {i,---, 1.} chosen from the integers {1,2,.---,n}.
When J is specified, we consider that k observations z;,---,z; are
outliers, whereas the rests, «, (j¢J), are normal observations drawn
from a Gaussian distribution with unknown mean g, and variance o
The outliers are assumed to be obtained from Gaussian distributions
with ordered means, g <u,<---=<p,, and common variance ¢’. Thus

the component model given .J is specified by the data distribution

falg, o)=T] 2g[ 2ot | 1 Lg| Tt

where 6=(go, pt1,***, ptr» 0°) and ¢(x) denotes the standard Gaussian den-
sity function.
Given the observation, x,,:--, ,, the log likelihood of the compo-

nent model is given by

log f(x|0, J)=

1 ¢ 2
S @ 2 =]

Thus the maximum likelihood estimate of the mean of normal obser-
vations, s, is obtained by z=(1/(n—k)) > #,, While those of the mean
j€r
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values of outliers, g, (¢=1,---, k), are obtained by maximizing the log
likelihood function under order restrictions. This is equivalent to find-
ing the solution to the problem of quadratic programming :

k
minimize F(uyee, p)= ./E—l (#;,—2:)

subject to MS S Sy

They are easily obtained numerically by the pool-adjacent-violators
algorithm (Barlow et al. [5]) which will be briefly described in Section
4. For the model specified by J={%,,-- -, ¢;} which satisfies the natural
ordering condition, , <z, <.--=<z,, they are simply given by =2y
The maximum likelihood estimate of the variance ¢° is then obtained by

G ———{Z (%, — o)’ +2 (2, —py) }

According to the entropy maximization principle [3], we evaluate
the goodness of the model specified by these maximum likelihood esti-
mates by its expected log likelihood

(1) E,log f(y|J, 0)=—= log 2rd*

1
20°

e+ =)+ 53 (=i}

where E, denotes the expectation under the assumed distribution of y,
f(y|J, 0). In a practical situation, the true parameter 6=(u,, g, --,
e 0°) is unknown and thus the present form of the expected log likeli-
hood is useless. Following the idea underlying the definition of AIC
(I2], [3]) we try to correct the bias of the maximized log likelihood,

(2) log f(z|J, é):-"logzm “E’

as an estimate of the expected log likelihood. From (1) and (2), the
average increase of the maximum log likelihood is obtained by

.»=E. {log f(z|J, §)—E, log f(y|J, 6))
=E, [t {no' 4+ (n—B) (o=’ + 3} (s, — ) -1

where E, denotes the expectation under the assumed distribution f(x|
J, 0) of the data. However, since the maximum likelihood estimates
f,*+, i depend in a complicated way on the magnitudes of Lepe ooy Ty
it is difficult to evaluate C,, analytically. Therefore for the present
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purpose of evaluation of the bias, we will use the simple estimator
p;=a;, (j=1,---, k) irrespectively of the ordering of the magnitudes of
Ly oy Ty This is equivalent to assuming that our model satisfies the
natural ordering x; <%, <---=w, and will produce a reasonable approxi-
mation when o7*(p;—pi_y) (¢=2,---, k) are sufficiently large. The effect
of this assumption will be checked in Section 6.

Under the assumption that the original data x was drawn from
the distribution f(x|J, §), we have E,[o67*]=n(n—k—38)"'07%, E, [(gt— p0)*]
=(n—k)'¢* and E,[(#,—p.)'1=0¢% and it follows that

_ n(k+2)
Cin n—k—3 '

An unbiased estimate of the expected log likelihood of the estimated
model is now obtained as

log f(z|J, 6)—C,.,

and the predictive likelihood of the estimated model under the assump-
tion of J is defined by

p(x|J)=exp {log f(x|J, 6)—Cy.} -

3. The prior and posterior probabilities

We assume that we have no information initially to say that a
specific k&, the number of outliers, is more likely than others. Hence
we put p(0)=p(l)=---=p(n)=1/(n+1), where p(k) denotes the prior
probability that there are k outliers. Given that there are k outliers,
there are ,C, ways of specifying k observations as outliers out of the
n. Thus the prior probability that a specific set of k observations are
the outliers is given by

1 oo (n—R)lk!
n+1™ " T (m+1)!

This prior probability admits another derivation. We assume that
an observation is an outlier with probability «. The probability that
a particular set of k observations are the outliers is then given by
o*(1—a)"*. By integrating o*(1—a)"~* over 0 through 1, we obtain the
above prior probability.

For each set of k assumed outliers there are k! ways of assigning
them to the k distributions specified by the means p, (j=1,--+, k). By
assuming every configurations to be equally probable, we obtain the
prior probability of the model specified by J={i,,---, %} as
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(n—Fk)!
(n+1)!

The posterior probability of the model specified by J is then given
by #(J|x)=p(x)'p(x|J)x(J), where p(x):? x| JS)x(J) and p(x|J) de-

notes the predictive likelihood of the model defined in the preceding
section. The posterior probability of %, -+, %;, being the outliers is
given by > n(J|x), where the summation extends over the set of k!
J’s obtained by permuting {i,,---, 7.}.

n(3)=

4. Algorithm

In this section we will describe an algorithm for the computation
of posterior probabilities.

(1) Specification of outliers
For m=0,1,...,2"*~1, put ind(?) (¢=1,---,n) equal to the ith bit

of the binary expansion of m, i.e., é2i“ind(i)=m. The number of
i=1

outliers is given by k=§‘,ind(i) and the set of outliers {z; 7j=1,-.-,
i=1
k} is specified by putting ¢,=¢ for the jth non-zero ind(s).

(2) Computation of the log posterior probability of the naturally or-
dered model

For the given combination {4,,---, 7,} of assumed outliers, compute
the logarithm of the posterior probability of the naturally ordered
model by

n(k+2)

e —log n!+log (n—k)! ,

log p(m|x)=—— log a*(m)—

where a common additive constant is ignored and

9 _ 1 . 2 1
Am=— S (@—pm),  am=—1— S .
(3) Computation of the posterior probability
The posterior probability of another model, specified by J(5)= {jnd-
(1),---, gnd(k)} which is obtained by rearranging {i,---, %}, is obtained
by using the weight, w(j, m), relative to that of the naturally ordered
model

k
. NG (M) + 33 (L jacoy — 1) ) =2
w(g, m)= { = :

no*(m)
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where the maximum likelihood estimates 2, (¢=1,---, k) are obtained
by the following pool-adjacent-violators algorithm (Barlow et al. [5]).
The algorithm starts with the initial estimates u,=%;u (¢1=1,---,
k). If the initial estimates satisfy the order condition, they are the
final estimates g, (¢=1,---, k). If not, select all the sequence of viola-
tors of the ordering; that is, select all the pairs of p and ¢ such that
Upt S > g1 >+ o+ > S ptgsr.  For every pair of p and g, replace the
1 q
p— | r%p,. If the re
sulting p,’s do not yet satisfy the order condition, repeat the above
step until to produce the final estimates g, (¢=1,:--, k).
The posterior probability of x;, (§=1,---, k) being the outliers is
obtained by

estimates p; (i=p,--,q) by the pooled one

m(m|z) ocp(m|z) 35 w(g, m) ,

where the summation extends over k! possible models specified by J(j)’s.

5. Examples

To check the performance of the present procedure, we applied it
to two sets of familiar data. The computation was performed by a
computer program, OUTLAP, developed by Kitagawa [14].

Example 1 (Darwin’s data).

Table 1. Darwin’s data This data set has been discussed by
many researchers, such as Box and Tiao
[7], Abraham and Box [1] and Freeman
[8]. Here the data z,, %,,---, x, are ar-

—67 —48 6 8 14 16 23 24
28 29 41 49 56 60 75

Table 2. Prior and posterior probabilities of some combinations
of possible outliers (Darwin’s data)

NumberOf  Possible outhiers 00, oS w
2 —67, —48 0.0016 0.515 1.787
0 none 0.1667 0.140 1.

1 —67 0.0111 0.107 1.

3 —67, —48, 75 3.7%x10~ 0.085 1.697
1 —48 0.0111 0.017 1.

3 —67, —48, 6 3.7x 10~ 0.014 1.988
3 —67, —48, 60 3.7x10~# 0.012 1.761
3 —67, —48, 8 3.7x10# 0.011 1.973
3 —67, —48, 56 3.7%x10~* 0.009 1.772
4 —67, —48, 60, 75 1.2x10~* 0.007 2.795
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ranged in ascending order of magnitude. The lowest two observations
look rather discrepant from the rest. The posterior probabilities of
various possible combinations of outliers are obtained by multiplying
the predictive likelihoods, exp {log f(x|J)—C,.}, by the prior probabili-
ties n(J). The ten largest posterior probabilities which together con-
stitute 91.79, of the total probability are listed in Table 2. The high-
est posterior probability 0.515 occurs at J={1, 2}, indicating that —67
and —48 are probably the outliers. The posterior probabilities of J=¢
(no outliers), {1} and {1, 2, 15} are also considerable. The probabilities
of other combinations of assumed outliers are almost negligible. The
marginal posterior probabilities =(7|x) that the observation z; is an out-
lier are obtained as =(1|2)=0.812, #(2|2)=0.705, =(15|x)=0.120, =(14|x)
=0.030 and =(7|x)<0.022 for 1=3,4,--:,13. The meaning of the values
in the last column denoted by w will be explained in Section 6.

Example 2 (Herndon’s data).

The second example is Herndon’s data discussed by Grubbs [9],
Tietjen and Moore [15] and Kitagawa [13]: Here the extreme values

Table 3. Herndon’s data

—1.40 —-0.44 -0.30 —-0.24 —-0.22 -—-0.13 —-0.05 0.06
0.10 0.18 0.20 0.39 0.48 0.63 1.01

on both sides are suspicious. The ten largest posterior probabilities
which together constitute 85.19% of the total probability is listed in Table
3. The highest posterior probability 0.414 occurs at J= {1}, indicating
the —1.40 is the outlier. The posterior probabilities that —1.40 and
1.01 are the outliers and that there is no outliers are not negligible
but those of other cases are very small. The marginal posterior prob-

Table 4. Prior and posterior probabilities of some combinations
of possible outliers (Herndon’s data)

Nomtrers T Possible outiers Foeh, ORI w
1 —1.40 0.0111 0.414 1.0
2 —1.40, 1.01 0.0016 0.223 1.0
0 none 0.1667 0.152 1.0
3 —1.40, 0.63, 1.01 3.7x10* 0.035 1.553
2 —1.40, —0.44 0.0016 0.019 1.175
1 1.01 0.0111 0.018 1.0
2 —1.40, 0.63 0.0016 0.013 1.003
3 —1.40, —0.44, 1.01 3.7x10~# 0.010 1.060
2 —1.40, —0.30 0.0016 0.010 1.126
3 —1.40, 0.48, 1.01 3.7x10 0.009 1.388




396 GENSHIRO KITAGAWA AND HIROTUGU AKAIKE

abilities =(7|x) that the observation z; is an outlier are respectively
given by =#(1|x)=0.802, =(15|x)=0.326, =n(14]x)=0.064, =n(2]x)=0.040,
7(13|2)=0.027 and =(7|x)<0.021 for ¢=3, 4,---, 12.

6. Discussion

In Section 2, we evaluated the average increase of the maximum
log likelihood due to the increase of the number of parameters under
the simplifying assumption that the condition »; <, <---==, always
holds. Now we will present a result of our empirical study on the
effect of this assumption.

The following two situations were considered :

(1) k=2, J={1, 2}

el i =g (2 0E) (252

¢ ;

With a'—-—"uz_ﬂlgo, [l():O and 0'-:1.
(2) k=3, J={1,2, 3}

el o i )= g B o TR )o{ S o208

T g

with a=pg,—py=p3— =0, p,=0 and o=1.
In Fig. 1 each dot shows the sample means of C¥,=M"'3>} {log f(x|J,

(a) n=10 (b) n=15 (c¢) n=20
Cta Cia Cin
Cs,10
5 .
[ ]
*
[ ]
10 10+ 10
®
Cz,10 . C.B’15
L o [ ]
. ® ¢ . . Cs,20
L ] ~—v—e
1 * Cz,15 « * °
L J
C ¢ ° . Cz.20
5 1,10 54 5’_....----
C
L1 C1,20
Co,10
Cois Co,20
] ] ! ) ! ] ! 1 ! ] ] ]
0 2 4 0 2 4 0 2 4
alo a/o alo

Fig. 1. Sample means of the average increase of the maximum log likelihood due
to the increase of the number of parameters



QUASI BAYESIAN APPROACH 397

Ho pty, 0)—E, log f(y|J, i, pt;, )} obtained from M=40000 simulations for
each combination of k=2 and 3, n=10, 15 and 20 and a¢=0.0, 0.5, 1.0,
-++,4.0. The solid lines show C, , for k=0, 1, 2 and 3.

From the figure we can see that if afo=p;—p,_;=2, the difference
of C¥, and C,, is negligible compared with that of C¥, and C¥,;,. On
the other hand, if a/oc is much smaller than 2 the difference of C¥,
and C,, becomes considerable. It shows that if some of the outliers
are located closely each other then the posterior probability that they
are simultaneously outliers is underestimated. This indicates that our
procedure may not work well for the detection of a cluster of several
outliers, particularly when they are located close to the main distribu-
tion. For the detection of these outliers, we should use a modified
model which allows the situation where some of the outliers are from
a common distribution.

There are some practical ways of simplifying the algorithm to ob-
tain reasonable approximations to the posterior probabilities. In an
actual computation, we first rearrange the data in order of increasing
magnitude as z,<:-- <2, and specify the maximum K of the number
of possible outliers, so that, if K<i<n—K, the posterior probability
that z, is an outlier is very small. Then we set =(J|x)=0 if {x;; i€ J}
contains any of xz,, with K<i<n—K. With this approximation, the
number of combinations of possible outliers is reduced to 2* from 2~.
This will avoid the combinatorial explosion of the number of models.

Generally w(m) (=3 w(j, m)) takes a value between 1 and k!. But
we can see from Tables 2 and 4 that the values of w(m) of models with
significant posterior probabilities are close to 1. Thus we may put w
=1 to get a reasonable approximation. With this approximation the
algorithm can be simplified greatly. The value of w(m) takes a signifi-
cant value only when there are outliers with nearly equal values.

It is easy to extend the present quasi Bayesian approach to the
detection of outliers of large variance type. The model in this case is
specified by the conditional data distribution

p(x|d, u, o, r)=g%¢<x—i_—#> 1T '1‘¢(m_i;i) ’

P jed T
and the prior probability

_ (=)t

"=~

By our experience, however, the procedure based on this model is gen-
erally insensitive to outliers compared with the procedure discussed in
this paper.

The advantage of the present quasi Bayesian approach to the out-
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lier problem is that it allows a natural definition of the outlier correc-
tion. When an observation «; is considered to be an outlier a natural
correction will be to replace it with the sample mean of the normal
observations. Since the posterior probability of the model specified by
J is given by =(J|x), the final corrected values are obtained by z;=
? m(J|x)x(J) (t=1,---, n), where x,(J) is the corrected value of z, un-

der the assumption of the model specified by J. This will find a wide
application in the area of automatic extreme value correction. Computer
program based on this idea is already given in Kitagawa [14].
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