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Summary

The computational aspect of the fitting of a parametric model for
the analysis of the influence of an input to a point process output is
discussed. The feasibility of the procedure is demonstrated by an arti-
ficial example. Its practical utility is illustrated by applying it to the
analysis of the causal relation between two earthquake series data from
certain seismic regions of Japan.

1. Introduction

Consider a point process defined by the intensity process
(1.1) AO)=p+ | gt—)N+ | ht—)iX, ,

where {N,} denotes the point process and {X,} the input process which
may be either a point process or a cumulative process

X,= S: x(s)ds

of a stochastic process x(t). Given bivariate data {N, X,; 0<t< T},
we are interested in estimating the response functions g(¢) and A(t) in
(1.1). When A(t)=0, this means that there is no causal relation be-
tween the input {X,} and the output {N,}, while g(t)=0 means that
the output process is a doubly stochastic Poisson process whose inten-
sity is modulated only by {X,}.

In [7] we proposed a parametrization by the Laguerre type poly-
nomials

(1.2) IB)=3 at* et and  h(t)=3) bt*let .
k=1 k=1
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The log partial likelihood in the sense of Cox [3] is then defined by
1.3) log Lr(0)=| log a(tian.—{ aat ,

where 6 stands for (g, e, a,---,ag, by,--+,b;). The estimation of the
parameters can be realized by applying the method of maximum likeli-
hood to the partial likelihood and the selection of the orders K and L
is realized by the minimum AIC procedure [1] which minimizes

(1.4) AIC=(—2) max (log partial likelihood)
+2(number of parameters) .
In this paper we will discuss the numerical aspect of the process
of parameter estimation and order selection and demonstrate the per-

formance of the procedure by applying it to both artificial and real
data.

2. The likelihood computation and the minimum AIC procedure

Given a pair of records of occurrence times of two events {t;; i=
1,---,I} and {r,; m=1,.--, M} over the time interval [0, T'] the partial
log likelihood (1.3), with {¢;} as the output and {r,} as the input, is
given by

@1)  log Li(0)=3log {u+ 3 auPiti)+ 3 5.0

— {,IT+§ a, é Rk(T—ti)+,cZi‘i b, :ﬁ R,,(T—fm)}

where

(2.2) P(i)= 3 (ti—t,) et
lj(lt

2.3) Q)= 3 (ti—rn) et w
'm<‘i

and

2.4) R(t)= S tr-tgelt .

0

When a continuous record {xz(t)} over the time interval [0, T] is
given as the record of the input, the intensity process (1.1) is approxi-
mated by

(2.5) AO=p+ 3 gt —t)+ 3 Mt—0.)s(0.)-(MIT)

where M is a properly chosen large integer and o,=(m/M)T—1/2MT),
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m=1,-.-.-, M. With the parametrization (1.4), the approximate partial
log likelihood is given by

(26) log L¥(0)=3 log [+ 3} aPu))+ 31 b.ULO)|

T+ 3 0 BRI+ 3 b 3 (o RlT—0w)] |
where P.(i) and R.(t) are given by (2.2) and (2.3), and
2.7 Uk('i)=ﬂz<‘,ti (o) (ti— o) e |

The derivation of these partial log likelihoods is discussed in [7].

Given a pair of orders (K, L), the maximum likelihood estimates
of the parameters can be obtained by using a non-linear optimization
technique developed by Fletcher and Powell [4] which requires only
the gradient for the optimization. The gradients of the partial log
likelihood functions can easily be obtained by differentiating the above
likelihood functions with respect to the parameters. They are given
as follows:

(2.8) QIOHLLT_: i‘i 1/A(i)—T,

dlog Ly _ _
(2.9) LELr _ % pyiyati)- SR(T-t), k=l K,

dlog L, & . . X .
(2.10) —T—g‘,‘ Qk(’l,)//l(’b)—mZ:l R(T—r,), k=1,---, L,
and
@1) ZELr -5 {51 6P+ 3 BQui)] [46)

C i=1 (k=1
+éa ; k+l(T t)+2b 2 Rk+1(T Tm)

where
(2.12) )=+ 3] P+ 31 0.QU0) -
If we set
2.13) )=+ 3 @Pi)+ 310U

the gradients of log L} for x and a,’s are obtained by the same for-
mula as (2.8) and (2.9), respectively, and
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k I M
2.14) f’l_gg_L_r= 2 U@M4G@) - 3 s R(T—0,) , k=1, L,
& = m=

and

@15) LIBLE_ 51 (516, Py0i(i)+ 3 0.9uni(i)] [46)

K I L r
+23 0 33 R T—t)+ 3 by 3 (0n)Res(T—00) -
For the statistics P, @, U and R the following recursive relations,

which are useful for the efficient calculation of the likelihood, are
available :

(2.16)  Pu(i+1)=(ts —t) e Cisr—to

I 2 P.()(t,.,—t.) TecCtit1tD
- 1 —1 .7'(1‘)( i+1 i) ‘e i+178)
=1 \J

@17 QUi+D=Ditu tud+ 32 (F21)QO ti—tyiesny,

where

Dyt tir)= 3 (Cip—ta) e im0,

LSt <tiyy

Also

(2.18) Ui +1)=Fi(t,, ti+1)+12=1 <f: i) U,(0) (i — ) Tem it |

where
Fi(t, t.)= . ”2@ 2(0,) (tir1— ) e Cir1mom
Finally, o
(2.19) R,)={(k—1)R,_,(t)—t*'e*}/c .
The AIC defined by (1.4) for the order determination is given by
(2.20) AIC (K, L)=(—2) max log L,(6)+2(K+L+2),

where # stands for (u,c, a;,---, ax, b,---,b;). We choose (K, L) that
minimizes AIC. A very practical computationally efficient procedure
is realized by restricting the exponential coefficient ¢ to some finite
number of candidate values ¢; and minimizing

(2.21) AIC (¢;; K, L)=(—2) max log Ly(c;; O)+2(K+L+1),

where ¢ stands for (g, a;,- -, ax, b,--+,b.). We choose the triplet (c,,
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K, L) that minimizes AIC (c;; K, L).

3. Relation to the second order analysis

The problems treated in this paper are related to the spectral
analysis of input-output systems of point processes studied by Bril-
linger [2]. In the discussion of this paper, Cox suggested that an
alternative approach would be a likelihood analysis based on models
where the intensity function is modulated by the input process. Our
present paper is exactly in this line of approach. Given the response
functions g(¢) and h(t), we can obtain the auto- and cross-covariance
functions, p,(t) and p,(t) for ¢=0, numerically by using the recursive
relation of Hawkes [5]

u(t)=A9(t)+ S: gt —v)pu(v)dv+ S:’ gt +v) py(v)dv

¥ S: h(t+v)paw)do
3.1) t t
pa(6) = Ah(t) + So 9t —) p(v)dv+ So Tt — ) pen(0)d0

+ S: h(t+v) pp(v)dy ,

where pj(v) is the auto-covariance of the input process. In the next
section we will use this relation to get initial guesses of the param-
eters. We will also use the relation for the comparison of the para-
metric and non-parametric estimates of the covariance functions.

4. |lllustration by artificial examples

We wish to illustrate the procedure described in the previous sec-
tion by some artificial examples. In the first example the input pro-
cess {x(s,)} was generated by the relation x(s,)=exp {0.3Y,}, where
g.,=m and Y,=1.394Y, ,—0.752Y, ,+¢, and ¢, is a standard normal
white noise. The record of {x(s,)} is shown in Fig. 1. The true re-
sponse functions are given by (1.2) defined with the parameters given
in Table 1. We obtained a series of events with the total number of
occurrences N;=1514 in the time interval [0, T']=][0, 1000.0] (see [6]
for the method of generation). Models with L=K and up to 6th order
were fitted. The maximum of the log likelihood for each order was
obtained as follows: As the initial guess of the parameters for the
case with L=K=1 we used (g, ¢, a, b)=(, ¢, 0, 0), where g=¢é=N,/T
=1.514. The case with L=K=2 was started with the initial guess
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Fig. 1. The record of input process

Table 1

y3 c a asz as a; as by I bs by bs

true 0.10 1.00 0.23 —1.00 1.74 —0.83 0.12 0.00 0.49 —0.36 0.08 0.02
m.l.e. 0.04 0.99 0.20 —0.84 1.29 —0.55 0.07 —0.03 —0.09 0.86 —0.55 0.11

(g5 ¢, @y, by, @y, b))=(f, ¢, @, 30, 0, 0), where g, ¢, @ and 30 were the maxi-
mum likelihood estimates of the case with L=K=1. A similar pro-
cedure was repeated up to the 6th order model (K=L=7). The values
of AIC in the sense of (2.20) are listed in Table 3 which shows that
the model with L=K=5 is the best. The maximum likelihood esti-
mates of the corresponding coefficients are given in Table 1. The true

Table 2

7 c a as as a; as ae ar as

true 0.08 5.00 0.69 —12.23 97.13 —289.65 338.69 —65.73 —111.68 50.79
m..e. 0.08 4.00 0.61 —10.21 76.13 —215.89 272.90 —153.23 32.53 -

by bs bs by bs bs bq bs
true 0.89 —13.28 75.43 —170.56 90.29 220.64 —258.23 74.26
m.l.e. 0.93 —12.85 72.53 —202.57 294.36 —186.53  41.41 —_
Table 3
k 1 2 3 4 5 6 7
AIC(k, k) 1635.18 1588.26 1588.49 1587.76 1585.29* 1589.13 1592.81

estimated ¢ 0.15 0.31 0.49 0.76 0.99 1.00 1.06
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Fig. 2. The true and estimated response functions for g(f) and A(¢)
The true line with coefficients in Table 1
++++ Estimated line with coefficients in Table 2

and estimated response functions are graphically represented in Fig. 2.

As the second example we considered the response funections (1.2)
with coefficients given in Table 2. A bivariate series of events was
generated by a mutually exciting process with a suitably determined
intensity for the second component (see [6] for the algorithm of the
generation). The input and output series were with the total numbers
of occurrences I=1165 and M=1010, respectively. They were obtained
on the time interval [0, 10000.0]. For the initial guess of the exponen-
tial coefficient ¢ the auto- and cross-correlograms were obtained (see
Fig. 4). Significant values of the correlations are observed up to the
time lag 4.0. The relation (3.1) suggests that the shapes of the re-
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Fig. 4. Estimations of auto- and cross-covariance functions

The smooth lines are obtained numerically by solving the equation
(3.1) with estimated parameters in the Table 2.
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sponse and covariance functions are not very much different. Thus we
guessed that the time range R of the significant response would be
around half of this time lag 4.0, i.e., R=2.0. By assuming the model
with K=3 we obtained a rough initial guess ¢,=4/R=2.0. Alterna-
tively, ¢,=0.98 was obtained by the direct maximum likelihood esti-
mation of the Oth order model, starting with the initial guess (g, ¢, a,,
b,)=(0.1, 0.1, 0.0, 0.0). Using ¢,=2.0 as our initial guess of the expo-
nential coefficient we successively tried ¢=0.5, 1.0, 4.0, 8.0 and 6.0.
The AIC values defined by (2.21) were obtained for the models up to
the 14th order for each ¢. They are listed in Table 4. The minimum
AIC value is attained at ¢=4.0 and L=K=7. The estimated coeffi-
cients for this case are given in Table 2. Fig. 5 shows the graphs of
the estimated response functions with the minimum AIC for each choice
of ¢. It can be seen that the graphs for ¢=4.0 which gives the over-
all minimum of the AIC’s are very close to those of the true response
functions (Fig. 3). The covariance functions calculated by the relation
(3.1) show good fit to the corresponding non-parametrically estimated
covariance functions (Fig. 4).

Table 4 List of AIC (¢;; K, K)

K € 0.5 1.0 2.0 4.0 6.0 8.0
(Poisson) 7465.16 7465.16 7465.16 7465.16 7465.16 7465.16
1 7199.38 7173.59 7198.15 7237.29 7252.05 7259.12
2 7177.50% | 7177.51 7188.97 7231.10 7250.01 7254.38
3 7181.10 7180.47 7156.68 7137.24 7168.77 7202.06
4 7184.08 7169.53 7149.49 7133.53 7154.44 7181.38
5 7184.65 7168.95 7128.70 7122.85 7126.22 7140.83
6 7187.10 7168.22 7118.62% |  7126.15 7127.21 7135.07
7 7180.06 7166.09 7122.35 7112.87%  7122.41 7127.84
8 7178.65 7144.72 7126.20 7112.92 7119.08 7126.51
9 7182.21 7137.27 7130.14 7116.31 7116.79 7125.00
10 7185.23 7139.54 7129.98 7117.02 7112.99% | 7118.11%
11 7186.23 7132.61% |  7126.95 7120.75 7116.65 7122.11
12 7189.77 7133.12 7127.16 7122.77 7119.70 7123.87
13 7193.54 7136.67 7128.54 7121.53 7115.22 7122.20
14 7191.76 7140.56 7124.15 7123.47 7119.22 7126.20
15 7195.76 7144.32 7127.90 7127.30 7122.92 7128.64

* shows the minimum AIC for each ¢; and ** shows the overall minimum AIC.

5. Analysis of causality of earthquake data

Utsu [9] discussed the correlation between the intermediate earth-
quakes in Hida (the region around Takayama city) and the shallower
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Fig. 5. Estimated response functions with the minimum AIC’s

earthquakes in the central Kwanto (the region around Tokyo). He
tested the independence between these earthquakes, and concluded that
there was a significant dependence which could be attributed to some
mechanical connection between the two seismic regions.

Utsu’s data is composed of 61 earthquakes with Richter magnitude
M=5.5 in central Kwanto and 16 earthquakes of M >5.0 in Hida dur-
ing the 51 years from 1924 through 1974. Here the data is reproduced
after the transformation into i-day, i.e., the time scale unit is one-day
with the origin 0 of the time being equated to the 1st of January,
1924 (see Table 6). The model (1.1) was fitted to both sets of earth-
quake data. The values of AIC of the models given by (2.20) with
the earthquake series in the central Kwanto area as the output and
the series in the Hida area as the input are listed in Table 7. The
minimum AIC is attained at L=1 and M=1. The corresponding esti-
mates of the parameters are listed in Table 5. The graphs of the
estimated response functions are given in Fig. 6. The result clearly

Table 5
P c a; by
1.42x 102 6.33x10-3 1.01x 108 8.66x 103

m.Le. (shocks/day) (1/day) (shocks/day) (shocks/day)




APPLICATION OF LINEAR INTENSITY MODELS 383

Table 6 List of intermediate earthquakes (M =5.0) in the Hida region
and shallow earthquakes (M =5.5) in the central Kwanto region

Central Kwanto

1109 1272 1313 1356 1458 1469 1484
2172 2556 2598 2697 2834 3129 3813
3819 3842 3910 3915 3922 3927 3967
5163 5385 5968 6246 6365 6938 7135
7419 8054 8054 8216 8326 8567 8763
8770 9062 9160 10965 11263 11444 11450
12069 12108 12208 12434 12622 12827 12899
13056 13091 14257 15011 16097 16166 16221
16878 17348 19265 19266 19573
Hida

1443 2505 3804 5217 6675 8218 11297
11746 11866 12187 12661 12753 14521 15100
16150 19219

Time scale unit is one-day.

shows that earthquakes in Hida area do stimulate the occurrence of
earthquakes in Kwanto area.

The graph of the estimated intensity process of the Kwanto earth-
quakes is given in Fig. 7 where the symbols K and H indicate the occur-
rence times of the earthquakes in Kwanto and Hida area, respectively.
Thus it seems that Hida earthquakes will play a significant role in
earthquake risk prediction (see Vere-Jones [10]) in the Kwanto area.

To see if a similar effect exists in the opposite direction, the values
of AIC of the models with the series in the Hida area as the output
and that of Kwanto area as the input were calculated. However, for
some choices of the orders (X, L) the maximum log likelihood diverged
and the estimated intensity took significantly negative values. In par-
ticular either g¢(0) or A(0) was tending to minus infinity. To avoid
this difficulty the parameters a, and b, were restricted to non-nega-
tive values. This also kept the estimated intensity process positive.
This problem is discussed in [8]. The AIC values with * in Table 8
were obtained under these restrictions. The overall minimum of AIC
was attained by the Poisson model with g¢(t)=h(t)=0. This suggests
that the earthquakes in the Kwanto area do not stimulate the occur-
rence of those in the Hida area. To check the validity of the obtained
model, we performed simulations of earthquakes of the Kwanto area
by using the estimated intensity function with the occurrence times
for the Hida area given by the Utsu data of Table 6. One numerical
result is given in Fig. 8; see [7] for the method of simulation. Fig. 8
exhibits a similarity with the result given in Fig. 7. We obtained the
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Fig. 7. Estimated intensity process of Kwanto earthquakes

The symbols K and H indicate the occurrence times of earthquakes
in Kwanto and Hida area, respectively.
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Table 7

Input=Hida data

Self-

AIC(LK) | oroiting L=1 L=2 L=3 L=4
° Poisson —12.0 —33.0 —31.6 —29.6 —27.7
E K=1 —20.8 —33.6 —31.9 —30.1 —28.0
52| K=2 -18.8  —32.7  —30.7  —28.8  —26.8
S k=3 -20.1 —30.7 —28.7 -27.3 —25.7
© K=4 —18.2 —28.7 —26.7 —25.1 —23.4
The underlines show the minimum AIC.
Table 8
Input=Kwanto data

AIC(L, K) exsc?g};g L=1 L=2 L=3 L=4

K Poisson 41.1 43.6 45.4 47 .4 49.1
i K=1 4.6 45.6* 47.4 49.2 51.2
J:,l K=2 46.3 47.6% 48.5% 50. 1% 52.1%
2 K=3 47.9% 49.6* 51.9% 50. 6% 52.1%
IS K=4 4.2 51.6% 53.9 51.9% 49.2%

385

The underlines show the minimum AIC, and
* shows that AIC was obtained under the restriction ¢(0)=0 or %(0)=0.
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Fig. 8. A simulated example of earthquakes with the parameters in Table 5

cumulative distributions of the interval lengths of the series of Figs. 7
and 8 and checked the observation of Utsu [9] that the cumulative
distribution displays a broken line type behavior. The behavior can
be observed in both Figs. 9 and 10. This suggests that our estimated
model is reproducing a basic characteristic of the Utsu data. The
broken line phenomenon might be caused by the significant change of
intensity after a Hida earthquake.
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6. Concluding remarks

Conventionally the model selection is realized by successively ap-
plying the likelihood ratio test. The relationship between the AIC and
the likelihood ratio statistic is given by

(6.1) (—2) log A(H,; H,)=AIC (H,)—AIC (H,)—2k

where the model H; contains the model H, as a restricted family of
distributions of H;, and k denotes the degrees of freedom of the chi-
square distribution of the likelihood ratio test statistic. Owing to the
difficulty in selecting appropriate significance levels, we did not follow
this conventional approach. However, if the reader is interested in



APPLICATION OF LINEAR INTENSITY MODELS 387

the testing procedure the AIC’s can be translated into the log likeli-
hood ratios by (6.1). For example, to test the causal relation in the
earthquake data, the AIC’s given in Table 7 and the relation (6.1)
provide necessary information.

For maximum likelihood computation, the selection of the exponen-
tial coefficient of the response function is important. By our experi-
ence of simulation study, too large or too small values of the exponen-
tial coefficient ¢ cause the increase of the order of the model with
minimum AIC. However, it may happen that the optimum ¢ is not
unique or that the likelihood increases indefinitely as ¢—0. In these
cases we may use prior information to select an appropriate finite in-
terval for e, since ¢ is, roughly speaking, a scale parameter of the
influential range of the response function. For example, if we consider
an earthquake series, useful prior information for the interval could
be obtained from some seismological finding such as Omori’s law [11].
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